51
|
Ontiveros ES, Ueda Y, Harris SP, Stern JA, 99 Lives Consortium. Precision medicine validation: identifying the MYBPC3 A31P variant with whole-genome sequencing in two Maine Coon cats with hypertrophic cardiomyopathy. J Feline Med Surg 2019; 21:1086-1093. [PMID: 30558461 PMCID: PMC10814263 DOI: 10.1177/1098612x18816460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES The objective of this study was to perform a proof-of-concept experiment that validates a precision medicine approach to identify variants associated with hypertrophic cardiomyopathy (HCM). We hypothesized that whole-genome sequencing would identify variant(s) associated with HCM in two affected Maine Coon/Maine Coon cross cats when compared with 79 controls of various breeds. METHODS Two affected and two control Maine Coon/Maine Coon cross cats had whole-genome sequencing performed at approximately × 30 coverage. Variants were called in these four cats and 77 cats of various breeds as part of the 99 Lives Cat Genome Sequencing Initiative ( http://felinegenetics.missouri.edu/99lives ) using Platypus v0.7.9.1, annotated with dbSNP ID, and variants' effect predicted by SnpEff. Strict filtering criteria (alternate allele frequency >49%) were applied to identify homozygous-alternate or heterozygous variants in the two HCM-affected samples when compared with 79 controls of various breeds. RESULTS A total of four variants were identified in the two Maine Coon/Maine Coon cross cats with HCM when compared with 79 controls after strict filtering. Three of the variants identified in genes MFSD12, BTN1A1 and SLITRK5 did not segregate with disease in a separate cohort of seven HCM-affected and five control Maine Coon/Maine Coon cross cats. The remaining variant MYBPC3 segregated with disease status. Furthermore, this gene was previously associated with heart disease and encodes for a protein with sarcomeric function. CONCLUSIONS AND RELEVANCE This proof-of-concept experiment identified the previously reported MYBPC3 A31P Maine Coon variant in two HCM-affected cases. This result validates and highlights the power of whole-genome sequencing for feline precision medicine.
Collapse
Affiliation(s)
- Eric S Ontiveros
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Yu Ueda
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Samantha P Harris
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Joshua A Stern
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | |
Collapse
|
52
|
Agricultural and Other Biotechnological Applications Resulting from Trophic Plant-Endophyte Interactions. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9120779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endophytic microbiota plays a role not only in supplying plants with the basic nutrients indispensable for their growth, but also helps them in the mechanisms of adaptation to various environmental stresses (i.e., salinity, drought), which is important in the aspect of crop yields. From the agricultural and biotechnological points of view, the knowledge of endophytes and their roles in increasing crop yields, plant resistance to diseases, and helping to survive environmental stress is extremely desirable. This paper reviews some of the beneficial plant–microbe interactions that might be potentially used in both agriculture (plant growth stimulation effect, adaptation of host organisms in salinity and drought conditions, and support of defense mechanisms in plants), and in biotechnology (bioactive metabolites, application of endophytes for bioremediation and biotransformation processes, and production of biofertilizers and biopreparations). Importantly, relatively recent reports on endophytes from the last 10 years are summarized in this paper.
Collapse
|
53
|
Lee A, Kang J, Lee H, Lee YS, Choi YJ, Lee KH, Nistala GJ, Scafe CR, Choi J, Yoo J, Han M.D E, Kim Y, Kim M. BRCA1/2 somatic mutation detection in formalin-fixed paraffin embedded tissue by next-generation sequencing in Korean ovarian cancer patients. Pathol Res Pract 2019; 215:152595. [DOI: 10.1016/j.prp.2019.152595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/26/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022]
|
54
|
Spaulding TP, Stockton SS, Savona MR. The evolving role of next generation sequencing in myelodysplastic syndromes. Br J Haematol 2019; 188:224-239. [PMID: 31571207 DOI: 10.1111/bjh.16212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 12/11/2022]
Abstract
Myelodysplastic syndromes (MDS) are clonal haematological disorders characterized by haematopoietic cell dysplasia, peripheral blood cytopenias, and a predisposition for developing acute myeloid leukaemia (AML). Cytogenetics have historically been important in diagnosis and prognosis in MDS, but the growing accessibility of next generation sequencing (NGS) has led to growing research in the roles of molecular genetic variation on clinical decision-making in these disorders. Multiple genes have been previously studied and found to be associated with specific outcomes or disease types within MDS and knowledge of mutations in these genes provides insight into previously defined MDS subtypes. Knowledge of these mutations also informs development of novel therapies in the treatment of MDS. The precise role of NGS in the diagnosis, prognosis and monitoring of MDS remains unclear but the improvements in NGS technology and accessibility affords clinicians an additional practice tool to provide the best care for patients.
