51
|
Toraih EA, El-Wazir A, Hussein MH, Khashana MS, Matter A, Fawzy MS, Hosny S. Expression of long intergenic non-coding RNA, regulator of reprogramming, and its prognostic value in patients with glioblastoma. Int J Biol Markers 2019; 34:69-79. [PMID: 30852975 DOI: 10.1177/1724600818814459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Long intergenic non-coding RNA, regulator of reprogramming ( LINC-ROR) is a newly identified cytoplasmic long non-coding RNA (lncRNA), which has been found to be dysregulated in different cancers. The present work aimed to quantify LINC-ROR expression profile and assess the tumor proteins p53 and caspase 3 expressions in glioblastoma tissue specimens compared to non-cancer tissues, and to correlate these expression levels with the available clinicopathological and survival data. METHODS LINC-ROR relative expression in 57 glioblastoma cancer tissues and 10 non-cancer tissues was quantified by real-time polymerase chain reaction (qPCR). In addition, methylation-specific PCR of O-6-methylguanine-DNA methyltransferase ( MGMT) promoter and immunohistochemical expression of apoptosis related proteins: p53 and caspase 3 were performed. RESULTS The up-regulation of LINC-ROR was encountered in 89.5% of patients. The higher expression of LINC-ROR was associated with poor disease progression-free and overall survival as well as a younger age of patients ( P=0.036). p53 protein was expressed only in glioblastoma but not in non-cancer tissues while caspase 3 was weakly expressed in most non-cancer tissues and in varying degrees in glioblastoma (24% weak, 30% moderate, and 16% strong expression). The Kaplan-Meier survival plot illustrated poor survival in glioblastoma patients with over-expressed LINC-ROR ( P=0.010) and down-regulated p53 ( P=0.002). Multivariate analysis showed that glioblastoma patients were clustered into two distinct groups based on LINC-ROR expression profile, p53 staining levels and patients' overall survival. CONCLUSIONS LINC-ROR up-regulation may have a role in glioblastoma tumorigenesis and could be a potential prognostic marker for this fatal disease.
Collapse
Affiliation(s)
- Eman A Toraih
- 1 Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University (FOM/SCU), Ismailia, Egypt.,2 Center of Excellence in Molecular and Cellular Medicine, FOM/SCU, Ismailia, Egypt
| | - Aya El-Wazir
- 1 Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University (FOM/SCU), Ismailia, Egypt.,2 Center of Excellence in Molecular and Cellular Medicine, FOM/SCU, Ismailia, Egypt
| | | | | | - Amgad Matter
- 5 Department of Neurological surgery, FOM/SCU, Ismailia, Egypt
| | - Manal S Fawzy
- 6 Department of Medical Biochemistry and Molecular Biology, FOM/SCU, Ismailia, Egypt.,7 Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Somaya Hosny
- 2 Center of Excellence in Molecular and Cellular Medicine, FOM/SCU, Ismailia, Egypt.,8 Department of Histology and Cell Biology, FOM/SCU, Ismailia, Egypt
| |
Collapse
|
52
|
Youness RA, Gad MZ. Long non-coding RNAs: Functional regulatory players in breast cancer. Noncoding RNA Res 2019; 4:36-44. [PMID: 30891536 PMCID: PMC6404363 DOI: 10.1016/j.ncrna.2019.01.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/24/2018] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
Historically, the long-held protein-centered bias has denoted 98% of the human genome as 'Junk' DNA. However, the current work has shifted the perception of such 'junk' transcriptional products to functional regulatory molecules. The recent surveillance of the human transcriptome has highlighted the pivotal role of such non-coding RNA (ncRNA) molecules in diverse physiological and pathological conditions. Long non-coding RNA (lncRNA) is a recent class of ncRNA molecules that is still in its infancy stage. The main focus of this review is to unravel the importance of lncRNAs in the most prevalent malignancy among females which is Breast Cancer (BC). A specific focus on lncRNAs as prognostic markers among BC patients showing molecular subtype heterogeneity was also tackled in this review. Finally, the functional and the mechanistic roles of such booming ncRNA molecules in shaping the fate of the BC progression have been highlighted.
Collapse
Affiliation(s)
- Rana Ahmed Youness
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al Khames, 11835, Cairo, Egypt
| | - Mohamed Zakaria Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al Khames, 11835, Cairo, Egypt
| |
Collapse
|
53
|
Xiu DH, Liu GF, Yu SN, Li LY, Zhao GQ, Liu L, Li XF. Long non-coding RNA LINC00968 attenuates drug resistance of breast cancer cells through inhibiting the Wnt2/β-catenin signaling pathway by regulating WNT2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:94. [PMID: 30791958 PMCID: PMC6385430 DOI: 10.1186/s13046-019-1100-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/11/2019] [Indexed: 01/17/2023]
Abstract
Background Breast cancer is one the most common cancers, making it the second leading cause of cancer-related death among women. Long non-coding RNAs (lncRNAs), with tightly regulated expression patterns, also serve as tumor suppressor during tumorigenesis. The present study aimed to elucidate the role of LINC00968 in breast cancer via WNT2-mediated Wnt2/β-catenin signaling pathway. Methods Breast cancer chip GSE26910 was utilized to identify differential expression in LINC00968 and WNT2. The possible relationship among LINC00968, transcriptional repressor HEY and WNT2 was analyzed and then verified. Effects of LINC00968 on activation of the Wnt2/β-catenin signaling pathway was also tested. Drug resistance, colony formation, cell migration, invasion ability and cell apoptosis after transfection were also determined. Furthermore, tumor xenograft in nude mice was performed to test tumor growth and weight in vivo. Results WNT2 expression exhibited at a high level, whereas LINC00968 at a low expression in breast cancer which was also associated with poor prognosis in patients. LINC00968 targeted and negatively regulated WNT2 potentially via HEY1. Either overexpressed LINC00968 or silenced inhibited activation of the Wnt2/β-catenin signaling pathway, thereby reducing drug resistance, decreasing colony formation ability, as well as suppressing migration and invasion abilities of breast cancer cells in addition to inducing apoptosis. Lastly, in vivo experiment suggested that LINC00968 overexpression also suppressed transplanted tumor growth in nude mice. Conclusion Collectively, overexpressed LINC00968 contributes to reduced drug resistance in breast cancer cells by inhibiting the activation of the Wnt2/β-catenin signaling pathway through silencing WNT2. This study offers a new target for the development of breast cancer treatment.
