51
|
Esmieu C, Guettas D, Conte-Daban A, Sabater L, Faller P, Hureau C. Copper-Targeting Approaches in Alzheimer’s Disease: How To Improve the Fallouts Obtained from in Vitro Studies. Inorg Chem 2019; 58:13509-13527. [DOI: 10.1021/acs.inorgchem.9b00995] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | | | | | - Peter Faller
- LCC−CNRS, Université de Toulouse, CNRS, Toulouse, France
| | | |
Collapse
|
52
|
August A, Schmidt N, Klingler J, Baumkötter F, Lechner M, Klement J, Eggert S, Vargas C, Wild K, Keller S, Kins S. Copper and zinc ions govern the trans‐directed dimerization of APP family members in multiple ways. J Neurochem 2019; 151:626-641. [DOI: 10.1111/jnc.14716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Alexander August
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Nadine Schmidt
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Johannes Klingler
- Molecular Biophysics Technische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Frederik Baumkötter
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Marius Lechner
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Jessica Klement
- Molecular Biophysics Technische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Simone Eggert
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Carolyn Vargas
- Molecular Biophysics Technische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH) University of Heidelberg Heidelberg Germany
| | - Sandro Keller
- Molecular Biophysics Technische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Stefan Kins
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| |
Collapse
|
53
|
Mahmoud M, Abbas A, Zaitone S, Ammar A, Sallam S. Copper(II) ternary complexes with gabapentin and neurotransmitters as antiepileptic drug. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
54
|
Nguyen XTA, Tran TH, Cojoc D, Legname G. Copper Binding Regulates Cellular Prion Protein Function. Mol Neurobiol 2019; 56:6121-6133. [PMID: 30729399 DOI: 10.1007/s12035-019-1510-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/24/2019] [Indexed: 01/27/2023]
Abstract
The cellular prion protein (PrPC), mainly known for its role in neurodegenerative diseases, is involved in several physiological processes including neuritogenesis. In addition, its ability to bind copper or zinc has been suggested for its role in metal homeostasis. Although PrPC has been known as a copper-binding molecule, little is known about how copper can affect PrPC physiological functions. By combining genomic approaches, cellular assays, and focal stimulation technique, we found that PrPC neuritogenesis function is directly influenced by N-terminal copper-binding amino acids. Several recombinant mouse PrP (recMoPrP) mutants at N-terminal copper-binding sites were produced, and primary hippocampal cultures were treated either in bulk or exposed near the hippocampal growth cones (GC) of single neurons in local stimulation manner. While focal stimulation of GC with wild-type recMoPrP induced neurite outgrowth and rapid GC turning toward the source, N-terminal mutants fail to support this effect. Indeed, disrupting all the copper-binding sites at the N-terminus of PrPC was toxic to neurons indicating that these regions are crucial for the protein function. Mutants at both octarepeat and non-octarepeat region abolished the neuritogenesis effect. Altogether, our findings indicate the crucial role of copper-binding sites in maintaining the neuritogenesis function in PrP, suggesting a potential link between loss-of-function of the protein and disease initiation.
Collapse
Affiliation(s)
- Xuan T A Nguyen
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Thanh Hoa Tran
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Dan Cojoc
- Optical Manipulation (OM)-Lab, Institute of Materials (IOM), Consiglio Nazionale delle Ricerche (CNR), Trieste, Italy.
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
55
|
Young TR, Wedd AG, Xiao Z. Evaluation of Cu(i) binding to the E2 domain of the amyloid precursor protein - a lesson in quantification of metal binding to proteins via ligand competition. Metallomics 2019; 10:108-119. [PMID: 29215101 DOI: 10.1039/c7mt00291b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The extracellular domain E2 of the amyloid precursor protein (APP) features a His-rich metal-binding site (denoted as the M1 site). In conjunction with surrounding basic residues, the site participates in interactions with components of the extracellular matrix including heparins, a class of negatively charged polysaccharide molecules of varying length. This work studied the chemistry of Cu(i) binding to APP E2 with the probe ligands Bcs, Bca, Fz and Fs. APP E2 forms a stable Cu(i)-mediated ternary complex with each of these anionic ligands. The complex with Bca was selected for isolation and characterization and was demonstrated, by native ESI-MS analysis, to have the stoichiometry E2 : Cu(i) : Bca = 1 : 1 : 1. Formation of these ternary complexes is specific for the APP E2 domain and requires Cu(i) coordination to the M1 site. Mutation of the M1 site was consistent with the His ligands being part of the E2 ligand set. It is likely that interactions between the negatively charged probe ligands and a positively charged patch on the surface of APP E2 are one aspect of the generation of the stable ternary complexes. Their formation prevented meaningful quantification of the affinity of Cu(i) binding to the M1 site with these probe ligands. However, the ternary complexes are disrupted by heparin, allowing reliable determination of a picomolar Cu(i) affinity for the E2/heparin complex with the Fz or Bca probe ligands. This is the first documented example of the formation of stable ternary complexes between a Cu(i) binding protein and a probe ligand. The ready disruption of the complexes by heparin identified clear 'tell-tale' signs for diagnosis of ternary complex formation and allowed a systematic review of conditions and criteria for reliable determination of affinities for metal binding via ligand competition. This study also provides new insights into a potential correlation of APP functions regulated by copper binding and heparin interaction.
Collapse
Affiliation(s)
- Tessa R Young
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
56
|
Structural Determinants of the Prion Protein N-Terminus and Its Adducts with Copper Ions. Int J Mol Sci 2018; 20:ijms20010018. [PMID: 30577569 PMCID: PMC6337743 DOI: 10.3390/ijms20010018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022] Open
Abstract
The N-terminus of the prion protein is a large intrinsically disordered region encompassing approximately 125 amino acids. In this paper, we review its structural and functional properties, with a particular emphasis on its binding to copper ions. The latter is exploited by the region’s conformational flexibility to yield a variety of biological functions. Disease-linked mutations and proteolytic processing of the protein can impact its copper-binding properties, with important structural and functional implications, both in health and disease progression.
Collapse
|
57
|
Yamada Y, Prosser RA. Copper in the suprachiasmatic circadian clock: A possible link between multiple circadian oscillators. Eur J Neurosci 2018; 51:47-70. [PMID: 30269387 DOI: 10.1111/ejn.14181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
The mammalian circadian clock in the suprachiasmatic nucleus (SCN) is very robust, able to coordinate our daily physiological and behavioral rhythms with exquisite accuracy. Simultaneously, the SCN clock is highly sensitive to environmental timing cues such as the solar cycle. This duality of resiliency and sensitivity may be sustained in part by a complex intertwining of three cellular oscillators: transcription/translation, metabolic/redox, and membrane excitability. We suggest here that one of the links connecting these oscillators may be forged from copper (Cu). Cellular Cu levels are highly regulated in the brain and peripherally, and Cu affects cellular metabolism, redox state, cell signaling, and transcription. We have shown that both Cu chelation and application induce nighttime phase shifts of the SCN clock in vitro and that these treatments affect glutamate, N-methyl-D-aspartate receptor, and associated signaling processes differently. More recently we found that Cu induces mitogen-activated protein kinase-dependent phase shifts, while the mechanisms by which Cu removal induces phase shifts remain unclear. Lastly, we have found that two Cu transporters are expressed in the SCN, and that one of these transporters (ATP7A) exhibits a day/night rhythm. Our results suggest that Cu homeostasis is tightly regulated in the SCN, and that changes in Cu levels may serve as a time cue for the circadian clock. We discuss these findings in light of the existing literature and current models of multiple coupled circadian oscillators in the SCN.
