51
|
Penhune VB. A gene-maturation-environment model for understanding sensitive period effects in musical training. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
52
|
Effects of tDCS on Tactile Perception Depend on Tactile Expertise in Both Musicians and Non-Musicians. Brain Sci 2020; 10:brainsci10110843. [PMID: 33198132 PMCID: PMC7697490 DOI: 10.3390/brainsci10110843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
Brain plasticity in the somatosensory cortex and tactile performance can be facilitated by brain stimulation. Here, we investigated the effects of transcranial direct current stimulation (tDCS) on tactile perception in musicians and non-musicians to elucidate how tDCS-effects might depend on tactile expertise. On three separate days, 17 semi-professional musicians (e.g., piano or violin players) and 16 non-musicians aged 18-27 years received 15 min of 1 mA anodal (a-tDCS), cathodal (c-tDCS) or sham tDCS in a pseudorandomized design. Pre and post tDCS, tactile sensitivity (Touch Detection Task; TDT) and discrimination performance (Grating Orientation Task; GOT) were assessed. For further analysis, the weekly hours of instrument-playing and computer-typing were combined into a "tactile experience" variable. For GOT, but not TDT, a significant group effect at baseline was revealed with musicians performing better than non-musicians. TDT thresholds were significantly reduced after a-tDCS but not c-tDCS or sham stimulation. While both musicians' and non-musicians' performance improved after anodal stimulation, neither musical nor tactile expertise was directly associated with the magnitude of this improvement. Low performers in TDT with high tactile experience profited most from a-tDCS. We conclude that tactile expertise may facilitate somatosensory cortical plasticity and tactile learning in low performers.
Collapse
|
53
|
Loprinzi PD, Harper J, Ikuta T. The effects of aerobic exercise on corpus callosum integrity: systematic review. PHYSICIAN SPORTSMED 2020; 48:400-406. [PMID: 32315243 DOI: 10.1080/00913847.2020.1758545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objective: To evaluate the influence of exercise on the body and genu of the corpus callosum (CC), which is a critical brain structure involved in facilitating interhemispheric communication. Methods: Studies were identified using electronic databases, including PubMed, PsychInfo, Sports Discus and Google Scholar. The search terms, including their combinations, included exercise, physical activity, cardiorespiratory fitness, interhemispheric, and corpus callosum. To be eligible for inclusion in this review, studies had to be published in English; employ a cross-sectional, prospective or experimental design; include a measure of exercise as the independent variable; and the outcome variable had to include an integrity, volumetric or functional measure of the CC. Extraction parameters include study design, study population, exercise protocol, CC assessment, main findings regarding the relationship between exercise and the CC, and the evaluated or speculated mechanisms of this relationship. Results: 20 articles met the study inclusion criteria. Among these, 5 were conducted in animals and 15 were conducted in humans. Among the 5 animal studies, all provided suggestive evidence associating aerobic exercise with increased white matter integrity. Among the 15 human studies, 6 studies employed tract-based special statistics (TBSS), 4 utilized regions of interest (ROI) approach and 5 executed whole brain voxel wise analysis. Changes in the body was detected by 5 out of 6 TBSS studies and the genu by 3. Out of 4 ROI studies, three detected changes in the genu, but only one did in the body (out of 3 studies). One whole brain voxelwise study detected changes in the CC body of old adults and two found changes in the genu. Conclusion: This review provides evidence to suggest that aerobic exercise, and in turn, enhanced cardiorespiratory fitness, are associated with structural and functional outcomes increasing CC integrity.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Exercise & Memory Laboratory Department of Health, Exercise Science and Recreation Management, The University of Mississippi , University, MS, USA
| | - Jacob Harper
- Exercise & Memory Laboratory Department of Health, Exercise Science and Recreation Management, The University of Mississippi , University, MS, USA
| | - Toshikazu Ikuta
- Digital Neuroscience Laboratory Department of Communication Sciences and Disorders, The University of Mississippi , University, MS, USA
| |
Collapse
|
54
|
Kuo YL, Fisher BE. Relationship between interhemispheric inhibition and bimanual coordination: absence of instrument specificity on motor performance in professional musicians. Exp Brain Res 2020; 238:2921-2930. [PMID: 33057870 DOI: 10.1007/s00221-020-05951-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
Abstract
Functional reorganization in a musician's brain has long been considered strong evidence of experience-dependent neuroplasticity. Highly coordinated bimanual movements require abundant communication between bilateral hemispheres. Interhemispheric inhibition (IHI) is the communication between bilateral primary motor cortices, and there is beginning evidence to suggest that IHI is modified according to instrument type, possibly due to instrument-dependent motor training. However, it is unknown whether IHI adaptations are associated with non-musical bimanual tasks that resemble specific musical instruments. Therefore, we aimed to investigate the relationship between IHI and bimanual coordination in keyboard players compared with string players. Bimanual coordination was measured by a force tracking task, categorized as symmetric and asymmetric conditions. Ipsilateral silent period (iSP) was obtained using transcranial magnetic stimulation to index IHI in both left (L) and right (R) hemispheres. Canonical correlation analysis was performed to identify linear relationships between the IHI and bimanual coordination outcomes. There was no difference in bimanual coordination outcomes between keyboard and string players. Increased iSP from the L to R hemisphere was found in string players compared to keyboard players. There appeared to be different instrument-dependent relationships between IHI and bimanual coordination, regardless of symmetric or asymmetric task. Laboratory motor assessments resembling specific features of musical instruments (symmetric vs. asymmetric hand use) did not distinctly characterize bimanual motor skills between keyboard and string players. The relationships between IHI and bimanual coordination in these two instrument types were independent of task condition. Instrument-dependent neuroplasticity may be evident only within the context of musical instrument playing.
Collapse
Affiliation(s)
- Yi-Ling Kuo
- Department of Physical Therapy Education, SUNY Upstate Medical University, 750 East Adams Street, 3316 Academic Building, Syracuse, NY, 13210, USA. .,Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA.
| | - Beth E Fisher
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
55
|
Srinivasan N, Bishop J, Yekovich R, Rosenfield DB, Helekar SA. Differential Activation and Functional Plasticity of Multimodal Areas Associated with Acquired Musical Skill. Neuroscience 2020; 446:294-303. [PMID: 32818600 DOI: 10.1016/j.neuroscience.2020.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Training of a musical skill is known to produce a distributed neural representation of the ability to perceive music and perform musical tasks. In the present study we tested the hypothesis that the audiovisual perception of music involves a wider activation of multimodal sensory and sensorimotor structures in the brain, including those containing mirror neurons. We mapped the activation of brain areas during passive listening and viewing of the first 40 s of "Ode to Joy" being played on the piano by an expert pianist. To do this we performed brain functional magnetic resonance imaging during the presentation of 6 different stimulus contrasts pertaining to that musical melody in a pseudo-randomized order. Group data analysis in musically trained and untrained adults showed robust activation in broadly distributed occipitotemporal, parietal and frontal areas in trained subjects and much restricted activation in untrained subjects. A visual stimulus contrast focusing on the visual motion percept of moving fingers on piano keys revealed selective bilateral activation of a locus corresponding to the V5/MT area, which was significantly more pronounced in trained subjects and showed partial linear dependence on the duration of training on the left side. Quantitative analysis of individual brain volumes confirmed a significantly greater and wider spread of activation in trained compared to untrained subjects. These findings support the view that audiovisual perception of music and musical gestures in trained musicians involves an expanded and widely distributed neural representation formed due to experience-dependent plasticity.
Collapse
Affiliation(s)
- N Srinivasan
- Speech and Language Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX, United States
| | - J Bishop
- Speech and Language Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX, United States
| | - R Yekovich
- Shepherd School of Music, Rice University, Houston, TX, United States
| | - D B Rosenfield
- Speech and Language Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX, United States; Shepherd School of Music, Rice University, Houston, TX, United States
| | - S A Helekar
- Speech and Language Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston, TX, United States.
| |
Collapse
|
56
|
Palomar-García MÁ, Hernández M, Olcina G, Adrián-Ventura J, Costumero V, Miró-Padilla A, Villar-Rodríguez E, Ávila C. Auditory and frontal anatomic correlates of pitch discrimination in musicians, non-musicians, and children without musical training. Brain Struct Funct 2020; 225:2735-2744. [PMID: 33029708 DOI: 10.1007/s00429-020-02151-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/23/2020] [Indexed: 11/29/2022]
Abstract
Individual differences in pitch discrimination have been associated with the volume of both the bilateral Heschl's gyrus and the right inferior frontal gyrus (IFG). However, most of these studies used samples composed of individuals with different amounts of musical training. Here, we investigated the relationship between pitch discrimination and individual differences in the gray matter (GM) volume of these brain structures in 32 adult musicians, 28 adult non-musicians, and 32 children without musical training. The results showed that (i) the individuals without musical training (whether children or adults) who were better at pitch discrimination had greater volume of auditory regions, whereas (ii) musicians with better pitch discrimination had greater volume of the IFG. These results suggest that the relationship between pitch discrimination and the volume of auditory regions is innately established early in life, and that musical training modulates the volume of the IFG, probably improving audio-motor connectivity. This is the first study to detect a relationship between pitch discrimination ability and GM volume before beginning any musical training in children and adults.