Collapse
Affiliation(s)
- Dian-Hui Xiu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Gui-Feng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Shao-Nan Yu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Long-Yun Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China
| | - Guo-Qing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Xue-Feng Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China.
| |
Collapse
|
54
|
Bin X, Hongjian Y, Xiping Z, Bo C, Shifeng Y, Binbin T. Research progresses in roles of LncRNA and its relationships with breast cancer. Cancer Cell Int 2018; 18:179. [PMID: 30459529 PMCID: PMC6233376 DOI: 10.1186/s12935-018-0674-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022] Open
Abstract
Some progresses have been made in research of long non-coding RNA (hereunder referred to as LncRNA) related to breast cancer. Lots of data about LncRNA transcription concerning breast cancer have been obtained from large-scale omics research (e.g. transcriptomes and chips). Some LncRNAs would become indices for detecting breast cancer and judging its development and prognosis. LncRNAs may affect genesis and development of breast cancer in multiple ways. Perhaps they could develop into potential targets for treating breast cancer if they are carcinogenic. Like those from other studies of breast cancer, many data gained from omics research remain to be validated by much experimental work. For instance, it is still necessary to demonstrate reliability of LncRNAs as indices for diagnosing breast cancer and judging its prognosis (particularly for various subtypes of breast cancer), effectiveness and feasibility of these genes for treating breast cancer as targets. In this paper, recent years’ literatures about LncRNAs which are related to breast cancer are summarized and sorted out to review the research progresses in relationships between LncRNAs and breast cancer.
Collapse
Affiliation(s)
- Xu Bin
- Department of Surgery, Zhejiang Rehabilitation Medical Center, Hangzhou, 310053 Zhejiang, China
| | - Yang Hongjian
- 2Department of Breast Surgery, Zhejiang Cancer Hospital, Banshanqiao, No. 38 Guangji Road, Hangzhou, 310022 Zhejiang China
| | - Zhang Xiping
- 2Department of Breast Surgery, Zhejiang Cancer Hospital, Banshanqiao, No. 38 Guangji Road, Hangzhou, 310022 Zhejiang China
| | - Chen Bo
- 3Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, 310022 Zhejiang, China
| | - Yang Shifeng
- 3Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, 310022 Zhejiang, China
| | - Tang Binbin
- 4Second Outpatient Department of Traditional Chinese Internal Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012 Zhejiang, China
| |
Collapse
|
55
|
Tan W, Yang M, Yang H, Zhou F, Shen W. Predicting the response to neoadjuvant therapy for early-stage breast cancer: tumor-, blood-, and imaging-related biomarkers. Cancer Manag Res 2018; 10:4333-4347. [PMID: 30349367 PMCID: PMC6188192 DOI: 10.2147/cmar.s174435] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neoadjuvant therapy (NAT) has been used increasingly in patients with locally advanced or early-stage breast cancer. However, the accurate evaluation and prediction of response to NAT remain the great challenge. Biomarkers could prove useful to identify responders or nonresponders, or even to distinguish between early and delayed responses. These biomarkers could include markers from the tumor itself, such as versatile proteins, genes, and ribonucleic acids, various biological factors or peripheral blood cells, and clinical and pathological features. Possible predictive markers could also include multiple features from functional imaging, such as standard uptake values in positron emission tomography, apparent diffusion coefficient in magnetic resonance, or radiomics imaging biomarkers. In addition, cells that indirectly present the immune status of tumor cells and/or their host could also potentially be used as biomarkers, eg, tumor-infiltrating lymphocytes, tumor-associated macrophages, and myeloid-derived suppressor cells. Though numerous biomarkers have been widely investigated, only estrogen and/or progesterone receptors and human epidermal growth factor receptor have been proven to be reliable biomarkers to predict the response to NAT. They are the only biomarkers recommended in several international guidelines. The other aforementioned biomarkers warrant further validation studies. Some multigene profiling assays that are commercially available, eg, Oncotype DX and MammaPrint, should be used with caution when extrapolated to NAT settings. A panel of combined multilevel biomarkers might be able to predict the response to NAT more robustly than individual biomarkers. To establish such a panel and its prediction model, reliable methods and extensive clinical validation are warranted.
Collapse
Affiliation(s)
- Wenyong Tan
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, People's Republic of China, ;
- Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People Hospital), Jinan University, Shenzhen, People's Republic of China,
| | - Ming Yang
- Shenzhen Jingmai Medical Scientific and Technique Company, Shenzhen, People's Republic of China
| | - Hongli Yang
- Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People Hospital), Jinan University, Shenzhen, People's Republic of China,
| | - Fangbin Zhou
- Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People Hospital), Jinan University, Shenzhen, People's Republic of China,
| | - Weixi Shen
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, People's Republic of China, ;
| |
Collapse
|
56
|
Hou L, Tu J, Cheng F, Yang H, Yu F, Wang M, Liu J, Fan J, Zhou G. Long noncoding RNA ROR promotes breast cancer by regulating the TGF-β pathway. Cancer Cell Int 2018; 18:142. [PMID: 30250400 PMCID: PMC6145201 DOI: 10.1186/s12935-018-0638-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/10/2018] [Indexed: 11/20/2022] Open
Abstract
Background Breast cancer is the leading cause of oncological mortality among women. Efficient detection of cancer cells in an early stage and potent therapeutic agents targeting metastatic tumors are highly needed to improve survival rates. Emerging evidence indicates that lncRNAs (long noncoding RNAs) are critical regulators of fundamental cellular processes in a variety of tumors including breast cancer. The functional details of these regulatory elements, however, remain largely unexplored. Methods In this study, lncRNA ROR (linc-ROR) was examined by real-time PCR in different breast cancer cell lines and breast tumor tissues/non-tumor tissues were collected from both breast cancer patients and healthy controls. Linc-ROR was knockdown in breast cancer cell lines and the effects on cell proliferation, migration and invasion were tested both in vitro and in vivo tumor model. Effects of linc-ROR knockdown on TGF-β signaling pathway were investigated by Western blot. Results Our studies have suggested that linc-ROR, a critical factor for embryonic stem cell maintenance, probably acts as an oncogenic factor in breast cancer cells, causing poor prognostic outcomes. Overexpression of linc-ROR seems to be responsible for promoting proliferation and invasion of cancer cells as well as tumor growth in nude mice. The regulatory action of linc-ROR can affect the activity of the TGF-β signaling pathway, which has been proven critical for mammary development and breast cancer. Conclusions The results have highlighted the potential importance of linc-ROR in the progression of advanced breast cancer, and thus will stimulate efforts in the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- LingLi Hou
- 1Department & Program of Clinical Laboratory, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuhan, 430071 Hubei People's Republic of China.,2Department of Blood Transfusion, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, 442000 Hubei People's Republic of China
| | - Jiancheng Tu
- 1Department & Program of Clinical Laboratory, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuhan, 430071 Hubei People's Republic of China
| | - Fangxiong Cheng
- 3Department of Clinical Laboratory, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 473 Hanzheng Street, Wuhan, 430033 Hubei People's Republic of China
| | - Hongwei Yang
- 4Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000 Hubei People's Republic of China
| | - Fei Yu
- Department of Clinical Laboratory, People's Hospital of Yunxi County of Hubei Province, Yunxi, 442600 Hubei People's Republic of China
| | - Minghua Wang
- 6Department of Breast and Thyroid Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000 Hubei People's Republic of China
| | - Jiubo Liu
- 2Department of Blood Transfusion, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, 442000 Hubei People's Republic of China
| | - Jinbo Fan
- 2Department of Blood Transfusion, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, 442000 Hubei People's Republic of China
| | - Guojun Zhou
- 2Department of Blood Transfusion, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, 442000 Hubei People's Republic of China
| |
Collapse
|
57
|
Ma J, Yang Y, Huo D, Wang Z, Zhai X, Chen J, Sun H, An W, Jie J, Yang P. LincRNA-RoR/miR-145 promote invasion and metastasis in triple-negative breast cancer via targeting MUC1. Biochem Biophys Res Commun 2018; 500:614-620. [PMID: 29673594 DOI: 10.1016/j.bbrc.2018.04.119] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 10/17/2022]
Abstract
Triple-negative breast cancer (TNBC) was associated with high rates of cancer recurrence and metastasis and currently no available molecularly target. Accumulating evidences have established the importance of lincRNA-ROR as a marker of cancers. In order to better understand the mechanism of lincRNA-ROR in TNBC, we provided a novel molecular target into the regulatory invasion and metastasis in present research. We found that lincRNA-ROR was upregulated in TNBC cell lines and tissue samples. The aberrant expression of lincRNA-ROR was shown to increase invasion and metastasis in MDA-MB-231 and loss of function by siRNA reverse these process. Furthermore, lincRNA-ROR functions as a competing endogenous RNAs (ceRNA) which sponges miR-145 and therefore upregulate the expression of Mucin1 (MUC1). The expression of MUC1 impacted E-cadherin membrane localization. Together, MUC1 was a potential molecular target may help explain the role of lincRNA-ROR/miR-145 for invasion and metastasis in TNBC cell lines.