Collapse
Affiliation(s)
- Yukihiro Yamada
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| | - Rebecca A Prosser
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
58
|
Copper Redox Cycling Inhibits Aβ Fibre Formation and Promotes Fibre Fragmentation, while Generating a Dityrosine Aβ Dimer. Sci Rep 2018; 8:16190. [PMID: 30385800 PMCID: PMC6212427 DOI: 10.1038/s41598-018-33935-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress and the formation of plaques which contain amyloid-β (Aβ) peptides are two key hallmarks of Alzheimer’s disease (AD). Dityrosine is found in the plaques of AD patients and Aβ dimers have been linked to neurotoxicity. Here we investigate the formation of Aβ dityrosine dimers promoted by Cu2+/+ Fenton reactions. Using fluorescence measurements and UV absorbance, we show that dityrosine can be formed aerobically when Aβ is incubated with Cu2+ and hydrogen-peroxide, or in a Cu2+ and ascorbate redox mixture. The dityrosine cross-linking can occur for both monomeric and fibrillar forms of Aβ. We show that oxidative modification of Aβ impedes the ability for Aβ monomer to form fibres, as indicated by the amyloid specific dye Thioflavin T (ThT). Transmission electron microscopy (TEM) indicates the limited amyloid assemblies that form have a marked reduction in fibre length for Aβ(1–40). Importantly, the addition of Cu2+ and a reductant to preformed Aβ(1–40) fibers causes their widespread fragmentation, reducing median fibre lengths from 800 nm to 150 nm upon oxidation. The processes of covalent cross-linking of Aβ fibres, dimer formation, and fibre fragmentation within plaques are likely to have a significant impact on Aβ clearance and neurotoxicity.
Collapse
|
59
|
Kardos J, Héja L, Simon Á, Jablonkai I, Kovács R, Jemnitz K. Copper signalling: causes and consequences. Cell Commun Signal 2018; 16:71. [PMID: 30348177 PMCID: PMC6198518 DOI: 10.1186/s12964-018-0277-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Copper-containing enzymes perform fundamental functions by activating dioxygen (O2) and therefore allowing chemical energy-transfer for aerobic metabolism. The copper-dependence of O2 transport, metabolism and production of signalling molecules are supported by molecular systems that regulate and preserve tightly-bound static and weakly-bound dynamic cellular copper pools. Disruption of the reducing intracellular environment, characterized by glutathione shortage and ambient Cu(II) abundance drives oxidative stress and interferes with the bidirectional, copper-dependent communication between neurons and astrocytes, eventually leading to various brain disease forms. A deeper understanding of of the regulatory effects of copper on neuro-glia coupling via polyamine metabolism may reveal novel copper signalling functions and new directions for therapeutic intervention in brain disorders associated with aberrant copper metabolism.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - István Jablonkai
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Richard Kovács
- Institute of Neurophysiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| |
Collapse
|
60
|
Schoonover KE, Queern SL, Lapi SE, Roberts RC. Impaired copper transport in schizophrenia results in a copper-deficient brain state: A new side to the dysbindin story. World J Biol Psychiatry 2018; 21:13-28. [PMID: 30230404 PMCID: PMC6424639 DOI: 10.1080/15622975.2018.1523562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objectives: Several schizophrenia brain regions exhibit decreased dysbindin. Dysbindin modulates copper transport crucial for myelination, monoamine metabolism and cellular homeostasis. Schizophrenia patients (SZP) exhibit increased plasma copper, while copper-decreasing agents produce schizophrenia-like behavioural and pathological abnormalities. Therefore, we sought to determine dysbindin and copper transporter protein expression and copper content in SZP.Methods: We studied the copper-rich substantia nigra (SN) using Western blot and inductively-coupled plasma mass spectrometry. We characterised specific protein domains of copper transporters ATP7A, CTR1, ATP7B and dysbindin isoforms 1 A and 1B/C in SZP (n = 15) and matched controls (n = 11), and SN copper content in SZP (n = 14) and matched controls (n = 11). As a preliminary investigation, we compared medicated (ON; n = 11) versus unmedicated SZP (OFF; n = 4).Results: SZP exhibited increased C terminus, but not N terminus, ATP7A. SZP expressed less transmembrane CTR1 and dysbindin 1B/C than controls. ON exhibited increased C terminus ATP7A protein versus controls. OFF exhibited less N terminus ATP7A protein than controls and ON, suggesting medication-induced rescue of the ATP7A N terminus. SZP exhibited less SN copper content than controls.Conclusions: These results provide the first evidence of disrupted copper transport in schizophrenia SN that appears to result in a copper-deficient state. Furthermore, copper homeostasis may be modulated by specific dysbindin isoforms and antipsychotic treatment.
Collapse
Affiliation(s)
- Kirsten E. Schoonover
- Department of Psychology and Behavioral Neuroscience, University of Alabama at Birmingham
| | - Stacy L. Queern
- Department of Radiology, University of Alabama at Birmingham,Department of Chemistry, Washington University in St. Louis
| | - Suzanne E. Lapi
- Department of Radiology, University of Alabama at Birmingham,Department of Chemistry, Washington University in St. Louis
| | - Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| |
Collapse
|
61
|
Young TR, Pukala TL, Cappai R, Wedd AG, Xiao Z. The Human Amyloid Precursor Protein Binds Copper Ions Dominated by a Picomolar-Affinity Site in the Helix-Rich E2 Domain. Biochemistry 2018; 57:4165-4176. [DOI: 10.1021/acs.biochem.8b00572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tessa R. Young
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tara L. Pukala
- Discipline of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anthony G. Wedd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhiguang Xiao
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
62
|
Mital M, Bal W, Frączyk T, Drew SC. Interplay between Copper, Neprilysin, and N-Truncation of β-Amyloid. Inorg Chem 2018; 57:6193-6197. [PMID: 29774745 DOI: 10.1021/acs.inorgchem.8b00391] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sporadic Alzheimer's disease (AD) is associated with an inefficient clearance of the β-amyloid (Aβ) peptide from the central nervous system. The protein levels and activity of the Zn2+-dependent endopeptidase neprilysin (NEP) inversely correlate with brain Aβ levels during aging and in AD. The present study considered the ability of Cu2+ ions to inhibit human recombinant NEP and the role for NEP in generating N-truncated Aβ fragments with high-affinity Cu2+ binding motifs that can prevent this inhibition. Divalent copper noncompetitively inhibited NEP ( Ki = 1.0 μM), while proteolysis of Aβ yielded the soluble, Aβ4-9 fragment that can bind Cu2+ with femtomolar affinity at pH 7.4. This provides Aβ4-9 with the potential to act as a Cu2+ carrier and to mediate its own production by preventing NEP inhibition. Enzyme inhibition at high Zn2+ concentrations ( Ki = 20 μM) further suggests a mechanism for modulating NEP activity, Aβ4-9 production, and Cu2+ homeostasis.
Collapse
Affiliation(s)
- Mariusz Mital
- Florey Department of Neuroscience and Mental Health , The University of Melbourne , Melbourne , Victoria 3010 , Australia.,Institute of Biochemistry and Biophysics , Polish Academy of Sciences , Warsaw , Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , Warsaw , Poland
| | - Tomasz Frączyk
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , Warsaw , Poland.,Department of Immunology, Transplantology and Internal Medicine , Medical University of Warsaw , Warsaw , Poland
| | - Simon C Drew
- Department of Medicine (Royal Melbourne Hospital) , The University of Melbourne , Melbourne , Victoria 3010 , Australia
| |
Collapse
|
63
|
Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 2018; 15:490-503. [PMID: 29413961 PMCID: PMC5881419 DOI: 10.1016/j.redox.2018.01.008] [Citation(s) in RCA: 753] [Impact Index Per Article: 107.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
The human brain consumes 20% of the total basal oxygen (O2) budget to support ATP intensive neuronal activity. Without sufficient O2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood as the deleterious result of adventitious O2 derived free radical and non-radical species generation. To understand how many reasons underpin oxidative stress, one must first re-cast free radical and non-radical species in a positive light because their deliberate generation enables the brain to achieve critical functions (e.g. synaptic plasticity) through redox signalling (i.e. positive functionality). Using free radicals and non-radical derivatives to signal sensitises the brain to oxidative stress when redox signalling goes awry (i.e. negative functionality). To advance mechanistic understanding, we rationalise 13 reasons why the brain is susceptible to oxidative stress. Key reasons include inter alia unsaturated lipid enrichment, mitochondria, calcium, glutamate, modest antioxidant defence, redox active transition metals and neurotransmitter auto-oxidation. We review RNA oxidation as an underappreciated cause of oxidative stress. The complex interplay between each reason dictates neuronal susceptibility to oxidative stress in a dynamic context and neural identity dependent manner. Our discourse sets the stage for investigators to interrogate the biochemical basis of oxidative stress in the brain in health and disease.