Collapse
Affiliation(s)
- María-Ángeles Palomar-García
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Avda. Sos Baynat, s/n., 12071, Castellón de la Plana, Spain.
| | - Mireia Hernández
- Cognition and Brain Plasticity Group, Department of Cognition, Development and Educational Psychology, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Gustau Olcina
- Neuropsychology and Functional Neuroimaging Group, Department of Education, University Jaume I, 12071, Castellón, Spain
| | - Jesús Adrián-Ventura
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Avda. Sos Baynat, s/n., 12071, Castellón de la Plana, Spain
| | - Víctor Costumero
- Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain
| | - Anna Miró-Padilla
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Avda. Sos Baynat, s/n., 12071, Castellón de la Plana, Spain
| | - Esteban Villar-Rodríguez
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Avda. Sos Baynat, s/n., 12071, Castellón de la Plana, Spain
| | - César Ávila
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Avda. Sos Baynat, s/n., 12071, Castellón de la Plana, Spain
| |
Collapse
|
57
|
De León Reyes NS, Bragg-Gonzalo L, Nieto M. Development and plasticity of the corpus callosum. Development 2020; 147:147/18/dev189738. [PMID: 32988974 DOI: 10.1242/dev.189738] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The corpus callosum (CC) connects the cerebral hemispheres and is the major mammalian commissural tract. It facilitates bilateral sensory integration and higher cognitive functions, and is often affected in neurodevelopmental diseases. Here, we review the mechanisms that contribute to the development of CC circuits in animal models and humans. These species comparisons reveal several commonalities. First, there is an early period of massive axonal projection. Second, there is a postnatal temporal window, varying between species, in which early callosal projections are selectively refined. Third, sensory-derived activity influences axonal refinement. We also discuss how defects in CC formation can lead to mild or severe CC congenital malformations.
Collapse
Affiliation(s)
- Noelia S De León Reyes
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CNB-CSIC) Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Lorena Bragg-Gonzalo
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CNB-CSIC) Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Marta Nieto
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CNB-CSIC) Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
58
|
Bartha-Doering L, Kollndorfer K, Schwartz E, Fischmeister FPS, Alexopoulos J, Langs G, Prayer D, Kasprian G, Seidl R. The role of the corpus callosum in language network connectivity in children. Dev Sci 2020; 24:e13031. [PMID: 32790079 PMCID: PMC7988581 DOI: 10.1111/desc.13031] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 05/15/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022]
Abstract
The specific role of the corpus callosum (CC) in language network organization remains unclear, two contrasting models have been proposed: inhibition of homotopic areas allowing for independent functioning of the hemispheres versus integration of information from both hemispheres. This study aimed to add to this discussion with the first investigation of language network connectivity in combination with CC volume measures. In 38 healthy children aged 6–12, we performed task‐based functional magnetic resonance imaging to measure language network connectivity, used structural magnetic resonance imaging to quantify CC subsection volumes, and administered various language tests to examine language abilities. We found an increase in left intrahemispheric and bilateral language network connectivity and a decrease in right intrahemispheric connectivity associated with larger volumes of the posterior, mid‐posterior, and central subsections of the CC. Consistent with that, larger volumes of the posterior parts of the CC were significantly associated with better verbal fluency and vocabulary, the anterior CC volume was positively correlated with verbal span. Thus, children with larger volumes of CC subsections showed increased interhemispheric language network connectivity and were better in different language domains. This study presents the first evidence that the CC is directly linked to language network connectivity and underlines the excitatory role of the CC in the integration of information from both hemispheres.
Collapse
Affiliation(s)
- Lisa Bartha-Doering
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Kathrin Kollndorfer
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ernst Schwartz
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Johanna Alexopoulos
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.,Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
59
|
Zendel BR, Alexander EJ. Autodidacticism and Music: Do Self-Taught Musicians Exhibit the Same Auditory Processing Advantages as Formally Trained Musicians? Front Neurosci 2020; 14:752. [PMID: 32792899 PMCID: PMC7385409 DOI: 10.3389/fnins.2020.00752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/26/2020] [Indexed: 01/09/2023] Open
Abstract
Multiple studies have demonstrated that musicians have enhanced auditory processing abilities compared to non-musicians. In these studies, musicians are usually defined as having received some sort of formal music training. One issue with this definition is that there are many musicians who are self-taught. The goal of the current study was to determine if self-taught musicians exhibit different auditory enhancements as their formally trained counterparts. Three groups of participants were recruited: formally trained musicians, who received formal music training through the conservatory or private lessons; self-taught musicians, who learned to play music through informal methods, such as with books, videos, or by ear; non-musicians, who had little or no music experience. Auditory processing abilities were assessed using a speech-in-noise task, a passive pitch oddball task done while recording electrical brain activity, and a melodic tonal violation task, done both actively and passively while recording electrical brain activity. For the melodic tonal violation task, formally trained musicians were better at detecting a tonal violation compared to self-taught musicians, who were in turn better than non-musicians. The P600 evoked by a tonal violation was enhanced in formally trained musicians compared to non-musicians. The P600 evoked by an out-of-key note did not differ between formally trained and self-taught musicians, while the P600 evoked by an out-of-tune note was smaller in self-taught musicians compared to formally trained musicians. No differences were observed between the groups for the other tasks. This pattern of results suggests that music training format impacts auditory processing abilities in musical tasks; however, it is possible that these differences arose due to pre-existing factors and not due to the training itself.
Collapse
Affiliation(s)
- Benjamin Rich Zendel
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.,Aging Research Centre - Newfoundland and Labrador, Grenfell Campus, Memorial University, Corner Brook, NL, Canada
| | - Emily J Alexander
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.,Program in Psychology, Grenfell Campus, Memorial University, Corner Brook, NL, Canada
| |
Collapse
|
60
|
Sutcliffe R, Du K, Ruffman T. Music Making and Neuropsychological Aging: A Review. Neurosci Biobehav Rev 2020; 113:479-491. [PMID: 32302600 DOI: 10.1016/j.neubiorev.2020.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
Aging is associated with a decline in social understanding and general cognition. Both are integral to wellbeing and rely on similar brain regions. Thus, as the population ages, there is a growing need for knowledge on the types of activities that maintain brain health in older adulthood. Active engagement in music making might be one such activity because it places a demand on brain networks tapping into multisensory integration, learning, reward, and cognition. It has been hypothesized that this demand may promote plasticity in the frontal and temporal lobes by taxing cognitive abilities and, hence, increase resistance to age-related neurodegeneration. We examine research relevant to this hypothesis and note that there is a lack of intervention studies with a well-matched control condition and random assignment. Thus, we discuss potential causal mechanisms underlying training-related neuropsychological changes, and provide suggestions for future research. It is argued that although music training might be a valuable tool for supporting healthy neuropsychological aging and mental wellbeing, well-controlled intervention studies are necessary to provide clear evidence.
Collapse
Affiliation(s)
- Ryan Sutcliffe
- Department of Psychology, University of Otago, New Zealand.
| | - Kangning Du
- Department of Psychology, University of Otago, New Zealand
| | - Ted Ruffman
- Department of Psychology, University of Otago, New Zealand.
| |
Collapse
|
61
|
van Vugt FT, Altenmüller E. On the One Hand or on the Other: Trade-Off in Timing Precision in Bimanual Musical Scale Playing. Adv Cogn Psychol 2020; 15:216-227. [PMID: 32190132 PMCID: PMC6737297 DOI: 10.5709/acp-0271-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Music performance requires simultaneously producing challenging movement sequences with the left and right hand. A key question in bimanual motor control research is whether bimanual movements are produced by combining unimanual controllers or through a dedicated bimanual controller. Here, 34 expert pianists performed musical scale playing movements with the left or right hand alone and with both hands simultaneously. We found that for the left hand, scale playing was more variable when playing with both hands simultaneously rather than with one hand at a time, but for the right hand, performance was identical. This indicates that when task constraints are high, musicians prioritize timing accuracy in the right hand at the cost of detriment of performance in the left hand. We also found that individual differences in timing substantially overlap between the unimanual and bimanual condition, suggesting control policies are similar but not identical when playing with two hands or one. In the bimanual condition, the left-hand keystrokes tended to occur before right-hand ones, and more so when the hands were further apart. Performance of the two hands was furthermore coupled so that they tended to be early and late together, especially in the beginning and end of each scale. This suggests that experts are able to achieve tightly coupled timing of scale playing movements between the hands. Taken together, these findings show evidence for partially overlapping and partially separate controllers for bimanual and unimanual movements in piano playing.
Collapse
Affiliation(s)
- Floris Tijmen van Vugt
- Department of Psychology, McGill University, Montreal, Quebec, Canada1
- Haskins Laboratories Inc., New Haven, Connecticut, United States2
| | - Eckart Altenmüller
- Hannover University of Music Drama and Media, Institute of Music Physiology, Hannover, Niedersachsen, Germany3
| |
Collapse
|
62
|
Abstract
La memoria es una función cognitiva que permite al ser humano adquirir, almacenar y recuperar información. Dentro de la literatura se identifican diversos factores que tienen la capacidad de modificar la capacidad mnémica, así como también afectar las diferentes fases de formación de la memoria. En este sentido el objetivo del presente artículo de revisión sistemática estuvo orientado a presentar los antecedentes en cuanto al efecto de la música, como entrenamiento musical prolongado, así como intervención focal, sobre esta función cognitiva. Se seleccionaron 39 artículos de investigación empírica extraídos de diversas bases de datos. A través de la evidencia presentada se concluye que las propuestas musicales representan una potencial herramienta para abordar no sólo el estudio de la memoria, sino también para la estimulación y rehabilitación de la misma.
