51
|
|
52
|
Shibaev VN, Veselovsky VV, Lozanova AV, Maltsev SD, Danilov LL, Forsee WT, Xing J, Cheung HC, Jedrzejas MJ. Synthesis of dolichyl phosphate derivatives with fluorescent label at the omega-end of the chain, new tools to study protein glycosylation. Bioorg Med Chem Lett 2000; 10:189-92. [PMID: 10673108 DOI: 10.1016/s0960-894x(99)00662-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Derivatives of dolichyl phosphate (Dol-P) with 2-aminopyridine or 1-aminonaphtalene fluorophore groups at the omega-end of the chain were synthesized. These products serve as substrates for recombinant yeast Dol-P-mannose synthase. Fluorescence resonance energy transfer between a Trp residue of the enzyme and the 1-aminonaphtalene group of the Dol-P analogue was demonstrated.
Collapse
Affiliation(s)
- V N Shibaev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Grigorieva NY, Pinsker OA, Maltsev SD, Danilov LL, Shibaev VN, Jedrzejas MJ. Dolichyl phosphate derivatives with a fluorescent label at an internal isoprene unit. MENDELEEV COMMUNICATIONS 2000. [DOI: 10.1070/mc2000v010n03abeh001257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
54
|
Rush JS, van Leyen K, Ouerfelli O, Wolucka B, Waechter CJ. Transbilayer movement of Glc-P-dolichol and its function as a glucosyl donor: protein-mediated transport of a water-soluble analog into sealed ER vesicles from pig brain. Glycobiology 1998; 8:1195-205. [PMID: 9858641 DOI: 10.1093/glycob/8.12.1195] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The results described in the accompanying article support the model in which glucosylphosphoryldolichol (Glc-P-Dol) is synthesized on the cytoplasmic face of the ER, and functions as a glucosyl donor for three Glc-P-Dol:Glc0-2Man9-GlcNAc2-P-P-Dol glucosyltransferases (GlcTases) in the lumenal compartment. In this study, the enzymatic synthesis and structural characterization by NMR and electrospray-ionization tandem mass spectrometry of a series of water-soluble beta-Glc-P-Dol analogs containing 2-4 isoprene units with either the cis - or trans -stereoconfiguration in the beta-position are described. The water-soluble analogs were (1) used to examine the stereospecificity of the Glc-P-Dol:Glc0-2Man9GlcNAc2-P-P-Dol glucosyltransferases (GlcTases) and (2) tested as potential substrates for a membrane protein(s) mediating the transbilayer movement of Glc-P-Dol in sealed ER vesicles from rat liver and pig brain. The Glc-P-Dol-mediated GlcTases in pig brain microsomes utilized [3H]Glc-labeled Glc-P-Dol10, Glc-P-(omega, c )Dol15, Glc-P(omega, t,t )Dol20, and Glc-P-(omega, t,c )Dol20as glucosyl donors with [3H]Glc3Man9GlcNAc2-P-P-Dol the major product labeled in vitro. A preference was exhibited for C15-20 substrates containing an internal cis -isoprene unit in the beta-position. In addition, the water-soluble analog, Glc-P-Dol10, was shown to enter the lumenal compartment of sealed microsomal vesicles from rat liver and pig brain via a protein-mediated transport system enriched in the ER. The properties of the ER transport system have been characterized. Glc-P-Dol10was not transported into or adsorbed by synthetic PC-liposomes or bovine erythrocytes. The results of these studies indicate that (1) the internal cis -isoprene units are important for the utilization of Glc-P-Dol as a glucosyl donor and (2) the transport of the water-soluble analog may provide an experimental approach to assay the hypothetical "flippase" proposed to mediate the transbilayer movement of Glc-P-Dol from the cytoplasmic face of the ER to the lumenal monolayer.