Collapse
Affiliation(s)
- James Nathan Cobley
- Free Radical Laboratory, Departments of Diabetes and Cardiovascular Sciences, Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3HJ, UK.
| | - Maria Luisa Fiorello
- Free Radical Laboratory, Departments of Diabetes and Cardiovascular Sciences, Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3HJ, UK
| | - Damian Miles Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, CF37 4AT, UK
| |
Collapse
|
64
|
Cheignon C, Collin F, Faller P, Hureau C. Is ascorbate Dr Jekyll or Mr Hyde in the Cu(Aβ) mediated oxidative stress linked to Alzheimer's disease? Dalton Trans 2018; 45:12627-31. [PMID: 27264439 PMCID: PMC5714186 DOI: 10.1039/c6dt01979j] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Evaluation of the pro versus antioxidant activity of ascorbate regarding Cu(Aβ) induced reactive oxygen species production in the context of Alzheimer’s disease shows that a protective activity can only be observed at high ascorbate concentration for exogenous molecules but not for the amyloid-β peptide itself.
Collapse
Affiliation(s)
- Clémence Cheignon
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France. and Université de Toulouse; UPS, INPT, 31077 Toulouse, France and UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France
| | - Fabrice Collin
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France. and Université de Toulouse; UPS, INPT, 31077 Toulouse, France and UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France
| | - Peter Faller
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France. and Université de Toulouse; UPS, INPT, 31077 Toulouse, France
| | - Christelle Hureau
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France. and Université de Toulouse; UPS, INPT, 31077 Toulouse, France
| |
Collapse
|
65
|
Arredondo M, González M, Latorre M. Copper. TRACE ELEMENTS AND MINERALS IN HEALTH AND LONGEVITY 2018. [DOI: 10.1007/978-3-030-03742-0_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
66
|
Latapiat V, Rodríguez FE, Godoy F, Montenegro FA, Barrera NP, Huidobro-Toro JP. P2X4 Receptor in Silico and Electrophysiological Approaches Reveal Insights of Ivermectin and Zinc Allosteric Modulation. Front Pharmacol 2017; 8:918. [PMID: 29326590 PMCID: PMC5737101 DOI: 10.3389/fphar.2017.00918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Protein allosteric modulation is a pillar of metabolic regulatory mechanisms; this concept has been extended to include ion channel regulation. P2XRs are ligand-gated channels activated by extracellular ATP, sensitive to trace metals and other chemicals. By combining in silico calculations with electrophysiological recordings, we investigated the molecular basis of P2X4R modulation by Zn(II) and ivermectin, an antiparasite drug currently used in veterinary medicine. To this aim, docking studies, molecular dynamics simulations and non-bonded energy calculations for the P2X4R in the apo and holo states or in the presence of ivermectin and/or Zn(II) were accomplished. Based on the crystallized Danio rerio P2X4R, the rat P2X4R, P2X2R, and P2X7R structures were modeled, to determine ivermectin binding localization. Calculations revealed that its allosteric site is restricted to transmembrane domains of the P2X4R; the role of Y42 and W46 plus S341 and non-polar residues were revealed as essential, and are not present in the homologous P2X2R or P2X7R transmembrane domains. This finding was confirmed by preferential binding conformations and electrophysiological data, revealing P2X4R modulator specificity. Zn(II) acts in the P2X4R extracellular domain neighboring the SS3 bridge. Molecular dynamics in the different P2X4R states revealed allosterism-induced stability. Pore and lateral fenestration measurements of the P2X4R showed conformational changes in the presence of both modulators compatible with a larger opening of the extracellular vestibule. Electrophysiological studies demonstrated additive effects in the ATP-gated currents by joint applications of ivermectin plus Zn(II). The C132A P2X4R mutant was insensitive to Zn(II); but IVM caused a 4.9 ± 0.7-fold increase in the ATP-evoked currents. Likewise, the simultaneous application of both modulators elicited a 7.1 ± 1.7-fold increase in the ATP-gated current. Moreover, the C126A P2X4R mutant evoked similar ATP-gated currents comparable to those of wild-type P2X4R. Finally, a P2X4/2R chimera did not respond to IVM but Zn(II) elicited a 2.7 ± 0.6-fold increase in the ATP-gated current. The application of IVM plus Zn(II) evoked a 2.7 ± 0.9-fold increase in the ATP-gated currents. In summary, allosteric modulators caused additive ATP-gated currents; consistent with lateral fenestration enlargement. Energy calculations demonstrated a favorable transition of the holo receptor state following both allosteric modulators binding, as expected for allosteric interactions.
Collapse
Affiliation(s)
- Verónica Latapiat
- Laboratorio de Farmacología de Nucleótidos, Departamento de Biología, Facultad de Química y Biología, Estación Central, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe E Rodríguez
- Laboratorio de Farmacología de Nucleótidos, Departamento de Biología, Facultad de Química y Biología, Estación Central, Universidad de Santiago de Chile, Santiago, Chile
| | - Francisca Godoy
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe A Montenegro
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nelson P Barrera
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan P Huidobro-Toro
- Laboratorio de Farmacología de Nucleótidos, Departamento de Biología, Facultad de Química y Biología, Estación Central, Universidad de Santiago de Chile, Santiago, Chile.,Centro Desarrollo de Nanociencia y Nanotecnología, CEDENNA, Estación Central, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
67
|
Abstract
Transition metals have been recognized and studied primarily in the context of their essential roles as structural and metabolic cofactors for biomolecules that compose living systems. More recently, an emerging paradigm of transition-metal signaling, where dynamic changes in transitional metal pools can modulate protein function, cell fate, and organism health and disease, has broadened our view of the potential contributions of these essential nutrients in biology. Using copper as a canonical example of transition-metal signaling, we highlight key experiments where direct measurement and/or visualization of dynamic copper pools, in combination with biochemical, physiological, and behavioral studies, have deciphered sources, targets, and physiological effects of copper signals.
Collapse
Affiliation(s)
| | - Christopher J Chang
- Departments of Chemistry, Berkeley, California 94720-1460; Molecular and Cell Biology, Berkeley, California 94720-1460; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California 94720-1460; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720.
| |
Collapse
|
68
|
Perrin L, Roudeau S, Carmona A, Domart F, Petersen JD, Bohic S, Yang Y, Cloetens P, Ortega R. Zinc and Copper Effects on Stability of Tubulin and Actin Networks in Dendrites and Spines of Hippocampal Neurons. ACS Chem Neurosci 2017; 8:1490-1499. [PMID: 28323401 DOI: 10.1021/acschemneuro.6b00452] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Zinc and copper ions can modulate the activity of glutamate receptors. However, labile zinc and copper ions likely represent only the tip of the iceberg and other neuronal functions are suspected for these metals in their bound state. We performed synchrotron X-ray fluorescence imaging with 30 nm resolution to image total biometals in dendrites and spines from hippocampal neurons. We found that zinc is distributed all along the dendrites while copper is mainly pinpointed within the spines. In spines, zinc content is higher within the spine head while copper is higher within the spine neck. Such specific distributions suggested metal interactions with cytoskeleton proteins. Zinc supplementation induced the increase of β-tubulin content in dendrites. Copper supplementation impaired the β-tubulin and F-actin networks. Copper chelation resulted in the decrease of F-actin content in dendrites, drastically reducing the number of F-actin protrusions. These results indicate that zinc is involved in microtubule stability whereas copper is essential for actin-dependent stability of dendritic spines, although copper excess can impair the dendritic cytoskeleton.