Collapse
|
63
|
Carioti D, Danelli L, Guasti MT, Gallucci M, Perugini M, Steca P, Stucchi NA, Maffezzoli A, Majno M, Berlingeri M, Paulesu E. Music Education at School: Too Little and Too Late? Evidence From a Longitudinal Study on Music Training in Preadolescents. Front Psychol 2019; 10:2704. [PMID: 31920782 PMCID: PMC6930811 DOI: 10.3389/fpsyg.2019.02704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 11/15/2019] [Indexed: 12/02/2022] Open
Abstract
It is widely believed that intensive music training can boost cognitive and visuo-motor skills. However, this evidence is primarily based on retrospective studies; this makes it difficult to determine whether a cognitive advantage is caused by the intensive music training, or it is instead a factor influencing the choice of starting a music curriculum. To address these issues in a highly ecological setting, we tested longitudinally 128 students of a Middle School in Milan, at the beginning of the first class and, 1 year later, at the beginning of the second class. 72 students belonged to a Music curriculum (30 with previous music experience and 42 without) and 56 belonged to a Standard curriculum (44 with prior music experience and 12 without). Using a Principal Component Analysis, all the cognitive measures were grouped in four high-order factors, reflecting (a) General Cognitive Abilities, (b) Speed of Linguistic Elaboration, (c) Accuracy in Reading and Memory tests, and (d) Visuospatial and numerical skills. The longitudinal comparison of the four groups of students revealed that students from the Music curriculum had better performance in tests tackling General Cognitive Abilities, Visuospatial skills, and Accuracy in Reading and Memory tests. However, there were no significant curriculum-by-time interactions. Finally, the decision to have a musical experience before entering middle school was more likely to occur when the cultural background of the families was a high one. We conclude that a combination of family-related variables, early music experience, and pre-existent cognitive make-up is a likely explanation for the decision to enter a music curriculum at middle school.
Collapse
Affiliation(s)
- Desiré Carioti
- Psychology Department, University of Milano-Bicocca, Milan, Italy
- Department of Humanistic Studies, University of Urbino Carlo Bo, Urbino, Italy
| | - Laura Danelli
- Psychology Department, University of Milano-Bicocca, Milan, Italy
| | - Maria T. Guasti
- Psychology Department, University of Milano-Bicocca, Milan, Italy
| | | | - Marco Perugini
- Psychology Department, University of Milano-Bicocca, Milan, Italy
| | - Patrizia Steca
- Psychology Department, University of Milano-Bicocca, Milan, Italy
| | | | | | - Maria Majno
- SONG onlus – Sistema in Lombardia, Milan, Italy
| | - Manuela Berlingeri
- Department of Humanistic Studies, University of Urbino Carlo Bo, Urbino, Italy
- Center of Developmental Neuropsychology, ASUR Marche, Pesaro, Italy
- NeuroMi, Milan Center for Neuroscience, Milan, Italy
| | - Eraldo Paulesu
- Psychology Department, University of Milano-Bicocca, Milan, Italy
- I.R.C.C.S. Galeazzi, Orthopedic Institute Milano, Milan, Italy
| |
Collapse
|
64
|
Bugos JA. The Effects of Bimanual Coordination in Music Interventions on Executive Functions in Aging Adults. Front Integr Neurosci 2019; 13:68. [PMID: 31866838 PMCID: PMC6906951 DOI: 10.3389/fnint.2019.00068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/05/2019] [Indexed: 11/13/2022] Open
Abstract
Music training programs have been shown to enhance executive functions in aging adults; however, little is known regarding the extent to which different types of bimanual coordination (i.e., fine and gross motor) in music instruction contribute to these outcomes. The aim of this study was to examine the effects of bimanual coordination in music interventions on cognitive performance in healthy older adults (60-80 years). Participants (N = 135) completed motor measures and battery of standardized cognitive measures, before and after a 16-week music training program with a 3 h practice requirement. All participants were matched by age, education, and estimate of intelligence to one of three training programs: piano training (fine motor); percussion instruction (gross motor), and music listening instruction (MLI) (no motor control condition). Results of a Repeated Measures ANOVA revealed significant enhancements in bimanual synchronization and visual scanning/working memory abilities for fine and gross motor training groups as compared to MLI. Pairwise comparisons revealed that piano training significantly improved motor synchronization skills as compared to percussion instruction or music listening. Results suggest that active music performance may benefit working memory, the extent of these benefits may depend upon coordination demands.
Collapse
Affiliation(s)
- Jennifer A. Bugos
- School of Music, Center for Music Education Research, University of South Florida, Tampa, Tampa, FL, United States
| |
Collapse
|
65
|
Nierhaus T, Vidaurre C, Sannelli C, Mueller K, Villringer A. Immediate brain plasticity after one hour of brain–computer interface (BCI). J Physiol 2019; 599:2435-2451. [DOI: 10.1113/jp278118] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Till Nierhaus
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology Freie Universität Berlin Berlin Germany
| | - Carmen Vidaurre
- Machine Learning Group EE & Computer Science Faculty TU‐Berlin Germany
- Department Statistics, Informatics and Mathematics Public University of Navarra Spain
| | - Claudia Sannelli
- Machine Learning Group EE & Computer Science Faculty TU‐Berlin Germany
| | - Klaus‐Robert Mueller
- Machine Learning Group EE & Computer Science Faculty TU‐Berlin Germany
- Department of Brain and Cognitive Engineering Korea University Anam‐dong Seongbuk‐gu Seoul 02841 Korea
- Max Planck Institute for Informatics Saarbrücken Germany
| | - Arno Villringer
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- MindBrainBody Institute at Berlin School of Mind and Brain Charité Universitätsmedizin Berlin and Humboldt‐University Berlin Germany
| |
Collapse
|
66
|
Giacosa C, Karpati FJ, Foster NEV, Hyde KL, Penhune VB. The descending motor tracts are different in dancers and musicians. Brain Struct Funct 2019; 224:3229-3246. [PMID: 31620887 DOI: 10.1007/s00429-019-01963-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 10/01/2019] [Indexed: 01/03/2023]
Abstract
Long-term motor training, such as dance or gymnastics, has been associated with increased diffusivity and reduced fiber coherence in regions including the corticospinal tract. Comparisons between different types of motor experts suggest that experience might result in specific structural changes related to the trained effectors (e.g., hands or feet). However, previous studies have not segregated the descending motor pathways from different body-part representations in motor cortex (M1). Further, most previous diffusion tensor imaging studies used whole-brain analyses based on a single tensor, which provide poor information about regions where multiple white matter (WM) tracts cross. Here, we used multi-tensor probabilistic tractography to investigate the specific components of the descending motor pathways in well-matched groups of dancers, musicians and controls. To this aim, we developed a procedure to identify the WM regions below the motor representations of the head, hand, trunk and leg that served as seeds for tractography. Dancers showed increased radial diffusivity (RD) in comparison with musicians, in descending motor pathways from all the regions, particularly in the right hemisphere, whereas musicians had increased fractional anisotropy (FA) in the hand and the trunk/arm motor tracts. Further, dancers showed larger volumes compared to both other groups. Finally, we found negative correlations between RD and FA with the age of start of dance or music training, respectively, and between RD and performance on a melody task, and positive correlations between RD and volume with performance on a whole-body dance task. These findings suggest that different types of training might have different effects on brain structure, likely because dancers must coordinate movements of the entire body, whereas musicians focus on fewer effectors.
Collapse
Affiliation(s)
- Chiara Giacosa
- International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, CP 6128, Succ. Centre Ville, Montreal, QC, H3C 3J7, Canada. .,Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada.
| | - Falisha J Karpati
- International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, CP 6128, Succ. Centre Ville, Montreal, QC, H3C 3J7, Canada.,Faculty of Medicine, McGill University, 3655 Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Nicholas E V Foster
- International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, CP 6128, Succ. Centre Ville, Montreal, QC, H3C 3J7, Canada.,Department of Psychology, University of Montreal, Pavillon Marie-Victorin, 90 avenue Vincent d'Indy, Montreal, Quebec, H2V 2S9, Canada
| | - Krista L Hyde
- International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, CP 6128, Succ. Centre Ville, Montreal, QC, H3C 3J7, Canada.,Faculty of Medicine, McGill University, 3655 Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada.,Department of Psychology, University of Montreal, Pavillon Marie-Victorin, 90 avenue Vincent d'Indy, Montreal, Quebec, H2V 2S9, Canada
| | - Virginia B Penhune
- International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, CP 6128, Succ. Centre Ville, Montreal, QC, H3C 3J7, Canada.,Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
67
|
Shen Y, Lin Y, Liu S, Fang L, Liu G. Sustained Effect of Music Training on the Enhancement of Executive Function in Preschool Children. Front Psychol 2019; 10:1910. [PMID: 31507486 PMCID: PMC6714059 DOI: 10.3389/fpsyg.2019.01910] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/05/2019] [Indexed: 11/30/2022] Open
Abstract
Musical training is an enrichment activity involving multiple senses, including auditory, visual, somatosensorial, attention, memory, and executive function (EF), all of which are related to cognition. This study examined whether musical training enhances EF in preschool children who had not undergone previous systematic music learning. This study also explored the after-effects 12 weeks after cessation of musical training. Participants were 61 preschool children from a university-affiliated kindergarten in North China. The experimental group underwent 12 weeks of integrated musical training (i.e., music theory, singing, dancing, and role-playing), while the control group performed typical daily classroom activities. The three components (inhibitory control, working memory, cognitive flexibility) of executive functions were evaluated using the Day/Night Stroop, Dimensional Change Card Sort, Dot Matrix Test, and Backward Digit Span Task. In Experiment 1, EFs were tested twice-before (T1) and after (T2) the music training. The results showed that children's EFs could be promoted by musical training. In addition, EFs were tested again 12 weeks later after the end of the intervention (T3) in Experiment 2. We discovered that integrated musical training demonstrated a sustained promotion effect.