Collapse
Affiliation(s)
- J S Rush
- Department of Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
55
|
Grigor'eva NY, Tsiklauri PG, Buevich AV. Synthesis of (Z)-trisubstituted olefins with all substituents different from methylvia α,β-disubstituted (E)-acroleins. Russ Chem Bull 1998. [DOI: 10.1007/bf02495562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
56
|
Frank DW, Waechter CJ. Purification and characterization of a polyisoprenyl phosphate phosphatase from pig brain. Possible dual specificity. J Biol Chem 1998; 273:11791-8. [PMID: 9565603 DOI: 10.1074/jbc.273.19.11791] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microsomal fractions from pig and calf brain catalyze the enzymatic dephosphorylation of endogenous and exogenous dolichyl monophosphate (Dol-P) (Sumbilla, C. A., and Waechter, C. J. (1985) Methods Enzymol. 111, 471-482). The Dol-P phosphatase (EC 3.1.3.51) has been solubilized by extracting pig brain microsomes with the nonionic detergent Nonidet P-40 and purified approximately 1,107-fold by a combination of anion exchange chromatography, polyethylene glycol fractionation, dye-ligand chromatography, and wheat germ agglutinin affinity chromatography. Treatment of the enzyme with neuraminidase prevented binding to wheat germ agglutinin-Sepharose, indicating the presence of one or more N-acetylneuraminyl residues per molecule of enzyme. When the highly purified polyisoprenyl phosphate phosphatase was analyzed by SDS-polyacrylamide gel electrophoresis, a major 33-kDa polypeptide was observed. Enzymatic dephosphorylation of Dol-P by the purified phosphatase was 1) optimal at pH 7; 2) potently inhibited by F-, orthovanadate, and Zn2+ > Co2+ > Mn2+ but unaffected by Mg2+; 3) exhibited an approximate Km for C95-Dol-P of 45 microM; and 4) was sensitive to N-ethylmaleimide, phenylglyoxal, and diethylpyrocarbonate. The pig brain phosphatase did not dephosphorylate glucose 6-phosphate, mannose 6-phosphate, 5'-AMP, or p-nitrophenylphosphate, but it dephosphorylated dioleoyl-phosphatidic acid at initial rates similar to those determined for Dol-P. Based on the virtually identical sensitivity of Dol-P and phosphatidic acid dephosphorylation by the highly purified enzyme to N-ethylmaleimide, F-, phenylglyoxal, and diethylpyrocarbonate, both substrates appear to be hydrolyzed by a single enzyme with an apparent dual specificity. This is the first report of the purification of a neutral Dol-P phosphatase from mammalian tissues. Although the enzyme is Mg2+-independent and capable of dephosphorylating Dol-P and PA, several enzymological properties distinguish this lipid phosphomonoesterase from PAP2.
Collapse
Affiliation(s)
- D W Frank
- Department of Biochemistry, A. B. Chandler Medical Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
57
|
Lee RE, Brennan PJ, Besra GS. Synthesis of beta-D-arabinofuranosyl-1-monophosphoryl polyprenols: examination of their function as mycobacterial arabinosyl transferase donors. Bioorg Med Chem Lett 1998; 8:951-4. [PMID: 9871518 DOI: 10.1016/s0960-894x(98)00147-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A convenient synthetic strategy has been developed to produce libraries of beta-D-arabinofuranosyl-monophosphorylpolyprenol. Those containing C50 and C55 polyprenols were the most active as donors for the cell-free synthesis of the arabinans of mycobacterial cell walls.