Collapse
Affiliation(s)
- Laura Perrin
- University of Bordeaux, CENBG,
UMR 5797, F-33170 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Stéphane Roudeau
- University of Bordeaux, CENBG,
UMR 5797, F-33170 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Asuncion Carmona
- University of Bordeaux, CENBG,
UMR 5797, F-33170 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Florelle Domart
- University of Bordeaux, CENBG,
UMR 5797, F-33170 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France
- University of Bordeaux, Interdisciplinary Institute for Neuroscience,
UMR 5297, 33000 Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience,
UMR 5297, 33000 Bordeaux, France
| | - Jennifer D. Petersen
- University of Bordeaux, Interdisciplinary Institute for Neuroscience,
UMR 5297, 33000 Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience,
UMR 5297, 33000 Bordeaux, France
- Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM,
University of Bordeaux, 33000 Bordeaux, France
| | - Sylvain Bohic
- ESRF, The European Synchrotron, 38000 Grenoble, France
- Inserm U1216, 38000 Grenoble, France
- Grenoble Institut
des Neurosciences, GIN University of Grenoble Alpes, 38000 Grenoble, France
| | - Yang Yang
- ESRF, The European Synchrotron, 38000 Grenoble, France
| | | | - Richard Ortega
- University of Bordeaux, CENBG,
UMR 5797, F-33170 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France
| |
Collapse
|
69
|
Genrikhs EE, Stelmashook EV, Turovetskii VB, Khaspekov LG, Isaev NK. Copper ions potentiate a decrease in the mitochondrial membrane potential in cultured cerebellar granule neurons during glucose deprivation. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712417020040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
70
|
Drew SC. The Case for Abandoning Therapeutic Chelation of Copper Ions in Alzheimer's Disease. Front Neurosci 2017; 11:317. [PMID: 28626387 PMCID: PMC5455140 DOI: 10.3389/fnins.2017.00317] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/18/2017] [Indexed: 12/26/2022] Open
Abstract
The "therapeutic chelation" approach to treating Alzheimer's disease (AD) evolved from the metals hypothesis, with the premise that small molecules can be designed to prevent transition metal-induced amyloid deposition and oxidative stress within the AD brain. Over more than 20 years, countless in vitro studies have been devoted to characterizing metal binding, its effect on Aβ aggregation, ROS production, and in vitro toxicity. Despite a lack of evidence for any clinical benefit, the conjecture that therapeutic chelation is an effective approach for treating AD remains widespread. Here, the author plays the devil's advocate, questioning the experimental evidence, the dogma, and the value of therapeutic chelation, with a major focus on copper ions.
Collapse
Affiliation(s)
- Simon C. Drew
- Department of Medicine, Royal Melbourne Hospital, University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|
71
|
Katerji M, Barada K, Jomaa M, Kobeissy F, Makkawi AK, Abou-Kheir W, Usta J. Chemosensitivity of U251 Cells to the Co-treatment of D-Penicillamine and Copper: Possible Implications on Wilson Disease Patients. Front Mol Neurosci 2017; 10:10. [PMID: 28197071 PMCID: PMC5281637 DOI: 10.3389/fnmol.2017.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/09/2017] [Indexed: 11/24/2022] Open
Abstract
D-Penicillamine (PA), a copper chelator, and one of the recommended drugs for treatment of Wilson disease (WD) has been reported to worsen the symptoms of patients with neurologic presentations. However, the cause of this paradoxical response has not been fully elucidated and requires further investigations. Accordingly, we have studied the in vitro effect of Copper (Cu) and/or PA treatment on human glioblastoma U251 cells as an in vitro model of Cu cytotoxicity. Treatment of U251 cells with either Cu or PA exerted no significant effect on their morphology, viability or ROS level. In contrast, co-treatment with Cu-PA caused a decrease in viability, altered glutathione and ceruloplasmin expression coupled with marked increase in ROS; depolarization of mitochondrial membrane potential; and an increase in Sub G0 phase; along with alpha-Fodrin proteolysis. These findings along with the absence of LDH release in these assays, suggest that combined Cu-PA exposure induced apoptosis in U251 cells. In addition, pre-/or co-treatment with antioxidants showed a protective effect, with catalase being more effective than N-acetyl cysteine or trolox in restoring viability and reducing generated ROS levels. By comparison, a similar analysis using other cell lines showed that rat PC12 cells were resistant to Cu and/or PA treatment, while the neuroblastoma cell line SH-SY5Y was sensitive to either compound alone, resulting in decreased viability and increased ROS level. Taken together, this study shows that glioblastoma U251 cells provide a model for Cu-PA cytotoxicity mediated by H2O2. We postulate that PA oxidation in presence of Cu yields H2O2 which in turn permeates the plasma membrane and induced apoptosis. However, other cell lines exhibited different responses to these treatments, potentially providing a model for cell type- specific cytotoxic responses in the nervous system. The sensitivity of different neural and glial cell types to Cu-PA treatment may therefore underlie the neurologic worsening occurring in some PA-treated WD patients. Our results also raise the possibility that the side effects of PA treatment might be reduced or prevented by administering antioxidants.
Collapse
Affiliation(s)
- Meghri Katerji
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| | - Kassem Barada
- Department of Internal Medicine, American University of Beirut Medical CenterBeirut, Lebanon
| | - Mustapha Jomaa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| | - Ahmad-Kareem Makkawi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| | - Julnar Usta
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
72
|
Wild K, August A, Pietrzik CU, Kins S. Structure and Synaptic Function of Metal Binding to the Amyloid Precursor Protein and its Proteolytic Fragments. Front Mol Neurosci 2017; 10:21. [PMID: 28197076 PMCID: PMC5281630 DOI: 10.3389/fnmol.2017.00021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/16/2017] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is ultimately linked to the amyloid precursor protein (APP). However, current research reveals an important synaptic function of APP and APP-like proteins (APLP1 and 2). In this context various neurotrophic and neuroprotective functions have been reported for the APP proteolytic fragments sAPPα, sAPPβ and the monomeric amyloid-beta peptide (Aβ). APP is a metalloprotein and binds copper and zinc ions. Synaptic activity correlates with a release of these ions into the synaptic cleft and dysregulation of their homeostasis is linked to different neurodegenerative diseases. Metal binding to APP or its fragments affects its structure and its proteolytic cleavage and therefore its physiological function at the synapse. Here, we summarize the current data supporting this hypothesis and provide a model of how these different mechanisms might be intertwined with each other.
Collapse
Affiliation(s)
- Klemens Wild
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg Heidelberg, Germany
| | - Alexander August
- Division of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz Mainz, Germany
| | - Stefan Kins
- Division of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany
| |
Collapse
|
73
|
Goch W, Bal W. Numerical Simulations Reveal Randomness of Cu(II) Induced Aβ Peptide Dimerization under Conditions Present in Glutamatergic Synapses. PLoS One 2017; 12:e0170749. [PMID: 28125716 PMCID: PMC5268396 DOI: 10.1371/journal.pone.0170749] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/10/2017] [Indexed: 12/22/2022] Open
Abstract
The interactions between the Aβ1-40 molecules species and the copper ions (Cu(II)) were intensively investigated due to their potential role in the development of the Alzheimer Disease (AD). The rate and the mechanism of the Cu(II)-Aβ complexes formation determines the aggregation pathway of the Aβ species, starting from smaller but more cytotoxic oligomers and ending up in large Aβ plaques, being the main hallmark of the AD. In our study we exploit the existing knowledge on the Cu(II)-Aβ interactions and create the theoretical model of the initial phase of the copper- driven Aβ aggregation mechanism. The model is based on the direct solution of the Chemical Master Equations, which capture the inherent stochastics of the considered system. In our work we argue that due to a strong Cu(II) affinity to Aβ and temporal accessibility of the Cu(II) ions during normal synaptic activity the aggregation driven by Cu(II) dominates the pure Aβ aggregation. We also demonstrate the dependence of the formation of different Cu(II)-Aβ complexes on the concentrations of reagents and the synaptic activity. Our findings correspond to recent experimental results and give a sound hypothesis on the AD development mechanisms.