Collapse
Affiliation(s)
- Yue Shen
- School of Psychology, Liaoning Normal University, Dalian, China
- Liaoning Collaborative Innovation Center of Children and Adolescents Healthy Personality Assessment and Cultivation, Dalian, China
| | - Yishan Lin
- School of Psychology, Liaoning Normal University, Dalian, China
| | - Songhan Liu
- School of Psychology, Liaoning Normal University, Dalian, China
- Liaoning Collaborative Innovation Center of Children and Adolescents Healthy Personality Assessment and Cultivation, Dalian, China
| | - Lele Fang
- School of Psychology, Liaoning Normal University, Dalian, China
- Liaoning Collaborative Innovation Center of Children and Adolescents Healthy Personality Assessment and Cultivation, Dalian, China
| | - Ge Liu
- The Forth Kindergarten of Shahekou, Dalian, China
| |
Collapse
|
68
|
van Alphen R, Stams GJJM, Hakvoort L. Musical Attention Control Training for Psychotic Psychiatric Patients: An Experimental Pilot Study in a Forensic Psychiatric Hospital. Front Neurosci 2019; 13:570. [PMID: 31231183 PMCID: PMC6566130 DOI: 10.3389/fnins.2019.00570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/20/2019] [Indexed: 01/04/2023] Open
Abstract
Poor attention skills constitute a major problem for psychiatric patients with psychotic symptoms, and increase their chances of treatment drop-out. This study investigated possible benefits of musical attention control training (MACT). To examine the effect of MACT on attention skills of psychiatric patients with psychotic features a randomized controlled trial (RCT) was conducted in a forensic psychiatric clinic. Participants (N = 35, age M = 34.7, 69% male) were pair matched (on age, gender, and educational level), and randomly assigned to an experimental and control group. The experimental group received a 30-min MACT training once a week over 6 weeks' time, whereas the controls received treatment as usual without attention training. Single blind pre- and post-neuropsychological assessments were performed to measure different attention levels. The experimental MACT group outperformed the control group in selective, sustained and alternating attention. In addition, overall attendance of MACT participants was high (87.1%). This result suggests that in this experimental pilot study MACT was effective for attention skills of psychiatric patients with psychotic features. To obtain larger intervention effects additional research is necessary, with a larger sample and a more specific MACT intervention.
Collapse
Affiliation(s)
- R. van Alphen
- Inforsa, Forensic Psychiatric Hospital, Amsterdam, Netherlands
| | - G. J. J. M. Stams
- Social and Behavioral Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - L. Hakvoort
- Department of Music Therapy, ArtEZ University of the Arts, Enschede, Netherlands
| |
Collapse
|
69
|
Anderson NE, Maurer JM, Nyalakanti P, Harenski KA, Harenski CL, Koenigs MR, Decety J, Kiehl KA. Affective and interpersonal psychopathic traits associated with reduced corpus callosum volume among male inmates - RETRACTED. Psychol Med 2019; 49:1401-1408. [PMID: 30311599 DOI: 10.1017/s0033291718002921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Psychopathy is a personality disorder associated with severe emotional and interpersonal consequences and persistent antisocial behavior. Neurobiological models of psychopathy emphasize impairments in emotional processing, attention, and integration of information across large-scale neural networks in the brain. One of the largest integrative hubs in the brain is the corpus callosum (CC) - a large white matter structure that connects the two cerebral hemispheres. METHOD The current study examines CC volume, measured via Freesurfer parcellation, in a large sample (n = 495) of incarcerated men who were assessed for psychopathic traits using the Hare Psychopathy Checklist-Revised (PCL-R). RESULTS Psychopathy was associated with reduced volume across all five sub-regions of the CC. These relationships were primarily driven by the affective/interpersonal elements of psychopathy (PCL-R Factor 1), as no significant associations were found between the CC and the lifestyle/antisocial traits of psychopathy. The observed effects were not attributable to differences in substance use severity, age, IQ, or total brain volume. CONCLUSIONS These findings align with suggestions that core psychopathic traits may be fostered by reduced integrative capacity across large-scale networks in the brain.
Collapse
Affiliation(s)
- Nathaniel E Anderson
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute,Albuquerque, NM,USA
| | - J Michael Maurer
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute,Albuquerque, NM,USA
| | - Prashanth Nyalakanti
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute,Albuquerque, NM,USA
| | - Keith A Harenski
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute,Albuquerque, NM,USA
| | - Carla L Harenski
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute,Albuquerque, NM,USA
| | | | | | - Kent A Kiehl
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute,Albuquerque, NM,USA
| |
Collapse
|
70
|
Loui P, Raine LB, Chaddock-Heyman L, Kramer AF, Hillman CH. Musical Instrument Practice Predicts White Matter Microstructure and Cognitive Abilities in Childhood. Front Psychol 2019; 10:1198. [PMID: 31178805 PMCID: PMC6543906 DOI: 10.3389/fpsyg.2019.01198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022] Open
Abstract
Musical training has been associated with advantages in cognitive measures of IQ and verbal ability, as well as neural measures including white matter microstructural properties in the corpus callosum (CC) and the superior longitudinal fasciculus (SLF). We hypothesized that children who have musical training will have different microstructural properties in the SLF and CC. One hundred children aged 7.9-9.9 years (mean age 8.7) were surveyed for their musical activities, completed neuropsychological testing for general cognitive abilities, and underwent diffusion tensor imaging (DTI) as part of a larger study. Children who play a musical instrument for more than 0.5 h per week (n = 34) had higher scores on verbal ability and intellectual ability (standardized scores from the Woodcock-Johnson Tests of Cognitive Abilities), as well as higher axial diffusivity (AD) in the left SLF than those who did not play a musical instrument (n = 66). Furthermore, the intensity of musical practice, quantified as the number of hours of music practice per week, was correlated with axial diffusivity (AD) in the left SLF. Results are not explained by age, sex, socio-economic status, or physical fitness of the participants. The results suggest that the relationship between musical practice and intellectual ability is related to the maturation of white matter pathways in the auditory-motor system. The findings suggest that musical training may be a means of improving cognitive and brain health during development.
Collapse
Affiliation(s)
- Psyche Loui
- Department of Music, Department of Psychology, Northeastern University, Boston, MA, United States
| | - Lauren B Raine
- Department of Music, Department of Psychology, Northeastern University, Boston, MA, United States
| | | | - Arthur F Kramer
- Department of Music, Department of Psychology, Northeastern University, Boston, MA, United States
| | - Charles H Hillman
- Department of Music, Department of Psychology, Northeastern University, Boston, MA, United States
| |
Collapse
|
71
|
Jordan C. When I'm 64: A review of instrumental music-making and brain health in later life. Exp Gerontol 2019; 123:17-23. [PMID: 31121221 DOI: 10.1016/j.exger.2019.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/02/2023]
Abstract
According to the World Health Organization, global average life expectancy increased by 5.5 years between 2000 and 2016. This is the greatest increase in life expectancy since the 1960s. Identifying lifestyle choices which can be implemented in later life to support brain health are imperative given the increasing prevalence of age-related neurodegenerative diseases, such as dementia. Music-making, specifically instrumental music-making, has been suggested to support cognition function and emotional wellbeing in later life. This review will distinguish instrumental music-making from other musical activities (i.e. singing or listening to music), specifically focusing on its influence on cognitive function in later life and its contribution to the emotional wellbeing and quality of life. This review will also explore the viability of instrumental music-making as an intervention to support brain health in later life.
Collapse
Affiliation(s)
- Catherine Jordan
- Global Brain Health Institute, Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
72
|
|
73
|
Kliuchko M, Brattico E, Gold BP, Tervaniemi M, Bogert B, Toiviainen P, Vuust P. Fractionating auditory priors: A neural dissociation between active and passive experience of musical sounds. PLoS One 2019; 14:e0216499. [PMID: 31051008 PMCID: PMC6499420 DOI: 10.1371/journal.pone.0216499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/22/2019] [Indexed: 12/20/2022] Open
Abstract
Learning, attention and action play a crucial role in determining how stimulus predictions are formed, stored, and updated. Years-long experience with the specific repertoires of sounds of one or more musical styles is what characterizes professional musicians. Here we contrasted active experience with sounds, namely long-lasting motor practice, theoretical study and engaged listening to the acoustic features characterizing a musical style of choice in professional musicians with mainly passive experience of sounds in laypersons. We hypothesized that long-term active experience of sounds would influence the neural predictions of the stylistic features in professional musicians in a distinct way from the mainly passive experience of sounds in laypersons. Participants with different musical backgrounds were recruited: professional jazz and classical musicians, amateur musicians and non-musicians. They were presented with a musical multi-feature paradigm eliciting mismatch negativity (MMN), a prediction error signal to changes in six sound features for only 12 minutes of electroencephalography (EEG) and magnetoencephalography (MEG) recordings. We observed a generally larger MMN amplitudes-indicative of stronger automatic neural signals to violated priors-in jazz musicians (but not in classical musicians) as compared to non-musicians and amateurs. The specific MMN enhancements were found for spectral features (timbre, pitch, slide) and sound intensity. In participants who were not musicians, the higher preference for jazz music was associated with reduced MMN to pitch slide (a feature common in jazz music style). Our results suggest that long-lasting, active experience of a musical style is associated with accurate neural priors for the sound features of the preferred style, in contrast to passive listening.