Collapse
Affiliation(s)
- Travis P Spaulding
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shannon S Stockton
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael R Savona
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Cancer Biology Program, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
55
|
Anderson K, Cañadas-Garre M, Chambers R, Maxwell AP, McKnight AJ. The Challenges of Chromosome Y Analysis and the Implications for Chronic Kidney Disease. Front Genet 2019; 10:781. [PMID: 31552093 PMCID: PMC6737325 DOI: 10.3389/fgene.2019.00781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
The role of chromosome Y in chronic kidney disease (CKD) remains unknown, as chromosome Y is typically excluded from genetic analysis in CKD. The complex, sex-specific presentation of CKD could be influenced by chromosome Y genetic variation, but there is limited published research available to confirm or reject this hypothesis. Although traditionally thought to be associated with male-specific disease, evidence linking chromosome Y genetic variation to common complex disorders highlights a potential gap in CKD research. Chromosome Y variation has been associated with cardiovascular disease, a condition closely linked to CKD and one with a very similar sexual dimorphism. Relatively few sources of genetic variation in chromosome Y have been examined in CKD. The association between chromosome Y aneuploidy and CKD has never been explored comprehensively, while analyses of microdeletions, copy number variation, and single-nucleotide polymorphisms in CKD have been largely limited to the autosomes or chromosome X. In many studies, it is unclear whether the analyses excluded chromosome Y or simply did not report negative results. Lack of imputation, poor cross-study comparability, and requirement for separate or additional analyses in comparison with autosomal chromosomes means that chromosome Y is under-investigated in the context of CKD. Limitations in genotyping arrays could be overcome through use of whole-chromosome sequencing of chromosome Y that may allow analysis of many different types of genetic variation across the chromosome to determine if chromosome Y genetic variation is associated with CKD.
Collapse
Affiliation(s)
- Kerry Anderson
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University of Belfast, c/o Regional Genetics Centre, Belfast City Hospital, Belfast, United Kingdom
| | - Marisa Cañadas-Garre
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University of Belfast, c/o Regional Genetics Centre, Belfast City Hospital, Belfast, United Kingdom
| | - Robyn Chambers
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University of Belfast, c/o Regional Genetics Centre, Belfast City Hospital, Belfast, United Kingdom
| | - Alexander Peter Maxwell
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University of Belfast, c/o Regional Genetics Centre, Belfast City Hospital, Belfast, United Kingdom.,Regional Nephrology Unit, Belfast City Hospital, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University of Belfast, c/o Regional Genetics Centre, Belfast City Hospital, Belfast, United Kingdom
| |
Collapse
|
56
|
Review: Molecular techniques to assess genetic variation within and between Panax ginseng and Panax quinquefolius. Fitoterapia 2019; 138:104343. [PMID: 31472181 DOI: 10.1016/j.fitote.2019.104343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/19/2019] [Accepted: 08/25/2019] [Indexed: 11/23/2022]
Abstract
A variety of methods have been used to examine genetic differences in P. ginseng and P. quinquefolius. They have shown genetic differences within populations of P. ginseng (within and between elite cultivars, landraces and wild accessions), within populations of P. quinquefolius (within and between wild and cultivated accessions) and between P. ginseng and P. quinquefolius as well as other Panax species. Some examples of their applications have been to show that some elite cultivars are not uniform, there are possible founder effects in certain populations, there has been the spread of cultivated types into wild populations, relative diversity differs between different populations and identification of the source and purity of commercial samples. More work in the use of molecular markers for ginseng are needed, however, particularly the use of Next Generation Sequencing. Potential applications are the use of sequence analysis for genetic selection, breeding to develop new cultivars and providing traceability from field to consumer. Research on molecular markers in ginseng has lagged compared to other crops probably because of less of an emphasis on breeding for cultivar development and relatively small areas of production. The many potential benefits for ginseng production have yet to be realized.