Collapse
Affiliation(s)
- Wojciech Goch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
74
|
Gerber H, Wu F, Dimitrov M, Garcia Osuna GM, Fraering PC. Zinc and Copper Differentially Modulate Amyloid Precursor Protein Processing by γ-Secretase and Amyloid-β Peptide Production. J Biol Chem 2017; 292:3751-3767. [PMID: 28096459 DOI: 10.1074/jbc.m116.754101] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/13/2017] [Indexed: 11/06/2022] Open
Abstract
Recent evidence suggests involvement of biometal homeostasis in the pathological mechanisms in Alzheimer's disease (AD). For example, increased intracellular copper or zinc has been linked to a reduction in secreted levels of the AD-causing amyloid-β peptide (Aβ). However, little is known about whether these biometals modulate the generation of Aβ. In the present study we demonstrate in both cell-free and cell-based assays that zinc and copper regulate Aβ production by distinct molecular mechanisms affecting the processing by γ-secretase of its Aβ precursor protein substrate APP-C99. We found that Zn2+ induces APP-C99 dimerization, which prevents its cleavage by γ-secretase and Aβ production, with an IC50 value of 15 μm Importantly, at this concentration, Zn2+ also drastically raised the production of the aggregation-prone Aβ43 found in the senile plaques of AD brains and elevated the Aβ43:Aβ40 ratio, a promising biomarker for neurotoxicity and AD. We further demonstrate that the APP-C99 histidine residues His-6, His-13, and His-14 control the Zn2+-dependent APP-C99 dimerization and inhibition of Aβ production, whereas the increased Aβ43:Aβ40 ratio is substrate dimerization-independent and involves the known Zn2+ binding lysine Lys-28 residue that orientates the APP-C99 transmembrane domain within the lipid bilayer. Unlike zinc, copper inhibited Aβ production by directly targeting the subunits presenilin and nicastrin in the γ-secretase complex. Altogether, our data demonstrate that zinc and copper differentially modulate Aβ production. They further suggest that dimerization of APP-C99 or the specific targeting of individual residues regulating the production of the long, toxic Aβ species, may offer two therapeutic strategies for preventing AD.
Collapse
Affiliation(s)
- Hermeto Gerber
- From the Foundation Eclosion, CH-1228 Plan-Les-Ouates, and Campus Biotech Innovation Park, CH-1202 Geneva, Switzerland.,the Brain Mind Institute and School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland.,the Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland, and
| | - Fang Wu
- the Brain Mind Institute and School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland.,the Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Mitko Dimitrov
- the Brain Mind Institute and School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Guillermo M Garcia Osuna
- the Brain Mind Institute and School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Patrick C Fraering
- From the Foundation Eclosion, CH-1228 Plan-Les-Ouates, and Campus Biotech Innovation Park, CH-1202 Geneva, Switzerland, .,the Brain Mind Institute and School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
75
|
Ackerman CM, Lee S, Chang CJ. Analytical Methods for Imaging Metals in Biology: From Transition Metal Metabolism to Transition Metal Signaling. Anal Chem 2017; 89:22-41. [PMID: 27976855 PMCID: PMC5827935 DOI: 10.1021/acs.analchem.6b04631] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cheri M. Ackerman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sumin Lee
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
76
|
Abstract
Copper is an essential trace metal that is required for several important biological processes, however, an excess of copper can be toxic to cells. Therefore, systemic and cellular copper homeostasis is tightly regulated, but dysregulation of copper homeostasis may occur in disease states, resulting either in copper deficiency or copper overload and toxicity. This chapter will give an overview on the biological roles of copper and of the mechanisms involved in copper uptake, storage, and distribution. In addition, we will describe potential mechanisms of the cellular toxicity of copper and copper oxide nanoparticles. Finally, we will summarize the current knowledge on the connection of copper toxicity with neurodegenerative diseases.
Collapse
Affiliation(s)
- Felix Bulcke
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Bremen, Germany
| | - Ivo Florin Scheiber
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany.
- Center for Environmental Research and Sustainable Technology, Bremen, Germany.
| |
Collapse
|
77
|
Jafri AJA, Arfuzir NNN, Lambuk L, Iezhitsa I, Agarwal R, Agarwal P, Razali N, Krasilnikova A, Kharitonova M, Demidov V, Serebryansky E, Skalny A, Spasov A, Yusof APM, Ismail NM. Protective effect of magnesium acetyltaurate against NMDA-induced retinal damage involves restoration of minerals and trace elements homeostasis. J Trace Elem Med Biol 2017; 39:147-154. [PMID: 27908408 DOI: 10.1016/j.jtemb.2016.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/05/2016] [Accepted: 09/14/2016] [Indexed: 02/08/2023]
Abstract
Glutamate-mediated excitotoxicity involving N-methyl-d-aspartate (NMDA) receptors has been recognized as a final common outcome in pathological conditions involving death of retinal ganglion cells (RGCs). Overstimulation of NMDA receptors results in influx of calcium (Ca) and sodium (Na) ions and efflux of potassium (K). NMDA receptors are blocked by magnesium (Mg). Such changes due to NMDA overstimulation are also associated with not only the altered levels of minerals but also that of trace elements and redox status. Both the decreased and elevated levels of trace elements such as iron (Fe), zinc (Zn), copper (Cu) affect NMDA receptor excitability and redox status. Manganese (Mn), and selenium (Se) are also part of antioxidant defense mechanisms in retina. Additionally endogenous substances such as taurine also affect NMDA receptor activity and retinal redox status. Therefore, the aim of this study was to evaluate the effect of Mg acetyltaurate (MgAT) on the retinal mineral and trace element concentration, oxidative stress, retinal morphology and retinal cell apoptosis in rats after-NMDA exposure. One group of Sprague Dawley rats received intravitreal injection of vehicle while 4 other groups similarly received NMDA (160nmolL-1). Among the NMDA injected groups, 3 groups also received MgAT (320nmolL-1) as pre-treatment, co-treatment or post-treatment. Seven days after intravitreal injection, rats were sacrificed, eyes were enucleated and retinae were isolated for estimation of mineral (Ca, Na, K, Mg) and trace element (Mn, Cu, Fe, Se, Zn) concentration using Inductively Coupled Plasma (DRC ICP-MS) techniques (NexION 300D), retinal oxidative stress using Elisa, retinal morphology using H&E staining and retinal cell apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Intravitreal NMDA injection resulted in increased concentration of Ca (4.6 times, p<0.0001), Mg (1.5 times, p<0.01), Na (3 times, p<0.0001) and K (2.3 times, p<0.0001) compared to vehicle injected group. This was accompanied with significant increase of Ca/Mg and Na/K ratios, 3 and 1.27 times respectively, compared to control group. The trace elements such as Cu, Fe and Zn also showed a significant increase amounting to 3.3 (p<0.001), 2.3 (p<0.0001) and 3 (p<0.0001) times respectively compared to control group. Se was increased by 60% (p<0.005). Pre-treatment with MgAT abolished effect of NMDA on minerals and trace elements more effectively than co- and post-treatment. Similar observations were made for retinal oxidative stress, retinal morphology and retinal cell apoptosis. In conclusion, current study demonstrated the protective effect of MgAT against NMDA-induced oxidative stress and retinal cell apoptosis. This effect of MgAT was associated with restoration of retinal concentrations of minerals and trace elements. Further studies are warranted to explore the precise molecular targets of MgAT. Nevertheless, MgAT seems a potential candidate in the management of diseases involving NMDA-induced excitotoxicity.