Collapse
Affiliation(s)
- Marina Kliuchko
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg (RAMA), Aarhus, Denmark
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elvira Brattico
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg (RAMA), Aarhus, Denmark
| | - Benjamin P. Gold
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Mari Tervaniemi
- Cicero Learning, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Brigitte Bogert
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Petri Toiviainen
- Department of Music, Art and Culture Studies, University of Jyväskylä, Jyväskylä, Finland
| | - Peter Vuust
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg (RAMA), Aarhus, Denmark
| |
Collapse
|
74
|
Wenhart T, Bethlehem RAI, Baron-Cohen S, Altenmüller E. Autistic traits, resting-state connectivity, and absolute pitch in professional musicians: shared and distinct neural features. Mol Autism 2019; 10:20. [PMID: 31073395 PMCID: PMC6498518 DOI: 10.1186/s13229-019-0272-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
Background Recent studies indicate increased autistic traits in musicians with absolute pitch and a higher proportion of absolute pitch in people with autism. Theoretical accounts connect both of these with shared neural principles of local hyper- and global hypoconnectivity, enhanced perceptual functioning, and a detail-focused cognitive style. This is the first study to investigate absolute pitch proficiency, autistic traits, and brain correlates in the same study. Sample and methods Graph theoretical analysis was conducted on resting-state (eyes closed and eyes open) EEG connectivity (wPLI, weighted phase lag index) matrices obtained from 31 absolute pitch (AP) and 33 relative pitch (RP) professional musicians. Small-worldness, global clustering coefficient, and average path length were related to autistic traits, passive (tone identification) and active (pitch adjustment) absolute pitch proficiency, and onset of musical training using Welch two-sample tests, correlations, and general linear models. Results Analyses revealed increased path length (delta 2–4 Hz), reduced clustering (beta 13–18 Hz), reduced small-worldness (gamma 30–60 Hz), and increased autistic traits for AP compared to RP. Only clustering values (beta 13–18 Hz) were predicted by both AP proficiency and autistic traits. Post hoc single connection permutation tests among raw wPLI matrices in the beta band (13–18 Hz) revealed widely reduced interhemispheric connectivity between bilateral auditory-related electrode positions along with higher connectivity between F7–F8 and F8–P9 for AP. Pitch-naming ability and pitch adjustment ability were predicted by path length, clustering, autistic traits, and onset of musical training (for pitch adjustment) explaining 44% and 38% of variance, respectively. Conclusions Results show both shared and distinct neural features between AP and autistic traits. Differences in the beta range were associated with higher autistic traits in the same population. In general, AP musicians exhibit a widely underconnected brain with reduced functional integration and reduced small-world property during resting state. This might be partly related to autism-specific brain connectivity, while differences in path length and small-worldness reflect other ability-specific influences. This is further evidenced for different pathways in the acquisition and development of absolute pitch, likely influenced by both genetic and environmental factors and their interaction.
Collapse
Affiliation(s)
- T Wenhart
- Institute of Music Physiology and Musicians' Medicine, University for Music, Drama and Media, Hannover, Germany.,2Center for Systems Neuroscience, Hannover, Germany
| | - R A I Bethlehem
- 3Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - S Baron-Cohen
- 3Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - E Altenmüller
- Institute of Music Physiology and Musicians' Medicine, University for Music, Drama and Media, Hannover, Germany.,2Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
75
|
The Impact of Equine Therapy and an Audio-Visual Approach Emphasizing Rhythm and Beat Perception in Children with Developmental Coordination Disorder. J Altern Complement Med 2019; 25:535-541. [DOI: 10.1089/acm.2017.0242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
76
|
Ireland K, Iyer TA, Penhune VB. Contributions of age of start, cognitive abilities and practice to musical task performance in childhood. PLoS One 2019; 14:e0216119. [PMID: 31022272 PMCID: PMC6483258 DOI: 10.1371/journal.pone.0216119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/14/2019] [Indexed: 02/02/2023] Open
Abstract
Studies with adult musicians show that beginning lessons before age seven is associated with better performance on musical tasks and enhancement in auditory and motor brain regions. It is hypothesized that early training interacts with periods of heightened neural development to promote greater plasticity and better learning and performance later in life. However, we do not know whether such effects can be observed in childhood. Moreover, we do not know the degree to which such effects are related to training, or whether early training has different effects on particular musical skills depending on their cognitive, perceptual or motor requirements. To address these questions, we compared groups of child musicians who had started lessons earlier or later on age-normed tests of rhythm synchronization and melody discrimination. We also matched for age, years of experience, working memory and global cognitive ability. Results showed that children who started early performed better on simple melody discrimination and that scores on this task were predicted by both age of start (AoS) and cognitive ability. There was no effect of AoS for the more complex rhythm or transposed melody tasks, but these scores were significantly predicted by working memory ability, and for transposed melodies, by hours of weekly practice. These findings provide the first evidence that earlier AoS for music training in childhood results in enhancement of specific musical skills. Integrating these results with those for adult musicians, we hypothesize that early training has an immediate impact on simple melody discrimination skills that develop early, while more complex abilities, like synchronization and transposition require both further maturation and additional training.
Collapse
Affiliation(s)
- Kierla Ireland
- Laboratory for Motor Learning and Neural Plasticity, Concordia University, Montreal, Quebec, Canada
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Quebec, Canada
| | - Thanya A. Iyer
- Laboratory for Motor Learning and Neural Plasticity, Concordia University, Montreal, Quebec, Canada
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Quebec, Canada
| | - Virginia B. Penhune
- Laboratory for Motor Learning and Neural Plasticity, Concordia University, Montreal, Quebec, Canada
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Quebec, Canada
| |
Collapse
|
77
|
Interhemispheric functional connectivity and its relationships with creative problem solving. Neuroreport 2019; 30:415-420. [PMID: 30789389 DOI: 10.1097/wnr.0000000000001217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Creative problem solving (CPS) is a particular mental process when people solve problems. Findings from previous research, which used functional MRI, showed that CPS could involve specific neural mechanisms. However, few studies have directly explored the changes of interhemispheric resting-state functional connectivity during CPS. Recently, a validated voxel-mirrored homotopic connectivity (VMHC) method has been widely used to calculate the interhemispheric resting-state functional connectivity. In this study, we recruited 60 participants and used a revised chunk decomposing task to estimate participants' individual differences during CPS. Then, the VMHC method was used to explore neural correlates underlying individual differences of CPS. Results showed that altered VMHC in the bilateral middle frontal gyrus/precentral gyrus, bilateral hippocampus/insula/amygdala, and bilateral fusiform gyrus/cerebellum/middle occipital gyrus was related to individual differences of CPS. These brain regions reflect the information integration of both hemispheres might be critical for CPS. Therefore, our results may shed light on the neural correlates of CPS.
Collapse
|
78
|
Wired for musical rhythm? A diffusion MRI-based study of individual differences in music perception. Brain Struct Funct 2019; 224:1711-1722. [DOI: 10.1007/s00429-019-01868-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
|
79
|
Lotze M, Ladda AM, Stephan KM. Cerebral plasticity as the basis for upper limb recovery following brain damage. Neurosci Biobehav Rev 2019; 99:49-58. [DOI: 10.1016/j.neubiorev.2019.01.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/05/2023]
|
80
|
Martins M, Neves L, Rodrigues P, Vasconcelos O, Castro SL. Orff-Based Music Training Enhances Children's Manual Dexterity and Bimanual Coordination. Front Psychol 2018; 9:2616. [PMID: 30622496 PMCID: PMC6308163 DOI: 10.3389/fpsyg.2018.02616] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/05/2018] [Indexed: 11/13/2022] Open
Abstract
How music training and expertise influence non-musical abilities is a widely researched topic. Most studies focus on the differences between adult professional musicians and non-musicians, or examine the effects of intensive instrumental training in childhood. However, the impact of music programs developed in regular school contexts for children from low-income communities is poorly explored. We conducted a longitudinal training study in such communities to examine if collective (Orff-based) music training enhances fine motor abilities, when compared to a homologous training program in sports (basketball), and to no specific training. The training programs in music and sports had the same duration, 24 weeks, and were homologous in structure. A pre-test, training, post-test and follow-up design was adopted. Children attending the 3rd grade (n = 74, 40 girls; mean age 8.31 years) were pseudorandomly divided into three groups, music, sports and control that were matched on demographic and intellectual characteristics. Fine motor abilities were assessed with the Purdue pegboard test (eye-hand coordination and motor speed, both subsumed under manual dexterity, and bimanual coordination) and with the Grooved pegboard (manipulative dexterity) test. All groups improved in manipulative dexterity that was not affected by type of training. On bimanual coordination and manual dexterity, however, a robust and stable advantage of music training emerged. At the end of training (post-test), children from the music group significantly outperformed children from the sports and control groups, an advantage that persisted at follow-up 4 months after training at the start of the following school year. Also, at follow-up none of the children from the music group were performing below the 20th percentile in the Purdue pegboard subtests and more than half were performing at the high end level (>80th percentile). Children from the sports group also improved significantly from pre- to post-test but their performance was not significantly different from that of the control group. These results show that an affordable, collective-based music practice impacts positively on fine-motor abilities, a finding that is relevant for a better understanding of the impact of music in childhood development, and that may have implications for education at the primary grade.