Collapse
|
57
|
Avila M, Meric-Bernstam F. Next-generation sequencing for the general cancer patient. CLINICAL ADVANCES IN HEMATOLOGY & ONCOLOGY : H&O 2019; 17:447-454. [PMID: 31449513 PMCID: PMC6739831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Next-generation sequencing is a novel method of DNA sequencing that has become a cornerstone of precision oncology. This sequencing method detects differences in specific DNA sequences between a sample and a reference genome or matched normal DNA. In addition to single-nucleotide variants, other insertions, deletions, copy number changes, and fusions may be drivers of cancer growth, and thus represent therapeutic opportunities. As a result, genomic characterization has been increasingly used to guide treatment decisions, especially in patients with advanced disease. This review discusses the basic technologies involved in next-generation sequencing, the applications of this method, and limitations in the clinical realm.
Collapse
Affiliation(s)
- Monica Avila
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
58
|
Snoek R, Nguyen TQ, van der Zwaag B, van Zuilen AD, Kruis HME, van Gils-Verrij LA, Goldschmeding R, Knoers NVAM, Rookmaaker MB, van Eerde AM. Importance of Genetic Diagnostics in Adult-Onset Focal Segmental Glomerulosclerosis. Nephron Clin Pract 2019; 142:351-358. [PMID: 31096240 DOI: 10.1159/000499937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/27/2019] [Indexed: 12/31/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histological pattern of podocyte and glomerulus injury. FSGS can be primary and secondary to other diseases or due to a genetic cause. Strikingly, genetic causes for adult-onset FSGS are often overlooked, likely because identifying patients with genetic forms of FSGS based on clinical presentation and histopathology is difficult. Yet diagnosing genetic FSGS does not only have implications for prognostication and therapy but also for family and family planning. In this case series, we present 3 adult patients who presented with advanced renal disease with the histological picture of FSGS and proved to have a genetic cause of the disease, namely, variants in INF2, COL4A4 and HNF1B, respectively. We show the possibilities of identifying genetic FSGS based on clinical clues of a positive family history, early age at onset of disease, and/or severe therapy-resistant disease. We discuss ways to select the method of genetic testing for individual patients. Finally, we examine how the judicious use of genetic investigations can obviate potential harmful diagnostic procedures and direct clinical decisions in patients and their relatives.
Collapse
Affiliation(s)
- Rozemarijn Snoek
- Department of Genetics and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bert van der Zwaag
- Department of Genetics and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arjan D van Zuilen
- Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hannah M E Kruis
- Department of Nephrology, Elyse Renal Clinic, Woerden, The Netherlands
| | | | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nine V A M Knoers
- Department of Genetics and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albertien M van Eerde
- Department of Genetics and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands,
| |
Collapse
|
59
|
Ganapathy A, Mishra A, Soni MR, Kumar P, Sadagopan M, Kanthi AV, Patric IRP, George S, Sridharan A, Thyagarajan TC, Aswathy SL, Vidya HK, Chinnappa SM, Nayanala S, Prakash MB, Raghavendrachar VG, Parulekar M, Gowda VK, Nampoothiri S, Menon RN, Pachat D, Udani V, Naik N, Kamate M, Devi ARR, Mohammed Kunju PA, Nair M, Hegde AU, Kumar MP, Sundaram S, Tilak P, Puri RD, Shah K, Sheth J, Hasan Q, Sheth F, Agrawal P, Katragadda S, Veeramachaneni V, Chandru V, Hariharan R, Mannan AU. Multi-gene testing in neurological disorders showed an improved diagnostic yield: data from over 1000 Indian patients. J Neurol 2019; 266:1919-1926. [PMID: 31069529 DOI: 10.1007/s00415-019-09358-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neurological disorders are clinically heterogeneous group of disorders and are major causes of disability and death. Several of these disorders are caused due to genetic aberration. A precise and confirmatory diagnosis in the patients in a timely manner is essential for appropriate therapeutic and management strategies. Due to the complexity of the clinical presentations across various neurological disorders, arriving at an accurate diagnosis remains a challenge. METHODS We sequenced 1012 unrelated patients