Collapse
Affiliation(s)
- R E Lee
- Department of Microbiology, Colorado State University, Fort Collins 80523-1677, USA
| | | | | |
Collapse
|
58
|
Synthesis of an analogue of the lipoglycopeptide membrane intermediate I of peptidoglycan biosynthesis. ACTA ACUST UNITED AC 1997. [DOI: 10.1007/bf02442902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
59
|
Nagano H, Kudo K. Synthesis of 2-Geranyl- and 2-Farnesyl-Substituted Geranylgeraniols and Their Phosphates. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1996. [DOI: 10.1246/bcsj.69.2071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
60
|
Birault V, Pozzi G, Plobeck N, Eifler S, Schmutz M, Palanché T, Raya J, Brisson A, Nakatani Y, Ourisson G. Di(polyprenyl) Phosphates as Models for Primitive Membrane Constituents: Synthesis and Phase Properties. Chemistry 1996. [DOI: 10.1002/chem.19960020710] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
61
|
|
62
|
Abstract
The occurrence of protein farnesyltransferase has been demonstrated in spinach. The enzyme transferred different prenyl groups to the nonapeptide acceptor. All-trans isoprenoid diphosphates were utilized most efficiently in contrast to long-chain mainly cis-polyprenyl diphosphates and dolichyl diphosphates. The activity of the enzyme was stimulated by divalent cations. The presence of protein farnesyltransferase activity in several plant species has been confirmed.
Collapse
Affiliation(s)
- E Skoczylas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
63
|
Moiseenkov AM, Veselovsky VV. New approaches to stereo- and regiocontrolled transformation of linear isoprenoids. Russ Chem Bull 1995. [DOI: 10.1007/bf00714414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
64
|
Wolucka B, McNeil M, de Hoffmann E, Chojnacki T, Brennan P. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31657-5] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
65
|
Bugg TD, Brandish PE. From peptidoglycan to glycoproteins: common features of lipid-linked oligosaccharide biosynthesis. FEMS Microbiol Lett 1994; 119:255-62. [PMID: 8050708 DOI: 10.1111/j.1574-6968.1994.tb06898.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The peptidoglycan layer of bacterial cell walls is biosynthesised using a lipid carrier undecaprenyl phosphate to assemble and transport the MurNAc(GlcNAc)-pentapeptide precursor. Similar lipid-linked cycles are involved in the biosynthesis of other bacterial exopolysaccharides and eukaryotic asparagine-linked glycoproteins, the latter involving the structurally related dolichyl phosphate as a lipid carrier. Recent protein sequence data and common inhibitors of the bacterial and eukaryotic systems have revealed functional similarities between the two systems. Biological and physical studies on the lipid carriers themselves have provided clues to their role in oligosaccharide translocation, but have not revealed significant differences in function between undecaprenyl phosphate and dolichyl phosphate. The presence of dolichyl phosphate and a family of saturated isoprenoid lipids in Archaebacteria suggests a possible evolutionary link between the two systems.
Collapse
Affiliation(s)
- T D Bugg
- Department of Chemistry, University of Southampton, Highfield, UK
| | | |
Collapse
|
66
|
Runquist M, Ericsson J, Thelin A, Chojnacki T, Dallner G. Isoprenoid biosynthesis in rat liver mitochondria. Studies on farnesyl pyrophosphate synthase and trans-prenyltransferase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37533-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
67
|
Keller R, Thompson R. Rapid synthesis of isoprenoid diphosphates and their isolation in one step using either thin layer or flash chromatography. J Chromatogr A 1993; 645:161-7. [DOI: 10.1016/0021-9673(93)80630-q] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
68
|
Swiezewska E, Dallner G, Andersson B, Ernster L. Biosynthesis of ubiquinone and plastoquinone in the endoplasmic reticulum-Golgi membranes of spinach leaves. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54102-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
69
|