Collapse
Affiliation(s)
- Marta Martins
- Center for Psychology at University of Porto, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Leonor Neves
- Center for Psychology at University of Porto, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Paula Rodrigues
- Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, Porto, Portugal
- Research in Education and Community Intervention, Piaget Institute, Almada, Portugal
| | - Olga Vasconcelos
- Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, Porto, Portugal
| | - São Luís Castro
- Center for Psychology at University of Porto, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
81
|
Román-Caballero R, Arnedo M, Triviño M, Lupiáñez J. Musical practice as an enhancer of cognitive function in healthy aging - A systematic review and meta-analysis. PLoS One 2018; 13:e0207957. [PMID: 30481227 PMCID: PMC6258526 DOI: 10.1371/journal.pone.0207957] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/08/2018] [Indexed: 11/19/2022] Open
Abstract
Aging is accompanied by cognitive decline, although recent research indicates that the rate of decline depends on multiple lifestyle factors. One of such factors is musical practice, an activity that involves several sensory and motor systems and a wide range of high-level cognitive processes. This paper describes the first systematic review and meta-analysis, to our knowledge, of the impact of musical practice on healthy neurocognitive aging. The inclusion criteria for the review required that studies were empirical works in English or Spanish that they explored the effects of musical practice on older people; they included an assessment of cognitive functions and/or an assessment of brain status; and they included a sample of participants aged 59 years or older with no cognitive impairment or brain damage. This review led to the selection of 13 studies: 9 correlational studies involving older musicians and non-musicians and 4 experimental studies involving short-term musical training programs. The results of the meta-analysis showed cognitive and cerebral benefits of musical practice, both in domain-specific functions (auditory perception) and in other rather domain-general functions. Moreover, these benefits seem to protect cognitive domains that usually decline with aging and boost other domains that do not decline with aging. The origin of these benefits may reside, simultaneously, in the specific training of many of these cognitive functions during musical practice (specific training mechanism), in the improvement of compensatory cognitive processes (specific compensatory mechanism), and in the preservation of general functions with a global influence on others, such as perceptual capacity, processing speed, inhibition and attention (general compensatory mechanism). Therefore, musical practice seems to be a promising tool to reduce the impact of cognitive problems associated to aging.
Collapse
Affiliation(s)
- Rafael Román-Caballero
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
- * E-mail:
| | - Marisa Arnedo
- Department of Psychobiology, University of Granada, Granada, Spain
| | - Mónica Triviño
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
- San Rafael University Hospital, Granada, Spain
| | - Juan Lupiáñez
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
- Department of Experimental Psychology, University of Granada, Granada, Spain
| |
Collapse
|
82
|
Kawase S, Ogawa J, Obata S, Hirano T. An Investigation Into the Relationship Between Onset Age of Musical Lessons and Levels of Sociability in Childhood. Front Psychol 2018; 9:2244. [PMID: 30534096 PMCID: PMC6275300 DOI: 10.3389/fpsyg.2018.02244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/29/2018] [Indexed: 12/04/2022] Open
Abstract
Previous studies have suggested that musical training in childhood is beneficial for sociability. However, it remains unclear how age of onset of group music lessons is associated with the late sociability of children from a long-term perspective. This study investigated associations between group music lessons conducted at a music school and children's levels of sociability by focusing on the age of onset of the lessons. We conducted a survey of 276 children aged 4-5 years (M = 58.5 months) and 6-7 years (M = 82.7 months) who commenced music lessons at ages 1, 2, 4, and 6 years. We found that (1) the empathy scores of children aged 6-7 years who began lessons when 1-year-old were greater than those who began lessons when 4-years-old, (2) the communication scores of children aged 4-5 years who began lessons when 1-year-old were greater than those who began lessons when older than 1 year, and (3) the empathy and extraversion scores were high in those aged 6-7 years who began lessons in that age range. The results suggest that early onset of music lessons could positively influence children's sociability; in contrast, after about age 7 years, children who already had high sociability may be more inclined to select group music lessons. By focusing on the impact of regular group music lessons from a very young age on later levels of sociability, these results further elucidate the effects of musical lessons. In sum, participation in group music lessons 2-4 times per month can be effective social training for very young children and foster their later sociability.
Collapse
Affiliation(s)
- Satoshi Kawase
- Yamaha Music Foundation, Tokyo, Japan
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
| | | | - Satoshi Obata
- Graduate School of Information Systems, The University of Electro-Communications, Tokyo, Japan
| | - Takeshi Hirano
- College of Performing and Visual Arts, J. F. Oberlin University, Tokyo, Japan
| |
Collapse
|
83
|
Kilincer O, Ustun E, Akpinar S, Kaya EE. Motor Lateralization May Be Influenced by Long-Term Piano Playing Practice. Percept Mot Skills 2018; 126:25-39. [PMID: 30426867 DOI: 10.1177/0031512518807769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Motor lateralization is viewed as anatomical or functional asymmetry of the two sides of the body. Functional motor asymmetry can be influenced by musical practice. This study explored whether piano playing experience modulates motor asymmetry and leads to an altered pattern of hand selection, reflecting an altered handedness. We asked two groups of right-handed participants-piano players and non-piano players-to reach targets in their frontal space with both arms, and we tested the motor performance of each arm on this task and then on an arm preference test. As musical practice can decrease motor asymmetry between arms, we hypothesized that participants with piano playing experience would display less interlimb asymmetry and that this, in turn, would change their arm preference pattern, compared with participants without piano playing experience. We found support for both hypotheses, and we conclude that arm selection (preference) is not biologically fixed, but, rather, can be modulated through long-term piano playing.
Collapse
Affiliation(s)
- Ozlem Kilincer
- 1 Department of Music, Nevsehir Haci Bektas Veli University, Turkey
| | - Emre Ustun
- 1 Department of Music, Nevsehir Haci Bektas Veli University, Turkey
| | - Selcuk Akpinar
- 2 Department of Physical Education and Sport, Nevsehir Haci Bektas Veli University, Turkey
| | - Emin E Kaya
- 1 Department of Music, Nevsehir Haci Bektas Veli University, Turkey
| |
Collapse
|
84
|
de Manzano Ö, Ullén F. Same Genes, Different Brains: Neuroanatomical Differences Between Monozygotic Twins Discordant for Musical Training. Cereb Cortex 2018; 28:387-394. [PMID: 29136105 DOI: 10.1093/cercor/bhx299] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Indexed: 12/26/2022] Open
Abstract
Numerous cross-sectional and observational longitudinal studies show associations between expertise and regional brain anatomy. However, since these designs confound training with genetic predisposition, the causal role of training remains unclear. Here, we use a discordant monozygotic (identical) twin design to study expertise-dependent effects on neuroanatomy using musical training as model behavior, while essentially controlling for genetic factors and shared environment of upbringing. From a larger cohort of monozygotic twins, we were able to recruit 18 individuals (9 pairs) that were highly discordant for piano practice. We used structural and diffusion magnetic resonance imaging to analyze the auditory-motor network and within-pair differences in cortical thickness, cerebellar regional volumes and white-matter microstructure/fractional anisotropy. The analyses revealed that the musically active twins had greater cortical thickness in the auditory-motor network of the left hemisphere and more developed white matter microstructure in relevant tracts in both hemispheres and the corpus callosum. Furthermore, the volume of gray matter in the left cerebellar region of interest comprising lobules I-IV + V, was greater in the playing group. These findings provide the first clear support for that a significant portion of the differences in brain anatomy between experts and nonexperts depend on causal effects of training.
Collapse
Affiliation(s)
- Örjan de Manzano
- Department of Neuroscience, Retzius väg 8, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Fredrik Ullén
- Department of Neuroscience, Retzius väg 8, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
85
|
Tong X, Choi W, Man YY. Tone language experience modulates the effect of long-term musical training on musical pitch perception. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:690. [PMID: 30180694 DOI: 10.1121/1.5049365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Long-term musical training is widely reported to enhance music pitch perception. However, it remains unclear whether tone language experience influences the effect of long-term musical training on musical pitch perception. The present study addressed this question by testing 30 Cantonese and 30 non-tonal language speakers, each divided equally into musician and non-musician groups, on pitch height and pitch interval discrimination. Musicians outperformed non-musicians among non-tonal language speakers, but not among Cantonese speakers on the pitch height discrimination task. However, musicians outperformed non-musicians among Cantonese speakers, but not among non-tonal language speakers on the pitch interval discrimination task. These results suggest that the effect of long-term musical training on musical pitch perception is shaped by tone language experience and varies across different pitch perception tasks.
Collapse
Affiliation(s)
- Xiuli Tong
- Division of Speech and Hearing Sciences, The University of Hong Kong, Hong Kong
| | - William Choi
- Division of Speech and Hearing Sciences, The University of Hong Kong, Hong Kong
| | | |
Collapse
|
86
|
Mansens D, Deeg DJH, Comijs HC. The association between singing and/or playing a musical instrument and cognitive functions in older adults. Aging Ment Health 2018; 22:964-971. [PMID: 28521542 DOI: 10.1080/13607863.2017.1328481] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Cognitive decline happens to everyone when aging, but to some more than others. Studies with children, adults, and professional musicians suggest that making music could be associated with better cognitive functioning. In older adults however, this association is less well investigated, which is therefore the aim of this study. METHODS In this cross-sectional study data from 1101 participants aged 64 and older from the Longitudinal Aging Study Amsterdam were used. Multivariable linear regression analyses were performed to test the association between making music and cognitive functioning and time spent making music and cognitive functioning. ANCOVA analyses were performed to differentiate between participants who made no music, only sang, only played an instrument or both sang and played an instrument in terms of cognitive functioning. RESULTS Making music was significantly positively associated with letter fluency, learning and attention/short-term memory. Time spent making music yielded no significant results. The ANCOVA analyses showed higher scores for participants who only played an instrument compared to participants who made no music on learning, working memory and processing speed. For processing speed the instrument only group also had a higher score than participants who only sang. DISCUSSION Making music at least once every two weeks and especially playing a musical instrument, is associated with better attention, episodic memory and executive functions. The results suggest that making music might be a potential protective factor for cognitive decline; however, to support this notion a longitudinal study design is needed.