from India with suspected neurological disorders, using TruSight One panel. Genetic variations were identified using the Strand NGS software and interpreted using the StrandOmics platform. RESULTS We were able to detect mutations in 197 genes in 405 (40%) cases and 178 mutations were novel. The highest diagnostic rate was observed among patients with muscular dystrophy (64%) followed by leukodystrophy and ataxia (43%, each). In our cohort, 26% of the patients who received definitive diagnosis were primarily referred with complex neurological phenotypes with no suggestive diagnosis. In terms of mutations types, 62.8% were truncating and in addition, 13.4% were structural variants, which are also likely to cause loss of function. CONCLUSION In our study, we observed an improved performance of multi-gene panel testing, with an overall diagnostic yield of 40%. Furthermore, we show that NGS (next-generation sequencing)-based testing is comprehensive and can detect all types of variants including structural variants. It can be considered as a single-platform genetic test for neurological disorders that can provide a swift and definitive diagnosis in a cost-effective manner.
Collapse
Affiliation(s)
- Aparna Ganapathy
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | - Avshesh Mishra
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | - Megha Rani Soni
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | - Priyanka Kumar
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | - Mukunth Sadagopan
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | - Anil Vittal Kanthi
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | - Irene Rosetta Pia Patric
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | - Sobha George
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | - Aparajit Sridharan
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | - T C Thyagarajan
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | - S L Aswathy
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | - H K Vidya
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | - Swathi M Chinnappa
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | - Swetha Nayanala
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | - Manasa B Prakash
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | - Vijayashree G Raghavendrachar
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | - Minothi Parulekar
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | | | | | - Ramshekhar N Menon
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | - Vrajesh Udani
- P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| | - Neeta Naik
- EN1 Neuro Services Pvt. Ltd., Mumbai, India
| | | | | | | | | | | | | | - Soumya Sundaram
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Preetha Tilak
- St. Johns Medical College Hospital, Bangalore, India
| | | | - Krati Shah
- ONE-Centre for Rheumatology and Genetics, Vadodara, India
| | - Jayesh Sheth
- FRIGE'S Institute of Human Genetics, Ahmedabad, India
| | | | - Frenny Sheth
- FRIGE'S Institute of Human Genetics, Ahmedabad, India
| | - Pooja Agrawal
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | - Shanmukh Katragadda
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | - Vamsi Veeramachaneni
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India
| | - Vijay Chandru
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India.,Indian Institute of Science, Bangalore, India
| | - Ramesh Hariharan
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India.,Indian Institute of Science, Bangalore, India
| | - Ashraf U Mannan
- Strand Center for Genomics and Personalized Medicine, Strand Life Sciences, Bellary Road, Hebbal, Bangalore, 560024, India.
| |
Collapse
|
60
|
Chen Q, Li JY, Du SD. Application of neoantigens in malignant tumor treatment and prognosis evaluation. Shijie Huaren Xiaohua Zazhi 2019; 27:287-292. [DOI: 10.11569/wcjd.v27.i5.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the last decade, there have been an endless number of cancer therapy strategies, and the study of tumor neoantigens provides a new direction for cancer immune therapy. With the development of deep sequencing, especially whole-exome sequencing, great opportunities have been provided to precise immune therapy of malignant tumors. This article systematically summarizes the research on tumor neoantigens in the past ten years and the challenges most likely to be encountered, describes the role of neoantigens in the treatment of malignant tumors, and discusses their possible clinical applications.