Collapse
Affiliation(s)
- Jianli Ma
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yue Yang
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, 150081, China
| | - Desheng Huo
- Department of Histology and Embryology, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Zanyu Wang
- Heilongjiang Veterinary Drug and Feed Supervision Institute, Harbin, 150040, China
| | - Xiaoyu Zhai
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, 130021, China
| | - Jing Chen
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Huixin Sun
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, 150081, China
| | - Weiwei An
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, 150081, China
| | - Jing Jie
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, 130021, China.
| | - Pengxiang Yang
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, 150081, China; Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
58
|
Campos-Parra AD, López-Urrutia E, Orozco Moreno LT, López-Camarillo C, Meza-Menchaca T, Figueroa González G, Bustamante Montes LP, Pérez-Plasencia C. Long Non-Coding RNAs as New Master Regulators of Resistance to Systemic Treatments in Breast Cancer. Int J Mol Sci 2018; 19:2711. [PMID: 30208633 PMCID: PMC6164317 DOI: 10.3390/ijms19092711] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 12/28/2022] Open
Abstract
Predicting response to systemic treatments in breast cancer (BC) patients is an urgent, yet still unattained health aim. Easily detectable molecules such as long non-coding RNAs (lncRNAs) are the ideal biomarkers when they act as master regulators of many resistance mechanisms, or of mechanisms that are common to more than one treatment. These kinds of markers are pivotal in quasi-personalized treatment selection, and consequently, in improvement of outcome prediction. In order to provide a better approach to understanding development of disease and resistance to treatments, we reviewed current literature searching for lncRNA-associated systemic BC treatments including endocrine therapies, aromatase inhibitors, selective estrogen receptor modulators (SERMs), trastuzumab, paclitaxel, docetaxel, 5-fluorouracil (5-FU), anthracyclines, and cisplatin. We found that the engagement of lncRNAs in resistance is well described, and that lncRNAs such as urotelial carcinoma-associated 1 (UCA1) and regulator of reprogramming (ROR) are indeed involved in multiple resistance mechanisms, which offers tantalizing perspectives for wide usage of lncRNAs as treatment resistance biomarkers. Thus, we propose this work as the foundation for a wide landscape of functions and mechanisms that link more lncRNAs to resistance to current and new treatments in years of research to come.
Collapse
Affiliation(s)
- Alma D Campos-Parra
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, Tlalpan, C.P. 14080 Ciudad de México, Mexico.
| | - Eduardo López-Urrutia
- Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de México (UNAM), Av. De Los Barrios 1. Col. Los Reyes Iztacala, C.P. 54090 Tlalnepantla, Mexico.
| | - Luz Tonantzin Orozco Moreno
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, Tlalpan, C.P. 14080 Ciudad de México, Mexico.
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Del Valle Sur, Benito Juárez, C.P. 03100 Ciudad de México, Mexico.
| | - Thuluz Meza-Menchaca
- Laboratorio de Genómica Humana, Facultad de Medicina, Universidad Veracruzana (UV), Médicos, Unidad del Bosque, Xalapa, C.P. 91010 Veracruz, Mexico.
| | - Gabriela Figueroa González
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, Tlalpan, C.P. 14080 Ciudad de México, Mexico.
| | - Lilia P Bustamante Montes
- Decanato. Ciencias de la salud. Universidad Autónoma de Guadalajara. Av. Patria 1201, Col. Lomas del Valle, C.P. 45129 Zapopan, Mexico.
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, Tlalpan, C.P. 14080 Ciudad de México, Mexico.
- Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de México (UNAM), Av. De Los Barrios 1. Col. Los Reyes Iztacala, C.P. 54090 Tlalnepantla, Mexico.
| |
Collapse
|
59
|
Tian T, Wang M, Lin S, Guo Y, Dai Z, Liu K, Yang P, Dai C, Zhu Y, Zheng Y, Xu P, Zhu W, Dai Z. The Impact of lncRNA Dysregulation on Clinicopathology and Survival of Breast Cancer: A Systematic Review and Meta-analysis. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:359-369. [PMID: 30195774 PMCID: PMC6037885 DOI: 10.1016/j.omtn.2018.05.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/20/2018] [Accepted: 05/20/2018] [Indexed: 12/18/2022]
Abstract
Dysregulation of multiple long non-coding RNAs (lncRNAs) was reported to play major roles in breast cancer (BC). Here we aimed to collect most of the relevant literature to assess the prognostic value of lncRNAs in BC. To this end, we systematically searched PubMed, Embase, Web of Science, Chinese National Knowledge Infrastructure (CNKI), and Wanfang to identify published articles on the associations of lncRNAs with clinicopathology and/or survival of BC. Via this searching, we identified 70 articles involving 9,307 BC patients and regarding 48 lncRNAs. The expression of 41 lncRNAs was related to one or more clinicopathological parameters of BC, including tumor size; lymph node metastasis; histological grade; TNM stage; and estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) statuses (p < 0.05). Dysregulation of 28 lncRNAs was associated with overall survival, and abnormal expression of 9 lncRNAs was linked to disease-free survival. Furthermore, the expression level of 3 lncRNAs was correlated with metastasis-free survival, 3 lncRNAs with relapse-free survival, and 3 lncRNAs with progression-free survival. Our analysis showed that multiple lncRNAs were significantly associated with BC clinicopathology and survival. A large-scale study is needed to verify the prognostic value of these lncRNAs in BC.