Collapse
Affiliation(s)
- Azliana Jusnida Ahmad Jafri
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Natasha Najwa Nor Arfuzir
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Lidawani Lambuk
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Igor Iezhitsa
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia; Volgograd State Medical University, Research Institute of Pharmacology, Volgograd, Russia.
| | - Renu Agarwal
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Puneet Agarwal
- International Medical University, IMU Clinical School, Seremban, Malaysia
| | - Norhafiza Razali
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Anna Krasilnikova
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Maria Kharitonova
- Volgograd State Medical University, Research Institute of Pharmacology, Volgograd, Russia; Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Innsbruck, Center for Chemistry and Biomedicine, Innrain 80 - 82/III, A-6020, Innsbruck, Austria
| | - Vasily Demidov
- Russian Society of Trace Elements in Medicine, 46 Zemlyanoy Val str., Moscow, 105064, Russia
| | - Evgeny Serebryansky
- Russian Society of Trace Elements in Medicine, 46 Zemlyanoy Val str., Moscow, 105064, Russia
| | - Anatoly Skalny
- Russian Society of Trace Elements in Medicine, 46 Zemlyanoy Val str., Moscow, 105064, Russia; Peoples' Friendship University of Russia, Moscow, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Alexander Spasov
- Volgograd State Medical University, Research Institute of Pharmacology, Volgograd, Russia
| | - Ahmad Pauzi Md Yusof
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Nafeeza Mohd Ismail
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| |
Collapse
|
78
|
Abstract
Alzheimer's disease (AD) is the most common form of adult neurode-generation and is characterised by progressive loss of cognitive function leading to death. The neuropathological hallmarks include extracellular amyloid plaque accumulation in affected regions of the brain, formation of intraneuronal neurofibrillary tangles, chronic neuroinflammation, oxidative stress, and abnormal biometal homeostasis. Of the latter, major changes in copper (Cu) levels and localisation have been identified in AD brain, with accumulation of Cu in amyloid deposits, together with deficiency of Cu in some brain regions. The amyloid precursor protein (APP) and the amyloid beta (Aβ) peptide both have Cu binding sites, and interaction with Cu can lead to potentially neurotoxic outcomes through generation of reactive oxygen species. In addition, AD patients have systemic changes to Cu metabolism, and altered Cu may also affect neuroinflammatory outcomes in AD. Although we still have much to learn about Cu homeostasis in AD patients and its role in disease aetiopathology, therapeutic approaches for regulating Cu levels and interactions with Cu-binding proteins in the brain are currently being developed. This review will examine how Cu is associated with pathological changes in the AD brain and how these may be targeted for therapeutic intervention.
Collapse
|
79
|
Choi BY, Kim IY, Kim JH, Kho AR, Lee SH, Lee BE, Sohn M, Koh JY, Suh SW. Zinc transporter 3 (ZnT3) gene deletion reduces spinal cord white matter damage and motor deficits in a murine MOG-induced multiple sclerosis model. Neurobiol Dis 2016; 94:205-12. [DOI: 10.1016/j.nbd.2016.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/20/2016] [Accepted: 06/27/2016] [Indexed: 12/25/2022] Open
|
80
|
Stelmashook EV, Genrikhs EE, Aleksandrova OP, Amelkina GA, Zelenova EA, Isaev NK. NMDA-receptors are involved in Cu2+/paraquat-induced death of cultured cerebellar granule neurons. BIOCHEMISTRY (MOSCOW) 2016; 81:899-905. [DOI: 10.1134/s0006297916080113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
81
|
Han M, Chang J, Kim J. Loss of divalent metal transporter 1 function promotes brain copper accumulation and increases impulsivity. J Neurochem 2016; 138:918-28. [PMID: 27331785 DOI: 10.1111/jnc.13717] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022]
Abstract
The divalent metal transporter 1 (DMT1) is a major iron transporter required for iron absorption and erythropoiesis. Loss of DMT1 function results in microcytic anemia. While iron plays an important role in neural function, the behavioral consequences of DMT1 deficiency are largely unexplored. The goal of this study was to define the neurobehavioral and neurochemical phenotypes of homozygous Belgrade (b/b) rats that carry DMT1 mutation and explore potential mechanisms of these phenotypes. The b/b rats (11-12 weeks old) and their healthy littermate heterozygous (+/b) Belgrade rats were subject to elevated plus maze tasks. The b/b rats spent more time in open arms, entered open arms more frequently and traveled more distance in the maze than +/b controls, suggesting increased impulsivity. Impaired emotional behavior was associated with down-regulation of GABA in the hippocampus in b/b rats. Also, b/b rats showed increased GABAA receptor α1 and GABA transporter, indicating altered GABAergic function. Furthermore, metal analysis revealed that b/b rats have decreased total iron, but normal non-heme iron, in the brain. Interestingly, b/b rats exhibited unusually high copper levels in most brain regions, including striatum and hippocampus. Quantitative PCR analysis showed that both copper importer copper transporter 1 and exporter copper-transporting ATPase 1 were up-regulated in the hippocampus from b/b rats. Finally, b/b rats exhibited increased 8-isoprostane levels and decreased glutathione/glutathione disulfide ratio in the hippocampus, reflecting elevated oxidative stress. Combined, our results suggest that copper loading in DMT1 deficiency could induce oxidative stress and impair GABA metabolism, which promote impulsivity-like behavior. Iron-copper model: Mutations in the divalent metal transporter 1 (DMT1) decrease body iron status and up-regulate copper absorption, which leads to copper loading in the brain and consequently increases metal-induced oxidative stress. This event disrupts GABAergic neurotransmission and promotes impulsivity-like behavior. Our model provides better understanding of physiological risks associated with imbalanced metal metabolism in mental function and, more specifically, the interactions with GABA and redox control in the treatment of emotional disorders.
Collapse
Affiliation(s)
- Murui Han
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA.
| |
Collapse
|
82
|
Greenough MA, Ramírez Munoz A, Bush AI, Opazo CM. Metallo-pathways to Alzheimer's disease: lessons from genetic disorders of copper trafficking. Metallomics 2016; 8:831-9. [PMID: 27397642 DOI: 10.1039/c6mt00095a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Copper is an essential metal ion that provides catalytic function to numerous enzymes and also regulates neurotransmission and intracellular signaling. Conversely, a deficiency or excess of copper can cause chronic disease in humans. Menkes and Wilson disease are two rare heritable disorders of copper transport that are characterized by copper deficiency and copper overload, respectively. Changes to copper status are also a common feature of several neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). In the case of AD, which is characterized by brain copper depletion, changes in the distribution of copper has been linked with various aspects of the disease process; protein aggregation, defective protein degradation, oxidative stress, inflammation and mitochondrial dysfunction. Although AD is a multifactorial disease that is likely caused by a breakdown in multiple cellular pathways, copper and other metal ions such as iron and zinc play a central role in many of these cellular processes. Pioneering work by researchers who have studied relatively rare copper transport diseases has shed light on potential metal ion related disease mechanisms in other forms of neurodegeneration such as AD.