Collapse
Affiliation(s)
- Qiao Chen
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jia-Yi Li
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Shun-Da Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
61
|
Abstract
PURPOSE Next-generation sequencing panels are particularly useful in identifying genetic diagnoses in patients with nonspecific clinical findings by allowing for analysis of many genes at once. The purpose of this study was to develop a simple, objective system to evaluate the quality of available next-generation sequencing panels. METHODS A list of potentially important features of next-generation sequencing panels generated from the literature was evaluated for accessibility and objectivity and distilled to a "core" set of quality features. This was then applied to a clinical setting using the example of epilepsy panels. Panels at 8 laboratories were rated based on several objective measures to create a scoring system that differentiated between labs in a clinically meaningful way. RESULTS There was substantial variability in 6 "core" test criteria, allowing for creation of a scoring system that clearly distinguished labs based on identified strengths and weaknesses of each panel. CONCLUSION We have demonstrated an objective method for comparing next-generation sequencing panels that can be applied or adapted to any clinical phenotype for which genetic testing is available. This method offers an unbiased approach to determining the ideal test for a given indication at a given time.
Collapse
Affiliation(s)
- Kaitlin Angione
- Department of Pediatrics, Section of Neurology, University of Colorado Denver, Aurora, CO, USA
| | - Melissa Gibbons
- Department of Pediatrics, Section of Neurology, University of Colorado Denver, Aurora, CO, USA
| | - Scott Demarest
- Department of Pediatrics, Section of Neurology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
62
|
Current Coverage of the mTOR Pathway by Next-Generation Sequencing Oncology Panels. Int J Mol Sci 2019; 20:ijms20030690. [PMID: 30764584 PMCID: PMC6387057 DOI: 10.3390/ijms20030690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
The mTOR pathway is in the process of establishing itself as a key access-point of novel oncological drugs and targeted therapies. This is also reflected by the growing number of mTOR pathway genes included in commercially available next-generation sequencing (NGS) oncology panels. This review summarizes the portfolio of medium sized diagnostic, as well as research destined NGS panels and their coverage of the mTOR pathway, including 16 DNA-based panels and the current gene list of Foundation One as a major reference entity. In addition, we give an overview of interesting, mTOR-associated somatic mutations that are not yet incorporated. Especially eukaryotic translation initiation factors (eIFs), a group of mTOR downstream proteins, are on the rise as far as diagnostics and drug targeting in precision medicine are concerned. This review aims to raise awareness for the true coverage of NGS panels, which should be valuable in selecting the ideal platform for diagnostics and research.
Collapse
|
63
|
Pérez-Sánchez N, Jurado-Escobar R, Doña I, Soriano-Gomis V, Moreno-Aguilar C, Bartra J, Isidoro-García M, Torres MJ, Cornejo-García JA. Pharmacogenomics as a Tool for Management of Drug Hypersensitivity Reactions. CURRENT TREATMENT OPTIONS IN ALLERGY 2019. [DOI: 10.1007/s40521-019-0199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
64
|
Vahle JL, Anderson U, Blomme EA, Hoflack JC, Stiehl DP. Use of toxicogenomics in drug safety evaluation: Current status and an industry perspective. Regul Toxicol Pharmacol 2018; 96:18-29. [DOI: 10.1016/j.yrtph.2018.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 10/17/2022]
|
65
|
Oates S, Tang S, Rosch R, Lear R, Hughes EF, Williams RE, Larsen LHG, Hao Q, Dahl HA, Møller RS, Pal DK. Incorporating epilepsy genetics into clinical practice: a 360°evaluation. NPJ Genom Med 2018; 3:13. [PMID: 29760947 PMCID: PMC5945675 DOI: 10.1038/s41525-018-0052-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 01/13/2023] Open
Abstract