Collapse
Affiliation(s)
- Tian Tian
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Yan Guo
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China
| | - Zhiming Dai
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Kang Liu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Pengtao Yang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Cong Dai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Yuyao Zhu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Yi Zheng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC 20052, USA.
| | - Zhijun Dai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| |
Collapse
|
60
|
Wu L, Pan C, Wei X, Shi Y, Zheng J, Lin X, Shi L. lncRNA KRAL reverses 5-fluorouracil resistance in hepatocellular carcinoma cells by acting as a ceRNA against miR-141. Cell Commun Signal 2018; 16:47. [PMID: 30119680 PMCID: PMC6098660 DOI: 10.1186/s12964-018-0260-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/10/2018] [Indexed: 12/26/2022] Open
Abstract
Background 5-Fluorouracil (5-FU) has been widely applied to treat various types of cancers, including hepatocellular carcinoma (HCC). However, primary or acquired 5-FU resistance prevents the clinical application of this drug in cancer therapy. Herein, our study is the first to demonstrate that lower expression of KRAL, a long non-coding RNA (lncRNA), mediates 5-FU resistance in HCC via the miR-141/Keap1 axis. Methods Cell proliferation assays, western blot analysis, qRT-PCR, the dual-luciferase reporter assay and RNA immunoprecipitation were performed to investigate the mechanisms by which KRAL mediates 5-fluorouracil resistance in HCC cell lines. Results The quantitative analysis indicated that KRAL and Keap1 were significantly decreased and that Nrf2 was increased in HepG2/5-FU and SMMC-7721/5-FU cells compared with the corresponding expression levels in the respective parental cells. Overexpression of KRAL increased Keap1 expression, and inactivating the Nrf2-dependent antioxidant pathway could reverse the resistance of HepG2/5-FU and SMMC-7721/5-FU cells to 5-FU. Moreover, KRAL functioned as a competitive endogenous RNA (ceRNA) by effectively binding to the common miR-141 and then restoring Keap1 expression. These findings demonstrated that KRAL is an important regulator of Keap1; furthermore, the ceRNA network involving KRAL may serve as a treatment strategy against 5-FU resistance in hepatocellular carcinoma cells. Conclusions KRAL/miR-141/Keap1 axis mediates 5-fluorouracil resistance in HCC cell lines.
Collapse
Affiliation(s)
- Lili Wu
- Department of Clinical Laboratory, The central hospital of Wenzhou, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, China
| | - Chenwei Pan
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Wei
- The First Clinical College and The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifen Shi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjian Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical Uinversity, Wenzhou, China.
| | - Xiangyang Lin
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical Uinversity, Wenzhou, China.
| | - Liang Shi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical Uinversity, Wenzhou, China. .,Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical Uinversity, Wenzhou, China.
| |
Collapse
|
61
|
Luo C, Cao J, Peng R, Guo Q, Ye H, Wang P, Wang K, Song C. Functional Variants in Linc-ROR are Associated with mRNA Expression of Linc-ROR and Breast Cancer Susceptibility. Sci Rep 2018; 8:4680. [PMID: 29549263 PMCID: PMC5856846 DOI: 10.1038/s41598-018-22881-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/01/2018] [Indexed: 12/22/2022] Open
Abstract
Functional polymorphisms in Linc-ROR may change its ability of regulation by regulating Linc-ROR expression. However, these functional polymorphisms in Linc-ROR and their associations with breast cancer (BC) susceptibility were scarcely reported. In this molecular epidemiological study, four SNPs (rs6420545, rs4801078, rs1942348 and rs9636089) were selected in Linc-ROR by bioinformatics method. Unconditional logistic regression model was performed to analyze the associations between four SNPs and BC susceptibility adjusted for reproductive factors. Quantitative real-time (qRT) PCR was used to evaluate relative expression of Linc-ROR in plasma. The interactions of gene reproductive factors were assessed by Multifactor Dimensionality Reduction (MDR) method. A novel finding showed TT (OR: 1.79; 95%CI: 1.20-2.68) genotype of rs4801078 in Linc-ROR had a significant association with the higher risk of BC and the expression of Linc-ROR mRNA was closely related with the alleles of rs4801078. In addition, we found the interaction of rs4801078, number of pregnancy and menopausal status might increase BC risk (OR: 2.78; 95%CI: 2.74-3.61). Our results suggest that interactions of SNPs in Linc-ROR and reproductive factors might contribute to BC risk, and alleles of rs4801078 might affect Linc-ROR expression level.
Collapse
Affiliation(s)
- Chenglin Luo
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, PR China
- Department of Biological Sciences, The University of Texas at El Paso, TX, 79968, USA
| | - Jingjing Cao
- Department of preventive medicine, Heze Medical College, Heze, 274000, Shandong, China
| | - Rui Peng
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, PR China
| | - Qiaoyun Guo
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, PR China
| | - Hua Ye
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, PR China
| | - Peng Wang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, PR China
| | - Kaijuan Wang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, PR China
| | - Chunhua Song
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, PR China.
| |
Collapse
|
62
|
Long X, Li L, Zhou Q, Wang H, Zou D, Wang D, Lou M, Nian W. Long non-coding RNA LSINCT5 promotes ovarian cancer cell proliferation, migration and invasion by disrupting the CXCL12/CXCR4 signalling axis. Oncol Lett 2018; 15:7200-7206. [PMID: 29755595 PMCID: PMC5943677 DOI: 10.3892/ol.2018.8241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 02/28/2018] [Indexed: 12/18/2022] Open
Abstract
Long stress-induced noncoding transcript 5 (LSINCT5) is a member of the LSINCT family, members of which are expressed during stress-induced cell formation and have also been reported to promote cancer progression. In the present study, the association between LSINCT5 expression and clinical significance was investigated and the biological function of LSINCT5 in epithelial ovarian cancer (EOC) was explored. LSINCT5 expression was examined in EOC tissues by reverse transcription-quantitative polymerase chain reaction and its association with clinicopathological factors was analysed. Cell proliferation, migration and invasion tests were performed to observe the role of LSINCT5 in human ovarian cancer cell lines in vitro. The negative control (NC) and siLSINCT5 SKOV3 cells were treated with chemokine ligand 12 (CXCL12) and their proliferation, migration and invasion activities were examined. LSINCT5 was overexpressed in EOC compared with normal ovarian tissue. LSINCT5 expression was significantly associated with the International Federation of Gynecologists and Obstetricians cancer stage and the presence of lymphatic metastases. Silencing LSINCT5 significantly reduced the expression of chemokine receptor 4 (CXCR4) and inhibited SKOV3 cell proliferation, migration and invasion, however the CXCL12 expression level had no significant change. When NC and siLSINCT5-SKOV3 cells were treated with CXCL12, the proliferation and invasion ability were significantly enhanced. The migration ability of the siLSINCT5-SKOV3 cells was also significantly enhanced. The present study indicated that LSINCT5 serves an important role in ovarian cancer metastasis by regulating the CXCL12/CXCR4 signalling axis, suggesting that this pathway may be a potential target for the treatment of patients with EOC.