Collapse
Affiliation(s)
- D Mansens
- a GGZ in Geest/Department of Psychiatry and Amsterdam Public Health Research Institute , VU University Medical Centre , Amsterdam , The Netherlands
| | - D J H Deeg
- b Department of Epidemiology & Biostatistics , Amsterdam Public Health Research Institute, VU University Medical Centre , Amsterdam , The Netherlands
| | - H C Comijs
- a GGZ in Geest/Department of Psychiatry and Amsterdam Public Health Research Institute , VU University Medical Centre , Amsterdam , The Netherlands
| |
Collapse
|
87
|
Spatial selective attention biases are shaped by long-term musical experience and short-term exposure to tones. Brain Cogn 2018; 125:106-117. [PMID: 29990700 DOI: 10.1016/j.bandc.2018.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/23/2022]
Abstract
Selective attention is a dynamic process that rapidly shifts processing resources to information that is most relevant to our goals. Although individuals often show spatial biases in attention, these biases can be modified by both long-term factors, such as musical training, or by momentary changes in the auditory context. The present study used a visual search task to examine the influence of these factors on spatial attention biases while increasing demands on selective attention. Experiment 1 examined the effects of musical experience on baseline spatial selective attention biases during search. Individuals with little musical experience showed a typical leftward response bias that became stronger as the number of distractors increased. However, those with more musical experience showed similar responses to targets on the left and right sides, indicating an attenuation of the typical leftward spatial attention bias. Experiment 2 examined whether the addition of low- and high-frequency tones dynamically influenced participants' spatial attention biases during visual search. Participants showed increased orienting to and scanning of left-side distractor locations in response to low-frequency tones regardless of musical experience. The present results demonstrate that spatial attention biases are dynamic and can be shaped by both long-term experiences and momentary contextual effects.
Collapse
|
88
|
Paraskevopoulos E, Chalas N, Kartsidis P, Wollbrink A, Bamidis P. Statistical learning of multisensory regularities is enhanced in musicians: An MEG study. Neuroimage 2018; 175:150-160. [DOI: 10.1016/j.neuroimage.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/21/2018] [Accepted: 04/02/2018] [Indexed: 01/09/2023] Open
|
89
|
How the degree of instrumental practice in music increases perceptual sensitivity. Brain Res 2018; 1691:15-25. [DOI: 10.1016/j.brainres.2018.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/06/2018] [Accepted: 04/18/2018] [Indexed: 01/14/2023]
|
90
|
Daikoku T. Neurophysiological Markers of Statistical Learning in Music and Language: Hierarchy, Entropy, and Uncertainty. Brain Sci 2018; 8:E114. [PMID: 29921829 PMCID: PMC6025354 DOI: 10.3390/brainsci8060114] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023] Open
Abstract
Statistical learning (SL) is a method of learning based on the transitional probabilities embedded in sequential phenomena such as music and language. It has been considered an implicit and domain-general mechanism that is innate in the human brain and that functions independently of intention to learn and awareness of what has been learned. SL is an interdisciplinary notion that incorporates information technology, artificial intelligence, musicology, and linguistics, as well as psychology and neuroscience. A body of recent study has suggested that SL can be reflected in neurophysiological responses based on the framework of information theory. This paper reviews a range of work on SL in adults and children that suggests overlapping and independent neural correlations in music and language, and that indicates disability of SL. Furthermore, this article discusses the relationships between the order of transitional probabilities (TPs) (i.e., hierarchy of local statistics) and entropy (i.e., global statistics) regarding SL strategies in human's brains; claims importance of information-theoretical approaches to understand domain-general, higher-order, and global SL covering both real-world music and language; and proposes promising approaches for the application of therapy and pedagogy from various perspectives of psychology, neuroscience, computational studies, musicology, and linguistics.
Collapse
Affiliation(s)
- Tatsuya Daikoku
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.
| |
Collapse
|
91
|
Macnab AJ, Mukisa R. Celebrity endorsed music videos: innovation to foster youth health promotion. Health Promot Int 2018; 34:716-725. [DOI: 10.1093/heapro/day042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
There are calls for innovation in health promotion and for current issues to be presented in new and exciting ways; in addition to creating engaging messages, novel ways to deliver health messaging are needed, especially where youth are the key target audience. When pupils in WHO Health Promoting Schools were asked what health messages would resonate with them, they also identified celebrities as the ‘messengers’ they would be particularly likely to listen to. Expanding on these discussions, the pupils quoted celebrity-recorded music videos containing health and lifestyle messaging as an example of where they had learned from celebrities. Their ability to sing phrases from the songs and repeat key health messages they contained indicated the videos had commanded attention and provided knowledge and perspectives that had been retained. We located on YouTube the video titles the pupils identified and evaluated the content, messaging and production concepts these celebrity-recorded music videos incorporated. All are good examples of the health promotion genre known as education entertainment, where educational content is intentionally included in professionally produced entertainment media to impart knowledge, create favorable attitudes and impact future behaviors. The importance of this genre is growing in parallel with the burgeoning influence of social media. Music videos resonate with youth, and celebrity recordings combine young people’s love of music with their fascination for the aura of celebrity. Hence, producing videos that combine an effective health message with celebrity endorsement offers potential as an innovative conduit for health promotion messaging among youth.
Collapse
Affiliation(s)
- A J Macnab
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
- Faculty of Medicine, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - R Mukisa
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
- Health and Development Agency (HEADA), Mbarara, Uganda
| |
Collapse
|
92
|
Zuk J, Gaab N. Evaluating predisposition and training in shaping the musician's brain: the need for a developmental perspective. Ann N Y Acad Sci 2018; 1423:10.1111/nyas.13737. [PMID: 29799116 PMCID: PMC6252158 DOI: 10.1111/nyas.13737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/21/2018] [Accepted: 03/28/2018] [Indexed: 11/29/2022]
Abstract
The study of music training as a model for structural plasticity has evolved significantly over the past 15 years. Neuroimaging studies have identified characteristic structural brain alterations in musicians compared to nonmusicians in school-age children and adults, using primarily cross-sectional designs. Despite this emerging evidence and advances in pediatric neuroimaging techniques, hardly any studies have examined brain development in early childhood (before age 8) in association with musical training, and longitudinal studies starting in infancy or preschool are particularly scarce. Consequently, it remains unclear whether the characteristic "musician brain" is solely the result of musical training, or whether certain predispositions may have an impact on its development. Moving toward a developmental perspective, the present review considers various factors that may contribute to early brain structure prior to the onset of formal musical training. This review introduces a model for potential neurobiological pathways leading to the characteristic "musician brain," which involves a developmental interaction between predisposition and its temporal dynamics, environmental experience, and training-induced plasticity. This perspective illuminates the importance of studying the brain structure associated with musical training through a developmental lens, and the need for longitudinal studies in early childhood to advance our understanding of music training-induced structural plasticity.
Collapse
Affiliation(s)
- Jennifer Zuk
- Developmental Medicine Center, Laboratories of Cognitive Neuroscience, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Nadine Gaab
- Developmental Medicine Center, Laboratories of Cognitive Neuroscience, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Harvard Graduate School of Education, Cambridge, Massachusetts
| |
Collapse
|
93
|
Huotilainen M, Tervaniemi M. Planning music-based amelioration and training in infancy and childhood based on neural evidence. Ann N Y Acad Sci 2018; 1423:146-154. [PMID: 29727038 DOI: 10.1111/nyas.13655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 11/30/2022]
Abstract
Music-based amelioration and training of the developing auditory system has a long tradition, and recent neuroscientific evidence supports using music in this manner. Here, we present the available evidence showing that various music-related activities result in positive changes in brain structure and function, becoming helpful for auditory cognitive processes in everyday life situations for individuals with typical neural development and especially for individuals with hearing, learning, attention, or other deficits that may compromise auditory processing. We also compare different types of music-based training and show how their effects have been investigated with neural methods. Finally, we take a critical position on the multitude of error sources found in amelioration and training studies and on publication bias in the field. We discuss some future improvements of these issues in the field of music-based training and their potential results at the neural and behavioral levels in infants and children for the advancement of the field and for a more complete understanding of the possibilities and significance of the training.