We evaluated a new epilepsy genetic diagnostic and counseling service covering a UK population of 3.5 million. We calculated diagnostic yield, estimated clinical impact, and surveyed referring clinicians and families. We costed alternative investigational pathways for neonatal onset epilepsy. Patients with epilepsy of unknown aetiology onset < 2 years; treatment resistant epilepsy; or familial epilepsy were referred for counseling and testing. We developed NGS panels, performing clinical interpretation with a multidisciplinary team. We held an educational workshop for paediatricians and nurses. We sent questionnaires to referring paediatricians and families. We analysed investigation costs for 16 neonatal epilepsy patients. Of 96 patients, a genetic diagnosis was made in 34% of patients with seizure onset < 2 years, and 4% > 2 years, with turnaround time of 21 days. Pathogenic variants were seen in SCN8A, SCN2A, SCN1A, KCNQ2, HNRNPU, GRIN2A, SYNGAP1, STXBP1, STX1B, CDKL5, CHRNA4, PCDH19 and PIGT. Clinician prediction was poor. Clinicians and families rated the service highly. In neonates, the cost of investigations could be reduced from £9362 to £2838 by performing gene panel earlier and the median diagnostic delay of 3.43 years reduced to 21 days. Panel testing for epilepsy has a high yield among children with onset < 2 years, and an appreciable clinical and financial impact. Parallel gene testing supersedes single gene testing in most early onset cases that do not show a clear genotype-phenotype correlation. Clinical interpretation of laboratory results, and in-depth discussion of implications for patients and their families, necessitate multidisciplinary input and skilled genetic counseling. Screening for epilepsy-related gene variants can lead to effective, personalized treatment plans while reducing costs. UK and Danish scientists, led by Deb Pal, King’s College London, evaluated a new service within the UK that searches for genetic variants in patients that cause epilepsy. The authors assessed the impact of next-generation gene panel tests, as well as the necessary resources to make such a service effective. Genetic testing was most effective in patients with seizure onset under 2 years old (21% diagnosed) and yield even higher in neonatal-onset epilepsy (63% diagnosed). For many patients with pathogenic variants, the diagnoses allowed for recommendations on treatment or enrolment in clinical trials. The researchers found that diagnostic delay and financial burden in neonatal epilepsy could be drastically reduced with gene panel testing. The scheme was highly rated by users and patients alike.
Collapse
Affiliation(s)
- Stephanie Oates
- 1King's College Hospital, London, UK.,2Evelina London Children's Hospital, London, UK
| | | | | | | | - Elaine F Hughes
- 1King's College Hospital, London, UK.,2Evelina London Children's Hospital, London, UK
| | | | | | - Qin Hao
- Amplexa Genetics, Odense, Denmark
| | | | - Rikke S Møller
- Danish National Epilepsy Centre, Dianalund, Denmark.,6Institute for Regional Health research, University of Southern Denmark, Odense, Denmark
| | - Deb K Pal
- 1King's College Hospital, London, UK.,2Evelina London Children's Hospital, London, UK.,3Kings College London, London, UK
| |
Collapse
|
66
|
Abstract
Next-generation sequencing (NGS) technology has led to the ability to test for multiple cancer susceptibility genes simultaneously without significantly increasing cost or turnaround time. With growing usage of multigene testing for inherited cancer, ongoing education for nurses and other health-care providers about hereditary cancer screening is imperative to ensure appropriate testing candidate identification, test selection, and posttest management. The purpose of this review article is to (1) provide an overview of how NGS works to detect germline mutations, (2) summarize the benefits and limitations of multigene panel testing, (3) describe risk categories of cancer susceptibility genes, and (4) highlight the counseling considerations for patients pursuing multigene testing.
Collapse
|
67
|
Chiu ES, Hoover EA, VandeWoude S. A Retrospective Examination of Feline Leukemia Subgroup Characterization: Viral Interference Assays to Deep Sequencing. Viruses 2018; 10:E29. [PMID: 29320424 PMCID: PMC5795442 DOI: 10.3390/v10010029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 01/10/2023] Open
Abstract
Feline leukemia virus (FeLV) was the first feline retrovirus discovered, and is associated with multiple fatal disease syndromes in cats, including lymphoma. The original research conducted on FeLV employed classical virological techniques. As methods have evolved to allow FeLV genetic characterization, investigators have continued to unravel the molecular pathology associated with this fascinating agent. In this review, we discuss how FeLV classification, transmission, and disease-inducing potential have been defined sequentially by viral interference assays, Sanger sequencing, PCR, and next-generation sequencing. In particular, we highlight the influences of endogenous FeLV and host genetics that represent FeLV research opportunities on the near horizon.
Collapse
Affiliation(s)
- Elliott S Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80524, USA.
| | - Edward A Hoover
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80524, USA.