Collapse
Affiliation(s)
- Xingtao Long
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| | - Li Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qi Zhou
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| | - Haixia Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| | - Dongling Zou
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| | - Dong Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| | - Meng Lou
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Weiqi Nian
- Key Laboratory of Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| |
Collapse
|
63
|
Chen YM, Liu Y, Wei HY, Lv KZ, Fu PF. Large intergenic non-coding RNA-ROR reverses gemcitabine-induced autophagy and apoptosis in breast cancer cells. Oncotarget 2018; 7:59604-59617. [PMID: 27449099 PMCID: PMC5312334 DOI: 10.18632/oncotarget.10730] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/30/2016] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study was to elucidate the potential role of long intergenic non-protein coding RNA, regulator of reprogramming (linc-ROR) in gemcitabine (Gem)-induced autophagy and apoptosis in breast cancer cells. MDA-MB-231 cells were treated with short hairpin RNA (shRNA) to knockdown Linc-ROR expression in the presence of Gem. Gem treatment alone decreased cell survival and increased both apoptosis and autophagy. Gem treatment also increased the expression of LC3-II, Beclin 1, NOTCH1 and Bcl-2, but decreased expression of p62 and p53. Untreated MDA-MB-231 cell lines strongly expressed linc-ROR, but linc-ROR knockdown decreased cell viability and expression of p62 and p53 while increasing apoptosis. Linc-ROR knockdown also increased LC3-II/β-actin, Beclin 1, NOTCH1, and Bcl-2 expression, as well as the number of autophagic vesicles in MDA-MB-231 cells. Linc-ROR negatively regulated miR-34a expression by inhibiting histone H3 acetylation in the miR-34a promoter. We conclude that linc-ROR suppresses Gem-induced autophagy and apoptosis in breast cancer cells by silencing miR-34a expression.
Collapse
Affiliation(s)
- Yao-Min Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou 310000, P.R. China
| | - Yu Liu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou 310000, P.R. China
| | - Hai-Yan Wei
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou 310000, P.R. China
| | - Ke-Zhen Lv
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou 310000, P.R. China
| | - Pei-Fen Fu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou 310000, P.R. China
| |
Collapse
|
64
|
Pasculli B, Barbano R, Parrella P. Epigenetics of breast cancer: Biology and clinical implication in the era of precision medicine. Semin Cancer Biol 2018; 51:22-35. [PMID: 29339244 DOI: 10.1016/j.semcancer.2018.01.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 12/15/2017] [Accepted: 01/11/2018] [Indexed: 02/09/2023]
Abstract
In the last years, mortality from breast cancer has declined in western countries as a consequence of a more widespread screening resulting in earlier detection, as well as an improved molecular classification and advances in adjuvant treatment. Nevertheless, approximately one third of breast cancer patients will develop distant metastases and eventually die for the disease. There is now a compelling body of evidence suggesting that epigenetic modifications comprising DNA methylation and chromatin remodeling play a pivotal role since the early stages of breast cancerogenesis. In addition, recently, increasing emphasis is being placed on the property of ncRNAs to finely control gene expression at multiple levels by interacting with a wide array of molecules such that they might be designated as epigenetic modifiers. In this review, we summarize the current knowledge about the involvement of epigenetic modifications in breast cancer, and provide an overview of the significant association of epigenetic traits with the breast cancer clinicopathological features, emphasizing the potentiality of epigenetic marks to become biomarkers in the context of precision medicine.
Collapse
Affiliation(s)
- Barbara Pasculli
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy.
| | - Raffaela Barbano
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy.
| | - Paola Parrella
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
65
|
Latgé G, Poulet C, Bours V, Josse C, Jerusalem G. Natural Antisense Transcripts: Molecular Mechanisms and Implications in Breast Cancers. Int J Mol Sci 2018; 19:ijms19010123. [PMID: 29301303 PMCID: PMC5796072 DOI: 10.3390/ijms19010123] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/07/2017] [Accepted: 12/29/2017] [Indexed: 12/13/2022] Open
Abstract
Natural antisense transcripts are RNA sequences that can be transcribed from both DNA strands at the same locus but in the opposite direction from the gene transcript. Because strand-specific high-throughput sequencing of the antisense transcriptome has only been available for less than a decade, many natural antisense transcripts were first described as long non-coding RNAs. Although the precise biological roles of natural antisense transcripts are not known yet, an increasing number of studies report their implication in gene expression regulation. Their expression levels are altered in many physiological and pathological conditions, including breast cancers. Among the potential clinical utilities of the natural antisense transcripts, the non-coding|coding transcript pairs are of high interest for treatment. Indeed, these pairs can be targeted by antisense oligonucleotides to specifically tune the expression of the coding-gene. Here, we describe the current knowledge about natural antisense transcripts, their varying molecular mechanisms as gene expression regulators, and their potential as prognostic or predictive biomarkers in breast cancers.
Collapse
Affiliation(s)
- Guillaume Latgé
- Laboratory of Human Genetics, GIGA-Institute, University of Liège, 4500 Liège, Belgium.
| | - Christophe Poulet
- Laboratory of Human Genetics, GIGA-Institute, University of Liège, 4500 Liège, Belgium.
| | - Vincent Bours
- Laboratory of Human Genetics, GIGA-Institute, University of Liège, 4500 Liège, Belgium.
- Center of Genetics, University Hospital (CHU), 4500 Liège, Belgium.
| | - Claire Josse
- Laboratory of Human Genetics, GIGA-Institute, University of Liège, 4500 Liège, Belgium.
- Department of Medical Oncology, University Hospital (CHU), 4500 Liège, Belgium.
- Laboratory of Medical Oncology, GIGA-Institute, University of Liège, 4500 Liège, Belgium.
| | - Guy Jerusalem
- Department of Medical Oncology, University Hospital (CHU), 4500 Liège, Belgium.