Collapse
Affiliation(s)
- Minna Huotilainen
- Cognitive Brain Research Unit and CICERO Learning Network, University of Helsinki, Helsinki, Finland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit and CICERO Learning Network, University of Helsinki, Helsinki, Finland
| |
Collapse
|
94
|
Wang N, Wu H, Xu M, Yang Y, Chang C, Zeng W, Yan H. Occupational functional plasticity revealed by brain entropy: A resting-state fMRI study of seafarers. Hum Brain Mapp 2018; 39:2997-3004. [PMID: 29676512 DOI: 10.1002/hbm.24055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/12/2018] [Accepted: 03/12/2018] [Indexed: 11/09/2022] Open
Abstract
Recently, functional magnetic resonance imaging (fMRI) has been increasingly used to assess brain function. Brain entropy is an effective model for evaluating the alteration of brain complexity. Specifically, the sample entropy (SampEn) provides a feasible solution for revealing the brain's complexity. Occupation is one key factor affecting the brain's activity, but the neuropsychological mechanisms are still unclear. Thus, in this article, based on fMRI and a brain entropy model, we explored the functional complexity changes engendered by occupation factors, taking the seafarer as an example. The whole-brain entropy values of two groups (i.e., the seafarers and the nonseafarers) were first calculated by SampEn and followed by a two-sample t test with AlphaSim correction (p < .05). We found that the entropy of the orbital-frontal gyrus (OFG) and superior temporal gyrus (STG) in the seafarers was significantly higher than that of the nonseafarers. In addition, the entropy of the cerebellum in the seafarers was lower than that of the nonseafarers. We conclude that (1) the lower entropy in the cerebellum implies that the seafarers' cerebellum activity had strong regularity and consistency, suggesting that the seafarer's cerebellum was possibly more specialized by the long-term career training; (2) the higher entropy in the OFG and STG possibly demonstrated that the seafarers had a relatively decreased capability for emotion control and auditory information processing. The above results imply that the seafarer occupation indeed impacted the brain's complexity, and also provided new neuropsychological evidence of functional plasticity related to one's career.
Collapse
Affiliation(s)
- Nizhuan Wang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, 518060, China
| | - Huijun Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, 518060, China
| | - Min Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, 518060, China.,Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, 518057, China
| | - Yang Yang
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, 518057, China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, 518060, China.,Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, 518057, China
| | - Weiming Zeng
- Digital Image and Intelligent computation Laboratory, College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Hongjie Yan
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222002, China
| |
Collapse
|
95
|
Sheikhi S, Saboory E, Farjah GH. Correlation of nerve fibers in corpus callosum and number of neurons in cerebral cortex: an innovative mathematical model. Int J Neurosci 2018; 128:995-1002. [PMID: 29619891 DOI: 10.1080/00207454.2018.1458725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Purpose/aim: It is estimated that 109 bits/s information are processed in the human brain. The transmission of this huge amount of information requires all connections in the brain to be highly accurate and have order. The current study attempted to present a new aspect of order and proportion in the ultra-structure of the human brain and to calculate the degree of neural interdependence between the two hemispheres. MATERIALS AND METHODS In this model, intensity of interdependence of the brain to hemispheres is estimated to be equal to the mathematical proportion of number of neurons in cerebral cortex divided by 2 (number of hemispheres), divided by number of nerve fibers in the human corpus callosum. RESULTS The calculated number is equal to 30-50 and it indicates that for every 30-50 neurons between the two hemispheres, there is a neural interconnecting bridge. CONCLUSIONS This connection indicates that the brain's function output follows a mathematical relation.
Collapse
Affiliation(s)
- Siamak Sheikhi
- a Neurophysiology Research Center , Urmia University of Medical Sciences , Urmia , Iran
| | - Ehsan Saboory
- a Neurophysiology Research Center , Urmia University of Medical Sciences , Urmia , Iran
| | - Gholam Hosein Farjah
- b Department of Anatomy, Faculty of medicine , Urmia University of Medical Sciences , Urmia Iran
| |
Collapse
|
96
|
Li STK, Hsiao JHW. Music reading expertise modulates hemispheric lateralization in English word processing but not in Chinese character processing. Cognition 2018; 176:159-173. [PMID: 29558721 DOI: 10.1016/j.cognition.2018.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
Music notation and English word reading both involve mapping horizontally arranged visual components to components in sound, in contrast to reading in logographic languages such as Chinese. Accordingly, music-reading expertise may influence English word processing more than Chinese character processing. Here we showed that musicians named English words significantly faster than non-musicians when words were presented in the left visual field/right hemisphere (RH) or the center position, suggesting an advantage of RH processing due to music reading experience. This effect was not observed in Chinese character naming. A follow-up ERP study showed that in a sequential matching task, musicians had reduced RH N170 responses to English non-words under the processing of musical segments as compared with non-musicians, suggesting a shared visual processing mechanism in the RH between music notation and English non-word reading. This shared mechanism may be related to the letter-by-letter, serial visual processing that characterizes RH English word recognition (e.g., Lavidor & Ellis, 2001), which may consequently facilitate English word processing in the RH in musicians. Thus, music reading experience may have differential influences on the processing of different languages, depending on their similarities in the cognitive processes involved.
Collapse
Affiliation(s)
- Sara Tze Kwan Li
- Department of Psychology, University of Hong Kong, Hong Kong Special Administrative Region
| | - Janet Hui-Wen Hsiao
- Department of Psychology, University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
97
|
Theta Coherence Asymmetry in the Dorsal Stream of Musicians Facilitates Word Learning. Sci Rep 2018; 8:4565. [PMID: 29545619 PMCID: PMC5854697 DOI: 10.1038/s41598-018-22942-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/01/2018] [Indexed: 01/19/2023] Open
Abstract
Word learning constitutes a human faculty which is dependent upon two anatomically distinct processing streams projecting from posterior superior temporal (pST) and inferior parietal (IP) brain regions toward the prefrontal cortex (dorsal stream) and the temporal pole (ventral stream). The ventral stream is involved in mapping sensory and phonological information onto lexical-semantic representations, whereas the dorsal stream contributes to sound-to-motor mapping, articulation, complex sequencing in the verbal domain, and to how verbal information is encoded, stored, and rehearsed from memory. In the present source-based EEG study, we evaluated functional connectivity between the IP lobe and Broca's area while musicians and non-musicians learned pseudowords presented in the form of concatenated auditory streams. Behavioral results demonstrated that musicians outperformed non-musicians, as reflected by a higher sensitivity index (d'). This behavioral superiority was paralleled by increased left-hemispheric theta coherence in the dorsal stream, whereas non-musicians showed stronger functional connectivity in the right hemisphere. Since no between-group differences were observed in a passive listening control condition nor during rest, results point to a task-specific intertwining between musical expertise, functional connectivity, and word learning.
Collapse
|
98
|
Elmer S, Jäncke L. Relationships between music training, speech processing, and word learning: a network perspective. Ann N Y Acad Sci 2018; 1423:10-18. [PMID: 29542125 DOI: 10.1111/nyas.13581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/16/2017] [Accepted: 11/27/2017] [Indexed: 01/19/2023]
Abstract
Numerous studies have documented the behavioral advantages conferred on professional musicians and children undergoing music training in processing speech sounds varying in the spectral and temporal dimensions. These beneficial effects have previously often been associated with local functional and structural changes in the auditory cortex (AC). However, this perspective is oversimplified, in that it does not take into account the intrinsic organization of the human brain, namely, neural networks and oscillatory dynamics. Therefore, we propose a new framework for extending these previous findings to a network perspective by integrating multimodal imaging, electrophysiology, and neural oscillations. In particular, we provide concrete examples of how functional and structural connectivity can be used to model simple neural circuits exerting a modulatory influence on AC activity. In addition, we describe how such a network approach can be used for better comprehending the beneficial effects of music training on more complex speech functions, such as word learning.
Collapse
Affiliation(s)
- Stefan Elmer
- Division of Neuropsychology (Auditory Research Group Zurich, ARGZ), Institute of Psychology, University of Zurich, Zurich, Switzerland
| | - Lutz Jäncke
- Division of Neuropsychology (Auditory Research Group Zurich, ARGZ), Institute of Psychology, University of Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- International Normal Aging and Plasticity Imaging Center (INAPIC), University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP) "Dynamic of Healthy Aging", University of Zurich, Zurich, Switzerland
- Department of Special Education, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
99
|
Strong JV, Mast BT. The cognitive functioning of older adult instrumental musicians and non-musicians. AGING NEUROPSYCHOLOGY AND COGNITION 2018. [DOI: 10.1080/13825585.2018.1448356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jessica V Strong
- New England Geriatric Research Education and Clinical Center (NE GRECC), Boston VA Healthcare System, Boston, MA, USA
| | - Benjamin T Mast
- Department of Psychological and Brain Sciences, 317 Life Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
100
|
Habibi A, Damasio A, Ilari B, Elliott Sachs M, Damasio H. Music training and child development: a review of recent findings from a longitudinal study. Ann N Y Acad Sci 2018; 1423:73-81. [PMID: 29508399 DOI: 10.1111/nyas.13606] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 11/29/2022]
Abstract
Evidence suggests that learning to play music enhances musical processing skills and benefits other cognitive abilities. Furthermore, studies of children and adults indicate that the brains of musicians and nonmusicians are different. It has not been determined, however, whether such differences result from pre-existing traits, musical training, or an interaction between the two. As part of an ongoing longitudinal study, we investigated the effects of music training on children's brain and cognitive development. The target group of children was compared with two groups of children, one involved in sports and another not enrolled in any systematic afterschool training. Two years after training, we observed that children in the music group had better performance than comparison groups in musically relevant auditory skills and showed related brain changes. For nonmusical skills, children with music training, compared with children without music or with sports training, showed stronger neural activation during a cognitive inhibition task in regions involved in response inhibition despite no differences in performance on behavioral measures of executive function. No such differences were found between music and sports groups. We conclude that music training induces brain and behavioral changes in children, and those changes are not attributable to pre-existing biological traits.
Collapse
Affiliation(s)
- Assal Habibi
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Antonio Damasio
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Beatriz Ilari
- Thornton School of Music, University of Southern California, Los Angeles, California
| | - Matthew Elliott Sachs
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Hanna Damasio
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| |
Collapse
|