Collapse
Affiliation(s)
- M A Greenough
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
83
|
Matheou CJ, Younan ND, Viles JH. The Rapid Exchange of Zinc(2+) Enables Trace Levels to Profoundly Influence Amyloid-β Misfolding and Dominates Assembly Outcomes in Cu(2+)/Zn(2+) Mixtures. J Mol Biol 2016; 428:2832-46. [PMID: 27320389 DOI: 10.1016/j.jmb.2016.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/19/2016] [Accepted: 05/22/2016] [Indexed: 11/18/2022]
Abstract
The misfolding and self-assembly of amyloid-β (Aβ) into oligomers and fibres is fundamental to Alzheimer's disease pathology. Alzheimer's disease is a multifaceted disease. One factor that is thought to have a significant role in disease aetiology is Zn(2+) homeostasis, which is disrupted in the brains of Alzheimer's disease sufferers and has been shown to modulate Alzheimer's symptoms in animal models. Here, we investigate how the kinetics of Aβ fibre growth are affected at a range of Zn(2+) concentrations and we use transmission electron microscopy to characterise the aggregate assemblies formed. We demonstrate that for Aβ(1-40), and Aβ(1-42), as little as 0.01mol equivalent of Zn(2+) (100nM) is sufficient to greatly perturb the formation of amyloid fibres irreversibly. Instead, Aβ(1-40) assembles into short, rod-like structures that pack tightly together into ordered stacks, whereas Aβ(1-42) forms short, crooked assemblies that knit together to form a mesh of disordered tangles. Our data suggest that a small number of Zn(2+) ions are able to influence a great many Aβ molecules through the rapid exchange of Zn(2+) between Aβ peptides. Surprisingly, although Cu(2+) binds to Aβ 10,000 times tighter than Zn(2+), the effect of Zn(2+) on Aβ assembly dominates in Cu(2+)/Zn(2+) mixtures, suggesting that trace levels of Zn(2+) must have a profound effect on extracellular Aβ accumulation. Trace Zn(2+) levels profoundly influence Aβ assembly even at concentrations weaker than its affinity for Aβ. These observations indicate that inhibitors of fibre assembly do not necessarily have to be at high concentration and affinity to have a profound impact.
Collapse
Affiliation(s)
- Christian J Matheou
- School of Biological and Biochemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Nadine D Younan
- School of Biological and Biochemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - John H Viles
- School of Biological and Biochemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
84
|
Wezynfeld NE, Stefaniak E, Stachucy K, Drozd A, Płonka D, Drew SC, Krężel A, Bal W. Resistance of Cu(Aβ4-16) to Copper Capture by Metallothionein-3 Supports a Function for the Aβ4-42 Peptide as a Synaptic Cu(II) Scavenger. Angew Chem Int Ed Engl 2016; 55:8235-8. [PMID: 27238224 DOI: 10.1002/anie.201511968] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/23/2015] [Indexed: 01/16/2023]
Abstract
Aβ4-42 is a major species of Aβ peptide in the brains of both healthy individuals and those affected by Alzheimer's disease. It has recently been demonstrated to bind Cu(II) with an affinity approximately 3000 times higher than the commonly studied Aβ1-42 and Aβ1-40 peptides, which are implicated in the pathogenesis of Alzheimer's disease. Metallothionein-3, a protein considered to orchestrate copper and zinc metabolism in the brain and provide antioxidant protection, was shown to extract Cu(II) from Aβ1-40 when acting in its native Zn7 MT-3 form. This reaction is assumed to underlie the neuroprotective effect of Zn7 MT-3 against Aβ toxicity. In this work, we used the truncated model peptides Aβ1-16 and Aβ4-16 to demonstrate that the high-affinity Cu(II) complex of Aβ4-16 is resistant to Zn7 MT-3 reactivity. This indicates that the analogous complex of the full-length peptide Cu(Aβ4-42) will not yield copper to MT-3 in the brain, thus supporting the concept of a physiological role for Aβ4-42 as a Cu(II) scavenger in the synaptic cleft.
Collapse
Affiliation(s)
- Nina E Wezynfeld
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Ewelina Stefaniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Kinga Stachucy
- Laboratory of Chemical Biology, University of Wrocław, Poland
| | - Agnieszka Drozd
- Laboratory of Chemical Biology, University of Wrocław, Poland
| | - Dawid Płonka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Simon C Drew
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Australia
| | - Artur Krężel
- Laboratory of Chemical Biology, University of Wrocław, Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
85
|
Wezynfeld NE, Stefaniak E, Stachucy K, Drozd A, Płonka D, Drew SC, Krężel A, Bal W. Resistance of Cu(Aβ4
–
16) to Copper Capture by Metallothionein‐3 Supports a Function for the Aβ4
–
42 Peptide as a Synaptic Cu
II
Scavenger. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nina E. Wezynfeld
- Institute of Biochemistry and Biophysics Polish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
| | - Ewelina Stefaniak
- Institute of Biochemistry and Biophysics Polish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
| | - Kinga Stachucy
- Laboratory of Chemical Biology University of Wrocław Poland
| | | | - Dawid Płonka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
| | - Simon C. Drew
- Florey Department of Neuroscience and Mental Health The University of Melbourne Australia
| | - Artur Krężel
- Laboratory of Chemical Biology University of Wrocław Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics Polish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
| |
Collapse
|
86
|
Glucose deprivation stimulates Cu2+ toxicity in cultured cerebellar granule neurons and Cu2+-dependent zinc release. Toxicol Lett 2016; 250-251:29-34. [DOI: 10.1016/j.toxlet.2016.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/22/2016] [Accepted: 04/01/2016] [Indexed: 11/18/2022]
|
87
|
Halevas E, Nday CM, Salifoglou A. Hybrid catechin silica nanoparticle influence on Cu(II) toxicity and morphological lesions in primary neuronal cells. J Inorg Biochem 2016; 163:240-249. [PMID: 27301643 DOI: 10.1016/j.jinorgbio.2016.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/07/2016] [Accepted: 04/12/2016] [Indexed: 02/01/2023]
Abstract
Morphological alterations compromising inter-neuronal connectivity may be directly linked to learning-memory deficits in Central Nervous System neurodegenerative processes. Cu(II)-mediated oxidative stress plays a pivotal role in regulating redox reactions generating reactive oxygen species (ROS) and reactive nitrogen species (RNS), known contributors to Alzheimer's disease (AD) pathology. The antioxidant properties of flavonoid catechin have been well-documented in neurodegenerative processes. However, the impact that catechin encapsulation in nanoparticles may have on neuronal survival and morphological lesions has been poorly demonstrated. To investigate potential effects of nano-encapsulated catechin on neuronal survival and morphological aberrations in primary rat hippocampal neurons, poly(ethyleneglycol) (PEG) and cetyltrimethylammonium bromide (CTAB)-modified silica nanoparticles were synthesized. Catechin was loaded on silica nanoparticles in a concentration-dependent fashion, and release studies were carried out. Further physicochemical characterization of the new nano-materials included elemental analysis, particle size, z-potential, FT-IR, Brunauer-Emmett-Teller (BET), thermogravimetric (TGA), and scanning electron microscopy (SEM) analysis in order to optimize material composition linked to the delivery of loaded catechin in the hippocampal cellular milieu. The findings reveal that, under Cu(II)-induced oxidative stress, the loading ability of the PEGylated/CTAB silica nanoparticles was concentration-dependent, based on their catechin release profile. The overall bio-activity profile of the new hybrid nanoparticles a) denoted their enhanced protective activity against oxidative stress and hippocampal cell survival compared to previously reported quercetin, b) revealed that morphological lesions affecting neuronal integrity can be counterbalanced at high copper concentrations, and c) warrants in-depth perusal of molecular events underlying neuronal function and degeneration, collectively linked to preventive nanotechnology in neurodegeneration.