- Laboratory of Medical Oncology, GIGA-Institute, University of Liège, 4500 Liège, Belgium.
| |
Collapse
|
66
|
Wang L, Yu X, Zhang Z, Pang L, Xu J, Jiang J, Liang W, Chai Y, Hou J, Li F. Linc-ROR promotes esophageal squamous cell carcinoma progression through the derepression of SOX9. J Exp Clin Cancer Res 2017; 36:182. [PMID: 29237490 PMCID: PMC5727696 DOI: 10.1186/s13046-017-0658-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Novel therapies tailored to the molecular composition of esophageal squamous cell carcinoma (ESCC) are needed to improve patient survival. We investigated the regulatory network of long intergenic non-protein coding RNA, regulator of reprogramming (linc-ROR) and sex-determining region Y-box 9 (SOX9), and their therapeutic relevance in ESCC. METHODS Linc-ROR and SOX9 expression were examined in ESCC specimens, cell lines, and cultured tumorspheres. We investigated the effects of linc-ROR on SOX9 expression and malignant phenotypes by CCK8, colony formation, Transwell, and sphere-forming assay. The linc-ROR/SOX9 interaction mediated by multiple microRNAs (miRNAs) was confirmed by bioinformatic analysis, luciferase assay, and RNA-binding protein immunoprecipitation, transient overexpression or antagonizing endogenous candidate miRNAs. The effect of linc-ROR depletion on tumor growth was assessed by xenograft assay. RESULTS A positive correlation between linc-ROR and SOX9 expression was found in clinical ESCC specimens (r = 0.562, P = 0.036), cell lines, and tumorspheres. Silencing of linc-ROR significantly inhibited cell proliferation, motility, chemoresistance, and self-renewal capacity. Mechanistically, linc-ROR modulating the derepression of SOX9 by directly sponging multiple miRNAs including miR-15b, miR-33a, miR-129, miR-145, and miR-206. Antagonizing these miRNAs counteracted with linc-ROR silencing, whereas the repression of SOX9 abrogated malignant phenotypes induced by the cocktail of miRNA inhibitors. Moreover, linc-ROR disruption was sufficient to attenuate tumor growth and cancer stem cell marker expression in vivo. CONCLUSIONS Our results demonstrate that the linc-ROR-miRNA-SOX9 regulatory network may represent a novel therapeutic target for ESCC.
Collapse
Affiliation(s)
- Lianghai Wang
- Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Biomedical Sciences and Cornell Stem Cell Program, Cornell University, Ithaca, NY, USA
| | - Xiaodan Yu
- Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Stomatology, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Zhiyu Zhang
- Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lijuan Pang
- Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jiang Xu
- Department of Stomatology, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jinfang Jiang
- Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Weihua Liang
- Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yuhang Chai
- Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jun Hou
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Feng Li
- Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
67
|
Zhang K, Luo Z, Zhang Y, Wang Y, Cui M, Liu L, Zhang L, Liu J. Detection and analysis of circulating large intergenic non-coding RNA regulator of reprogramming in plasma for breast cancer. Thorac Cancer 2017; 9:66-74. [PMID: 29090518 PMCID: PMC5754303 DOI: 10.1111/1759-7714.12537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 02/05/2023] Open
Abstract
Background Previous studies have indicated that large intergenic non‐coding RNA regulator of reprogramming (lincRNA‐ROR) plays an important role in regulating tumor carcinogenesis and metastasis; however, whether circulating lincRNA‐ROR could function as a potential biomarker for breast cancer (BC) diagnosis and monitoring is unknown. This study was conducted to investigate circulating lincRNA‐ROR in plasma as a potential biomarker for BC diagnosis and monitoring. Methods We performed reverse transcription‐quantitative‐PCR to examine lincRNA‐ROR expression levels in cell lines, 24 pairs of BC tissue samples, and 94 plasma samples from BC patients. Potential correlations between plasma lincRNA‐ROR levels and clinicopathological characteristics were analyzed. A receiver operating characteristic curve was calculated to evaluate the diagnostic values for BC. Pearson correlation analysis of lincRNA‐ROR in plasma samples and the corresponding tissues of the same patients was performed to explore tumor monitoring values. Results LincRNA‐ROR expression was significantly increased in BC cell lines, tissues, and plasma (all P < 0.01). Plasma lincRNA‐ROR levels were associated with estrogen receptors (P = 0.042) and lymph node metastasis (P = 0.046). The area under the receiver operating characteristic curve of plasma lincRNA‐ROR was 0.844 (sensitivity 80.0%, specificity 56.7%), which was higher than carcinoembryonic and carbohydrate antigen 15‐3 values. Moreover, plasma lincRNA‐ROR levels were decreased in postoperative compared to preoperative samples (P < 0.0001). Plasma lincRNA‐ROR levels moderately correlated with the corresponding tissue level in the same patients (r2 = 0.638, P < 0.0001). Conclusion Plasma lincRNA‐ROR may be a potential biomarker for BC diagnosis and a dynamic monitor.
Collapse
Affiliation(s)
- Kaijiong Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhenglian Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuzhi Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Meng Cui
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lian Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Zhang
- Department of Laboratory Medicine, Sichuan Cancer Hospital, Chengdu, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
68
|
Chen S, Zhu J, Wang F, Guan Z, Ge Y, Yang X, Cai J. LncRNAs and their role in cancer stem cells. Oncotarget 2017; 8:110685-110692. [PMID: 29299179 PMCID: PMC5746414 DOI: 10.18632/oncotarget.22161] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs) play a vital role in the formation of tumors and have been studied as a target of anticancer therapy. Long non-coding RNAs (lncRNAs) are important in the genesis and progression of cancer. Various lncRNAs, such as ROR, HOTAIR, H19, UCA1, and ARSR, are involved in cancer stemness. These lncRNAs could regulate the expression of CSC-related transcriptional factors, such as SOX2, OCT4, and NANOG, in colorectal, prostate, bladder, breast, liver, and other cancer types. In this work, we review the progress of lncRNAs and cancer stem cells and discuss the potential signal pathways of lncRNAs in cancer stemness.
Collapse
Affiliation(s)
- Shusen Chen
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321, China
| | - Jiamin Zhu
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321, China
| | - Feng Wang
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321, China
| | - Zhifeng Guan
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321, China
| | - Yangyang Ge
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jing Cai
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, 226321, China
| |
Collapse
|
69
|
The evolving concept of cancer stem-like cells in thyroid cancer and other solid tumors. J Transl Med 2017; 97:1142-1151. [PMID: 28394318 DOI: 10.1038/labinvest.2017.41] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022] Open
Abstract
The cancer stem-like cell (CSC) hypothesis postulates that a small population of cells in a cancer has self-renewal and clonal tumor initiation properties. These cells are responsible for tumor initiation, growth, recurrence and for resistance to chemotherapy and radiation therapy. CSCs can be characterized using markers such as SSEA-1, SSEA-4, CD44, CD24, ALDEFLUOR and others. CSCs form spheres when they are cultured in serum-free condition in low attachment plates and can generate tumors when injected into immune-deficient mice. During epithelial to mesenchymal transition (EMT), cells lose cellular adhesion and polarity and acquire an invasive phenotype. Recent studies have established a relationship between EMT and increased numbers of CSCs in some solid malignancies. Non-coding RNAs such as microRNAs and long non-coding RNAs (lncRNAs) have been shown to have important roles during EMT and some of these molecules also have regulatory roles in the proliferation of CSCs. Specific lncRNAs enhanced cell migration and invasion in breast carcinomas, which was associated with the generation of stem cell properties. The tumor microenvironment of CSCs also has an important role in tumor progression. Recent studies have shown that the interaction between tumor cells and the local microenvironment at the metastatic site leads to the development of premetastatic niche(s) and allows for the proliferation of the metastatic cells during colonization. The role of exosomes in the microenvironment during the EMT program is currently a major area of research. This review examines CSCs and the relationship between EMT and CSCs in solid tumors with emphasis on thyroid CSCs. The role of non-coding RNAs and of the microenvironment in EMT and in tumor progression are also examined. This review also highlights the growing number of studies that show the close association of EMT and CSCs and the role of exosomes and other elements of the tissue microenvironment in CSC metastasis. A better understanding of these mechanisms will lead to more effective targeting of primary and metastatic malignancies.
