51
|
Jang J, Park JY, Gao G, Cho DW. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials 2018; 156:88-106. [DOI: 10.1016/j.biomaterials.2017.11.030] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/30/2017] [Accepted: 11/21/2017] [Indexed: 01/17/2023]
|
52
|
Gu BK, Choi DJ, Park SJ, Kim YJ, Kim CH. 3D Bioprinting Technologies for Tissue Engineering Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:15-28. [PMID: 30357616 DOI: 10.1007/978-981-13-0950-2_2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Three-dimensional (3D) printing (rapid prototyping or additive manufacturing) technologies have received significant attention in various fields over the past several decades. Tissue engineering applications of 3D bioprinting, in particular, have attracted the attention of many researchers. 3D scaffolds produced by the 3D bioprinting of biomaterials (bio-inks) enable the regeneration and restoration of various tissues and organs. These 3D bioprinting techniques are useful for fabricating scaffolds for biomedical and regenerative medicine and tissue engineering applications, permitting rapid manufacture with high-precision and control over size, porosity, and shape. In this review, we introduce a variety of tissue engineering applications to create bones, vascular, skin, cartilage, and neural structures using a variety of 3D bioprinting techniques.
Collapse
Affiliation(s)
- Bon Kang Gu
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Dong Jin Choi
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sang Jun Park
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Young-Jin Kim
- Department of Biomedical Engineering, Catholic University of Daegu, Gyeongsan, South Korea
| | - Chun-Ho Kim
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.
| |
Collapse
|
53
|
Park D, Yong IS, Cho KJ, Cheng J, Jung Y, Kim SH, Lee SH. Thae use of microfluic spinning fiber as an ophthalmology suture showing the good anastomotic strength control. Sci Rep 2017; 7:16264. [PMID: 29176617 PMCID: PMC5701120 DOI: 10.1038/s41598-017-16462-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/13/2017] [Indexed: 11/09/2022] Open
Abstract
Adjusting the mechanical strength of a biomaterial to suit its intended application is very important for realizing beneficial outcomes. Microfluidic spinning fiber have been attracting attention recently due to their various advantages, but their mechanical strength has unfortunately not been a subject of concentrated research, and this lack of research has severely limited their applications. In the current work, we showed the mechanical properties of microfibers can be tuned easily and provided a mathematical explanation for how the microfluidic spinning method intrinsically controls the mechanical properties of a microfluidic spinning fiber. But we were also able to adjust the mechanical properties of such fibers in various other ways, including by using biomolecules to coat the fiber or mixing the biomolecules with the primary component of the fiber and by using a customized twisting machine to change the number of single microfiber strands forming the fiber. We used the bundle fiber as an ophthalmology suture that resulted in a porcine eye with a smoother post-operative surface than did a nylon suture. The results showed the possibility that the proposed method can solve current problems of the microfibers in practical applications, and can thus extend the range of applications of these microfibers.
Collapse
Affiliation(s)
- DoYeun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - In Sung Yong
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Kyong Jin Cho
- Department of Ophthalmology, College of Medicine, Dankook University, 119 Danaeo-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do, 31116, Republic of Korea
| | - Jie Cheng
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Sang-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- School of Biomedical Engineering, College of Health Science, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
54
|
Donderwinkel I, van Hest JCM, Cameron NR. Bio-inks for 3D bioprinting: recent advances and future prospects. Polym Chem 2017. [DOI: 10.1039/c7py00826k] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last decade, interest in the field of three-dimensional (3D) bioprinting has increased enormously. This review describes all the currently used bio-printing inks, including polymeric hydrogels, polymer bead microcarriers, cell aggregates and extracellular matrix proteins.
Collapse
Affiliation(s)
- Ilze Donderwinkel
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
- Department of Bio-organic Chemistry
| | - Jan C. M. van Hest
- Department of Bio-organic Chemistry
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
- Department of Chemical Engineering and Chemistry
| | - Neil R. Cameron
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
- School of Engineering
| |
Collapse
|