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80524, USA.
| |
Collapse
|
68
|
Shea DJ, Shimizu M, Nishida N, Fukai E, Abe T, Fujimoto R, Okazaki K. IntroMap: a signal analysis based method for the detection of genomic introgressions. BMC Genet 2017; 18:101. [PMID: 29202713 PMCID: PMC5716257 DOI: 10.1186/s12863-017-0568-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/14/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breeding programs often rely on marker-assisted tests or variant calling of next generation sequence (NGS) data to identify regions of genomic introgression arising from the hybridization of two plant species. In this paper we present IntroMap, a bioinformatics pipeline for the screening of candidate plants through the application of signal processing techniques to NGS data, using alignment to a reference genome sequence (annotation is not required) that shares homology with the recurrent parental cultivar, and without the need for de novo assembly of the read data or variant calling. RESULTS We show the accurate identification of introgressed genomic regions using both in silico simulated genomes, and a hybridized cultivar data set using our pipeline. Additionally we show, through targeted marker-based assays, validation of the IntroMap predicted regions for the hybrid cultivar. CONCLUSIONS This approach can be used to automate the screening of large populations, reducing the time and labor required, and can improve the accuracy of the detection of introgressed regions in comparison to a marker-based approach. In contrast to other approaches that generally rely upon a variant calling step, our method achieves accurate identification of introgressed regions without variant calling, relying solely upon alignment.
Collapse
Affiliation(s)
- Daniel J Shea
- Laboratory of Plant Breeding, Graduate School of Science and Technology, Niigata University, Ikarashi-ninocho, Niigata, 950-2181, Japan
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Narita, Kitakami, 024-0003, Japan
| | - Namiko Nishida
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Eigo Fukai
- Laboratory of Plant Breeding, Graduate School of Science and Technology, Niigata University, Ikarashi-ninocho, Niigata, 950-2181, Japan
| | - Takashi Abe
- Department of Computer Science, Graduate School of Science and Technology, Niigata University, Ikarashi-ninocho, Niigata, 950-2181, Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Keiichi Okazaki
- Laboratory of Plant Breeding, Graduate School of Science and Technology, Niigata University, Ikarashi-ninocho, Niigata, 950-2181, Japan.
| |
Collapse
|
69
|
Ilyas M. Next-Generation Sequencing in Diagnostic Pathology. Pathobiology 2017; 84:292-305. [PMID: 29131018 DOI: 10.1159/000480089] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/06/2017] [Indexed: 12/26/2022] Open
Abstract
Interrogation of tissue informs on patient management through delivery of a diagnosis together with associated clinically relevant data. The diagnostic pathologist will usually evaluate the morphological appearances of a tissue sample and, occasionally, the pattern of expression of a limited number of biomarkers. Recent developments in sequencing technology mean that DNA and RNA from tissue samples can now be interrogated in great detail. These new technologies, collectively known as next-generation sequencing (NGS), generate huge amounts of data which can be used to support patient management. In order to maximize the utility of tissue interrogation, the molecular data need to be interpreted and integrated with the morphological data. However, in order to interpret the molecular data, the pathologist must understand the utility and the limitations of NGS data. In this review, the principles behind NGS technologies are described. In addition, the caveats in the interpretation of the data are discussed, and a scheme is presented to "classify" the types of data which are generated. Finally, a glossary of new terminology is included to help pathologists become familiar with the lexicon of NGS-derived molecular data.
Collapse
|
70
|
Xiong Y, Huang BY, Yin JY. Pharmacogenomics of platinum-based chemotherapy in non-small cell lung cancer: focusing on DNA repair systems. Med Oncol 2017; 34:48. [PMID: 28215024 DOI: 10.1007/s12032-017-0905-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/12/2017] [Indexed: 12/18/2022]
Abstract
Drug therapy for non-small cell lung cancer consists mainly of platinum-based chemotherapy regimens. However, toxicity, drug resistance, and high risk of death have been seen in the clinic, which means there is a need for optimizing the use of medications. Platinum resistance could be mediated by a series of DNA repair pathways, and therefore, these pathways should be taken into account for optimizing drug using. The goal of pharmacogenomics is to elucidate genetic factors, such as DNA repair genes, which might underlie drug efficacy and effectiveness, and to improve therapeutic effects or guide personalized therapy as well. Here, we reviewed the current knowledge of pharmacogenomic data on DNA repair systems and examined whether they could be further translated into the clinic with evidence-based perspectives.