Collapse
|
70
|
Zhao T, Wu L, Li X, Dai H, Zhang Z. Large intergenic non-coding RNA-ROR as a potential biomarker for the diagnosis and dynamic monitoring of breast cancer. Cancer Biomark 2017; 20:165-173. [PMID: 28869448 DOI: 10.3233/cbm-170064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tianhe Zhao
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Lichun Wu
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Division of Clinical Laboratory, Sichuan Cancer Hospital, Chengdu, Sichuan, China
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Xinyang Li
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Huangmei Dai
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Zunzhen Zhang
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
71
|
Lou Y, Jiang H, Cui Z, Wang L, Wang X, Tian T. Linc-ROR induces epithelial-to-mesenchymal transition in ovarian cancer by increasing Wnt/β-catenin signaling. Oncotarget 2017; 8:69983-69994. [PMID: 29050257 PMCID: PMC5642532 DOI: 10.18632/oncotarget.19545] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/29/2017] [Indexed: 11/25/2022] Open
Abstract
Long intergenic non-protein coding RNA, regulator of reprogramming (linc-ROR) is an intergenic long non-coding RNA (lncRNA) previously shown to contribute to tumorigenesis in several malignancies. However, little is known about whether linc-ROR has a role in ovarian cancer progression. In this study, we found that linc-ROR expression was increased in high-grade ovarian serous cancer tissues compared with normal ovarian tissues or normal fallopian tube tissues. Furthermore, the level of linc-ROR expression was associated with ovarian cancer International Federation of Gynecology and Obstetrics stage and lymph node metastasis. Linc-ROR promoted ovarian cancer cell proliferation both in vitro and in vivo, and contributed to cell migration and invasion. Linc-ROR knockdown in ovarian cancer cell lines inhibited the epithelial-to-mesenchymal transition (EMT) program, which led to ovarian cancer cell metastasis through the repression of canonical Wnt/β-catenin signaling. Together, our results indicated that linc-ROR induces EMT in ovarian cancer cells and may be an important molecule in the invasion and metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Yanhui Lou
- Department of Gynecology, Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Huanhuan Jiang
- Department of Gynecology, Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Zhumei Cui
- Department of Gynecology, Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Lingzhi Wang
- Department of Gynecology, Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Xiangyu Wang
- Department of Gynecology, Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Tian Tian
- Department of Gynecology, Affiliated Hospital of Qingdao University, Qingdao 266100, China
| |
Collapse
|
72
|
Zhang K, Luo Z, Zhang Y, Song X, Zhang L, Wu L, Liu J. Long non-coding RNAs as novel biomarkers for breast cancer invasion and metastasis. Oncol Lett 2017; 14:1895-1904. [PMID: 28789424 DOI: 10.3892/ol.2017.6462] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/26/2017] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is now the most common malignancy worldwide, with high prevalence and lethality among women. Invasion and metastasis are the major reasons for breast cancer-associated mortality. However, the underlying mechanism of invasion and metastasis has not been entirely elucidated. Long non-coding RNAs (lncRNAs) are a large class of non-coding transcripts that are >200 bases in length and cannot encode proteins. Evidence has indicated that lncRNAs regulate gene expression at the levels of epigenetic modification, transcription and post-transcription. In addition, they are involved in diverse tumor biological processes, including cell proliferation, apoptosis, invasion, metastasis and angiogenesis. The present review focuses on the recent progress of lncRNAs in breast cancer invasion and metastasis, aiming to provide novel strategies for the clinical prevention, diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Kaijiong Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhenglian Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yi Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaoyu Song
- Department of Laboratory Medicine, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Li Zhang
- Department of Laboratory Medicine, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Lichun Wu
- Department of Laboratory Medicine, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
73
|
Ni W, Song E, Gong M, Li Y, Yao J, An R. Downregulation of lncRNA SDPR-AS is associated with poor prognosis in renal cell carcinoma. Onco Targets Ther 2017; 10:3039-3047. [PMID: 28790838 PMCID: PMC5488758 DOI: 10.2147/ott.s137641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Renal cell carcinoma (RCC) is a common type of kidney cancer. Normally, surgical treatment can prolong life, but only for patients with early stage tumors. However, it is difficult for early detection strategies to distinguish between benign and malignant kidney tumors. Therefore, potential biomarkers for early diagnosis and prognosis of RCC are needed. Intriguingly, mounting evidence has demonstrated that many long noncoding RNAs (lncRNAs) are strongly linked to cancers. Indeed, promising RCC-associated lncRNA biomarkers have also been identified. However, the functional and prognostic roles of the antisense (AS) serum deprivation response (SDPR) lncRNA (SDPR-AS) in RCC remain largely unknown. The aims of this study were to investigate the expression and prognostic relevance of SDPR-AS in RCC. We uncovered the downregulated expressions of both lncRNA SDPR-AS and its protein-coding gene, SDPR, in RCC tissues compared to the matched normal tissues. Furthermore, SDPR-AS and SDPR expressions were positively correlated. Overexpression and knockdown experiments suggested that SDPR-AS and SDPR were coregulated in RCC cell lines. In addition, overexpression of SDPR-AS suppressed cell migration and invasion, but not cell growth. Furthermore, expression of SDPR-AS was associated with tumor differentiation and lymphatic metastasis. Kaplan–Meier survival and log-rank tests demonstrated the association of elevated expression of SDPR-AS with increased overall survival. In conclusion, our results suggest that the SDPR-AS may serve as a prognostic biomarker and therapeutic target of RCC.