Hermansson K, Jansson PE, Löw P, Dallner G, Swiezewska E, Chojnacki T. Analysis of long-chain polyisoprenoids by fast atom bombardment mass spectrometry. ACTA ACUST UNITED AC 1992. [DOI: 10.1002/bms.1200211105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
70
|
Grigor'eva NY, Pinsker OA, Moiseenkov AM. Stereospecific synthesis of octaprenols WT3C4OH and WT3C3TOH. Russ Chem Bull 1991. [DOI: 10.1007/bf00963503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
71
|
Crick DC, Rush JS, Waechter CJ. Characterization and localization of a long-chain isoprenyltransferase activity in porcine brain: proposed role in the biosynthesis of dolichyl phosphate. J Neurochem 1991; 57:1354-62. [PMID: 1895109 DOI: 10.1111/j.1471-4159.1991.tb08301.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pig brain microsomes catalyzed the enzymatic transfer of radiolabeled isoprenyl groups from [1-14C]isopentenyl pyrophosphate [( 1-14C]I-P-P) into long-chain polyisoprenyl pyrophosphates (Poly-P-P) and unidentified neutral lipids. The brain isoprenyltransferase activity synthesizing the Poly-P-P (1) required 5 mM Mg2+ and 10 mM vanadate ions for maximal activity; (2) exhibited an apparent Km of 8 microM for I-P-P; (3) utilized exogenous farnesyl pyrophosphate and two stereoisomers of geranylgeranyl pyrophosphate as substrates; (4) was optimal at pH 8.5; and (5) was stimulated by dithiothreitol. The major products were identified as C90 and C95 allylic Poly-P-P on the basis of the following chemical and chromatographic properties: (1) the intact product co-chromatographed with authentic Poly-P-P on silica-gel-impregnated paper; (2) the major product was converted to a compound chromatographically identical to polyisoprenyl monophosphate (Poly-P) by alkaline hydrolysis; (3) treatment of the labeled Poly-P with wheat germ acid phosphatase or mild acid yielded neutral labeled products; (4) the KOH hydrolyzed product coeluted with authentic Poly-P from lipophilic Sephadex LH-20; and (5) the labeled lipids produced by enzymatic dephosphorylation had mobilities identical to fully unsaturated polyisoprenols containing 18 (C90) and 19 (C95) isoprene units when analyzed by reverse-phase chromatography. When subcellular fractions from rat brain gray matter were compared, the highest specific activity was found in the heavy microsomes. These results demonstrate that brain contains an isoprenyltransferase activity, associated with the rough endoplasmic reticulum, capable of synthesizing long-chain Poly-P-P. The enzymatic reactions by which the Poly-P-P intermediate is converted to dolichyl phosphate remain to be elucidated.
Collapse
Affiliation(s)
- D C Crick
- Department of Biochemistry, University of Kentucky College of Medicine, A. B. Chandler Medical Center, Lexington 40536
| | | | | |
Collapse
|
72
|
Finke A, Bronner D, Nikolaev AV, Jann B, Jann K. Biosynthesis of the Escherichia coli K5 polysaccharide, a representative of group II capsular polysaccharides: polymerization in vitro and characterization of the product. J Bacteriol 1991; 173:4088-94. [PMID: 1829455 PMCID: PMC208057 DOI: 10.1128/jb.173.13.4088-4094.1991] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Biosynthesis of the capsular K5 polysaccharide of Escherichia coli, which has the structure 4)-beta GlcA-1,4-alpha GlcNAc-(1, was studied with membrane preparations from an E. coli K5 wild-type strain and from a recombinant K-12 strain expressing the K5 capsule. Polymerization occurs at the inner face of the cytoplasmic membrane without the participation of lipid-linked oligosaccharides. The serological K5 specificity of the in vitro product was determined with a K5-specific monoclonal antibody in an antigen-binding assay. The K5 polysaccharide, as obtained from the membranes after an in vitro incubation, has 2-keto-3-deoxyoctulosonic acid as the reducing sugar, which indicates that the polysaccharide grows by chain elongation at the nonreducing end.
Collapse
Affiliation(s)
- A Finke
- Max-Planck-Institut für Immunobiologie, Freiburg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
73
|
Jankowski WJ, Palamarczyk G, Krajewska I, Vogtman T. Specificity of cellular processes and enzymes towards polyisoprenoids of different structure. Chem Phys Lipids 1989. [DOI: 10.1016/0009-3084(89)90012-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|