Collapse
Affiliation(s)
- Yi Xiong
- Xiangya School of Medicine, Central South University, Changsha, 410008, People's Republic of China
| | - Bi-Yun Huang
- Institute of Information Security and Big Data, Central South University, Changsha, 410008, People's Republic of China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410078, People's Republic of China.
| |
Collapse
|
71
|
Testing the Complex Child: CGH Array, WES, Clinical Exome, WGS. CURRENT PEDIATRICS REPORTS 2016. [DOI: 10.1007/s40124-016-0111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
72
|
Morley-Bunker A, Walker LC, Currie MJ, Pearson J, Eglinton T. Translating colorectal cancer genetics into clinically useful biomarkers. Colorectal Dis 2016; 18:749-62. [PMID: 26990814 DOI: 10.1111/codi.13334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/22/2016] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is a major health problem worldwide accounting for over a million deaths annually. While many patients with Stage II and III CRC can be cured with combinations of surgery, radiotherapy and chemotherapy, this is morbid costly treatment and a significant proportion will suffer recurrence and eventually die of CRC. Increased understanding of the molecular pathogenesis of CRC has the potential to identify high risk patients and target therapy more appropriately. Despite increased understanding of the molecular events underlying CRC development, established molecular techniques have only produced a limited number of biomarkers suitable for use in routine clinical practice to predict risk, prognosis and response to treatment. Recent rapid technological developments, however, have made genomic sequencing of CRC more economical and efficient, creating potential for the discovery of genetic biomarkers that have greater diagnostic, prognostic and therapeutic capabilities for the management of CRC. This paper reviews the current understanding of the molecular pathogenesis of CRC, and summarizes molecular biomarkers that surgeons will encounter in current clinical use as well as those under development in clinical and preclinical trials. New molecular technologies are reviewed together with their potential impact on the understanding of the molecular pathogenesis of CRC and their potential clinical utility in classification, diagnosis, prognosis and targeting of therapy.
Collapse
Affiliation(s)
- A Morley-Bunker
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - L C Walker
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - M J Currie
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - J Pearson
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| | - T Eglinton
- Department of Surgery, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
73
|
Next Generation Sequencing Data and Proteogenomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 926:11-19. [DOI: 10.1007/978-3-319-42316-6_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
74
|
A Pan-HIV Strategy for Complete Genome Sequencing. J Clin Microbiol 2015; 54:868-82. [PMID: 26699702 DOI: 10.1128/jcm.02479-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/16/2015] [Indexed: 01/23/2023] Open
Abstract
Molecular surveillance is essential to monitor HIV diversity and track emerging strains. We have developed a universal library preparation method (HIV-SMART [i.e.,switchingmechanismat 5' end ofRNAtranscript]) for next-generation sequencing that harnesses the specificity of HIV-directed priming to enable full genome characterization of all HIV-1 groups (M, N, O, and P) and HIV-2. Broad application of the HIV-SMART approach was demonstrated using a panel of diverse cell-cultured virus isolates. HIV-1 non-subtype B-infected clinical specimens from Cameroon were then used to optimize the protocol to sequence directly from plasma. When multiplexing 8 or more libraries per MiSeq run, full genome coverage at a median ∼2,000× depth was routinely obtained for either sample type. The method reproducibly generated the same consensus sequence, consistently identified viral sequence heterogeneity present in specimens, and at viral loads of ≤4.5 log copies/ml yielded sufficient coverage to permit strain classification. HIV-SMART provides an unparalleled opportunity to identify diverse HIV strains in patient specimens and to determine phylogenetic classification based on the entire viral genome. Easily adapted to sequence any RNA virus, this technology illustrates the utility of next-generation sequencing (NGS) for viral characterization and surveillance.
Collapse
|