Collapse
Affiliation(s)
- Wenjun Ni
- Department of Urology Surgery, The First Affiliated Hospital of Harbin Medical University.,Department of Urology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang
| | - Erlin Song
- Department of Urology Surgery, The First Affiliated Hospital of Harbin Medical University
| | - Mancheng Gong
- Department of Urology, The People's Hospital of Zhongshan, Zhongshan, Guangdong
| | - Yongxiang Li
- Department of Urology, The People's Hospital of Weifang, Weifang, Shandong
| | - Jie Yao
- Department of Oncology, the 161th Hospital of PLA, Wuhan, Hubei, People's Republic of China
| | - Ruihua An
- Department of Urology Surgery, The First Affiliated Hospital of Harbin Medical University
| |
Collapse
|
74
|
Heery R, Finn SP, Cuffe S, Gray SG. Long Non-Coding RNAs: Key Regulators of Epithelial-Mesenchymal Transition, Tumour Drug Resistance and Cancer Stem Cells. Cancers (Basel) 2017; 9:cancers9040038. [PMID: 28430163 PMCID: PMC5406713 DOI: 10.3390/cancers9040038] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023] Open
Abstract
Epithelial mesenchymal transition (EMT), the adoption by epithelial cells of a mesenchymal-like phenotype, is a process co-opted by carcinoma cells in order to initiate invasion and metastasis. In addition, it is becoming clear that is instrumental to both the development of drug resistance by tumour cells and in the generation and maintenance of cancer stem cells. EMT is thus a pivotal process during tumour progression and poses a major barrier to the successful treatment of cancer. Non-coding RNAs (ncRNA) often utilize epigenetic programs to regulate both gene expression and chromatin structure. One type of ncRNA, called long non-coding RNAs (lncRNAs), has become increasingly recognized as being both highly dysregulated in cancer and to play a variety of different roles in tumourigenesis. Indeed, over the last few years, lncRNAs have rapidly emerged as key regulators of EMT in cancer. In this review, we discuss the lncRNAs that have been associated with the EMT process in cancer and the variety of molecular mechanisms and signalling pathways through which they regulate EMT, and finally discuss how these EMT-regulating lncRNAs impact on both anti-cancer drug resistance and the cancer stem cell phenotype.
Collapse
Affiliation(s)
- Richard Heery
- Thoracic Oncology Research Group, Rm 2.09, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- Masters in Translational Oncology Program, Department of Surgery, Trinity College Dublin, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
| | - Stephen P Finn
- Department of Histopathology & Morbid Anatomy, Trinity College Dublin, Dublin D08 RX0X, Ireland.
| | - Sinead Cuffe
- HOPE Directorate, St. James's Hospital, Dublin D08 RT2X, Ireland.
| | - Steven G Gray
- Thoracic Oncology Research Group, Rm 2.09, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- HOPE Directorate, St. James's Hospital, Dublin D08 RT2X, Ireland.
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin D02 R590, Ireland.
- Labmed Directorate, St. James's Hospital, Dublin D08 K0Y5, Ireland.
| |
Collapse
|
75
|
The underlying mechanisms of non-coding RNAs in the chemoresistance of pancreatic cancer. Cancer Lett 2017; 397:94-102. [PMID: 28254409 DOI: 10.1016/j.canlet.2017.02.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer, which is often asymptomatic, is currently one of the most common causes of cancer-related death. This phenomenon is most likely due to a lack of early diagnosis, a high metastasis rate and a disappointing chemotherapy outcome. Thus, improving treatment outcomes by overcoming chemotherapy resistance may be a useful strategy in pancreatic cancer. Various underlying mechanisms involved in the chemoresistance of pancreatic cancer have been investigated. Notably, non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a pivotal role in regulating sensitivity to chemotherapy in pancreatic cancer. In this review, we highlight recent evidence regarding the role of miRNAs and lncRNAs in the chemoresistance of pancreatic cancer, including their expression levels, targets, biological functions and the regulation of chemoresistance, and discuss the potential clinical application of miRNAs and lncRNAs in the treatment of pancreatic cancer.
Collapse
|
76
|
Xiao Y, Jiao C, Lin Y, Chen M, Zhang J, Wang J, Zhang Z. lncRNA UCA1 Contributes to Imatinib Resistance by Acting as a ceRNA Against miR-16 in Chronic Myeloid Leukemia Cells. DNA Cell Biol 2016; 36:18-25. [PMID: 27854515 DOI: 10.1089/dna.2016.3533] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Imatinib (IM) has been applied to the chronic phase of chronic myeloid leukemia (CML) and has great benefit on the prognosis of patients with CML. The function of drug efflux mediated by multidrug resistance protein-1 (MDR1) is considered as a main reason for IM drug resistance in CML cells. However, the exact mechanisms of MDR1 modulation in IM resistance of CML cells remain unclear. In the present study, long noncoding RNA (lncRNA) UCA1 was identified as an important modulator of MDR1 by a model system of leukemia cell lines with a gradual increase of MDR1 expression and IM resistance. Overexpression of UCA1 increased MDR1 expression to promote IM resistance of CML cells. Furthermore, for the first time, we demonstrated that UCA1 functions as a competitive endogenous (ceRNA) of MDR1 through completely binding the common miR-16. UCA1-MDR1 might be a novel target for enhancing the therapeutic efficacy of CML patients with IM resistance.
Collapse
Affiliation(s)
- Yun Xiao
- 1 Department of Clinical Laboratory, Zhongshan Hospital of Xiamen University , Xiamen, Fujian Province, China
| | - Changjie Jiao
- 2 Department of Cardiothoracic Surgery, The Affiliated Dongnan Hospital of Xiamen University , Xiamen, Fujian Province, China
| | - Yiqiang Lin
- 1 Department of Clinical Laboratory, Zhongshan Hospital of Xiamen University , Xiamen, Fujian Province, China
| | - Meijun Chen
- 1 Department of Clinical Laboratory, Zhongshan Hospital of Xiamen University , Xiamen, Fujian Province, China
| | - Jingwen Zhang
- 1 Department of Clinical Laboratory, Zhongshan Hospital of Xiamen University , Xiamen, Fujian Province, China
| | - Jiajia Wang
- 1 Department of Clinical Laboratory, Zhongshan Hospital of Xiamen University , Xiamen, Fujian Province, China
| | - Zhongying Zhang
- 1 Department of Clinical Laboratory, Zhongshan Hospital of Xiamen University , Xiamen, Fujian Province, China
| |
Collapse
|
77
|
Amorim M, Salta S, Henrique R, Jerónimo C. Decoding the usefulness of non-coding RNAs as breast cancer markers. J Transl Med 2016; 14:265. [PMID: 27629831 PMCID: PMC5024523 DOI: 10.1186/s12967-016-1025-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Although important advances in the management of breast cancer (BC) have been recently accomplished, it still constitutes the leading cause of cancer death in women worldwide. BC is a heterogeneous and complex disease, making clinical prediction of outcome a very challenging task. In recent years, gene expression profiling emerged as a tool to assist in clinical decision, enabling the identification of genetic signatures that better predict prognosis and response to therapy. Nevertheless, translation to routine practice has been limited by economical and technical reasons and, thus, novel biomarkers, especially those requiring non-invasive or minimally invasive collection procedures, while retaining high sensitivity and specificity might represent a significant development in this field. An increasing amount of evidence demonstrates that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are aberrantly expressed in several cancers, including BC. miRNAs are of particular interest as new, easily accessible, cost-effective and non-invasive tools for precise management of BC patients because they circulate in bodily fluids (e.g., serum and plasma) in a very stable manner, enabling BC assessment and monitoring through liquid biopsies. This review focus on how ncRNAs have the potential to answer present clinical needs in the personalized management of patients with BC and comprehensively describes the state of the art on the role of ncRNAs in the diagnosis, prognosis and prediction of response to therapy in BC.
Collapse
Affiliation(s)
- Maria Amorim
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Sofia Salta
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal.
| |
Collapse
|