Collapse
Affiliation(s)
- E Halevas
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - C M Nday
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - A Salifoglou
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
88
|
Arcos-López T, Qayyum M, Rivillas-Acevedo L, Miotto MC, Grande-Aztatzi R, Fernández CO, Hedman B, Hodgson KO, Vela A, Solomon EI, Quintanar L. Spectroscopic and Theoretical Study of Cu(I) Binding to His111 in the Human Prion Protein Fragment 106-115. Inorg Chem 2016; 55:2909-22. [PMID: 26930130 PMCID: PMC4804749 DOI: 10.1021/acs.inorgchem.5b02794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 12/19/2022]
Abstract
The ability of the cellular prion protein (PrP(C)) to bind copper in vivo points to a physiological role for PrP(C) in copper transport. Six copper binding sites have been identified in the nonstructured N-terminal region of human PrP(C). Among these sites, the His111 site is unique in that it contains a MKHM motif that would confer interesting Cu(I) and Cu(II) binding properties. We have evaluated Cu(I) coordination to the PrP(106-115) fragment of the human PrP protein, using NMR and X-ray absorption spectroscopies and electronic structure calculations. We find that Met109 and Met112 play an important role in anchoring this metal ion. Cu(I) coordination to His111 is pH-dependent: at pH >8, 2N1O1S species are formed with one Met ligand; in the range of pH 5-8, both methionine (Met) residues bind to Cu(I), forming a 1N1O2S species, where N is from His111 and O is from a backbone carbonyl or a water molecule; at pH <5, only the two Met residues remain coordinated. Thus, even upon drastic changes in the chemical environment, such as those occurring during endocytosis of PrP(C) (decreased pH and a reducing potential), the two Met residues in the MKHM motif enable PrP(C) to maintain the bound Cu(I) ions, consistent with a copper transport function for this protein. We also find that the physiologically relevant Cu(I)-1N1O2S species activates dioxygen via an inner-sphere mechanism, likely involving the formation of a copper(II) superoxide complex. In this process, the Met residues are partially oxidized to sulfoxide; this ability to scavenge superoxide may play a role in the proposed antioxidant properties of PrP(C). This study provides further insight into the Cu(I) coordination properties of His111 in human PrP(C) and the molecular mechanism of oxygen activation by this site.
Collapse
Affiliation(s)
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, California 94395, United States
| | | | - Marco C. Miotto
- Max Planck
Laboratory for Structural Biology, Chemistry and Molecular Biophysics
of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones
para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | | | - Claudio O. Fernández
- Max Planck
Laboratory for Structural Biology, Chemistry and Molecular Biophysics
of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones
para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource (SSRL), SLAC, Stanford University, Menlo Park, California 94025, United States
| | - Keith O. Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94395, United States
- Stanford Synchrotron Radiation Lightsource (SSRL), SLAC, Stanford University, Menlo Park, California 94025, United States
| | - Alberto Vela
- Departamento
de Química, Cinvestav, Gustavo A. Madero, 07360 México
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94395, United States
- Stanford Synchrotron Radiation Lightsource (SSRL), SLAC, Stanford University, Menlo Park, California 94025, United States
| | | |
Collapse
|
89
|
Furman R, Murray IVJ, Schall HE, Liu Q, Ghiwot Y, Axelsen PH. Amyloid Plaque-Associated Oxidative Degradation of Uniformly Radiolabeled Arachidonic Acid. ACS Chem Neurosci 2016; 7:367-77. [PMID: 26800372 DOI: 10.1021/acschemneuro.5b00316] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is a frequently observed feature of Alzheimer's disease, but its pathological significance is not understood. To explore the relationship between oxidative stress and amyloid plaques, uniformly radiolabeled arachidonate was introduced into transgenic mouse models of Alzheimer's disease via intracerebroventricular injection. Uniform labeling with carbon-14 is used here for the first time, and made possible meaningful quantification of arachidonate oxidative degradation products. The injected arachidonate entered a fatty acid pool that was subject to oxidative degradation in both transgenic and wild-type animals. However, the extent of its degradation was markedly greater in the hippocampus of transgenic animals where amyloid plaques were abundant. In human Alzheimer's brain, plaque-associated proteins were post-translationally modified by hydroxynonenal, a well-known oxidative degradation product of arachidonate. These results suggest that several recurring themes in Alzheimer's pathogenesis, amyloid β proteins, transition metal ions, oxidative stress, and apolipoprotein isoforms, may be involved in a common mechanism that has the potential to explain both neuronal loss and fibril formation in this disease.
Collapse
Affiliation(s)
- Ran Furman
- Department
of Pharmacology, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ian V. J. Murray
- Department of Neuroscience and Experimental Therapeutics, Texas A & M University, College Station, Texas 77807, United States
- Department
of Physiology and Neuroscience, St. George’s University, St. George’s, Grenada
| | - Hayley E. Schall
- Department of Neuroscience and Experimental Therapeutics, Texas A & M University, College Station, Texas 77807, United States
| | - Qiwei Liu
- Department
of Pharmacology, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yonatan Ghiwot
- Department of Neuroscience and Experimental Therapeutics, Texas A & M University, College Station, Texas 77807, United States
| | - Paul H. Axelsen
- Department
of Pharmacology, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
90
|
Frączyk T, Zawisza IA, Goch W, Stefaniak E, Drew SC, Bal W. On the ability of CuAβ1-x peptides to form ternary complexes: Neurotransmitter glutamate is a competitor while not a ternary partner. J Inorg Biochem 2016; 158:5-10. [PMID: 26970944 DOI: 10.1016/j.jinorgbio.2016.02.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/23/2016] [Accepted: 02/28/2016] [Indexed: 01/21/2023]
Abstract
In the light of conflicting reports on the ability of copper(II) complexes of amyloid beta (Aβ) peptides to form ternary complexes with small molecules co-present in the biological milieu, we performed a study of coordination equilibria in the system containing Cu(II) ions, the Aβ1-16 peptide, glutamic acid and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid, HEPES) buffer. Using potentiometry, isothermal titration calorimetry (ITC), UV-visible spectroscopy and EPR, we concluded that glutamic acid was not able to form such a ternary complex, but can efficiently compete for the Cu(II) ion with the Aβ peptide at Glu concentrations relevant for the synaptic cleft. We also found that the literature constants for Cu(II) complexes with Glu were overestimated, but this effect was partially compensated by the formation of a ternary Cu(Glu)(HEPES) complex. Our results indicate that small molecules co-present with Cu(II) ions and Aβ peptides in the synaptic cleft are not very likely to enhance Cu(II)/Aβ interactions, but instead should be considered as a Cu(II) buffering system that may help prevent these interactions and participate in Cu(II) clearance from the synaptic cleft.
Collapse
Affiliation(s)
- Tomasz Frączyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Izabela A Zawisza
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Wojciech Goch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Ewelina Stefaniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Simon C Drew
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, 3010, Australia
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
91
|
Spalloni A, Longone P. Cognitive impairment in amyotrophic lateral sclerosis, clues from the SOD1 mouse. Neurosci Biobehav Rev 2016; 60:12-25. [DOI: 10.1016/j.neubiorev.2015.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022]
|
92
|
Maureira C, Letelier JC, Alvarez O, Delgado R, Vergara C. Copper enhances cellular and network excitabilities, and improves temporal processing in the rat hippocampus. Eur J Neurosci 2015; 42:3066-80. [PMID: 26470005 DOI: 10.1111/ejn.13104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/03/2015] [Indexed: 11/27/2022]
Abstract
Copper, an ion with many important metabolic functions, has also been proposed to have a role as modulator on neuronal function, mostly based on its effects on voltage- and neurotransmitter-gated conductance as well as on neurological symptoms of patients with altered copper homeostasis. Nevertheless, the mechanisms by which copper exerts its neuromodulatory effects have not been clearly established in a functional neuronal network. Using rat hippocampus slices as a neuronal network model, the effects of copper in the range of 10-100 nm were tested on the intrinsic, synaptic and network properties of the CA1 region. Most of the previously described effects of this cation were in the micromolar range of copper concentrations. The current results indicate that copper is a multifaceted neuromodulator, having effects that may be grouped into two categories: (i) activity enhancement, by modulating synaptic communication and action potential (AP) conductances; and (ii) temporal processing and correlation extraction, by improving reliability and depressing inhibition. Specifically it was found that copper hyperpolarizes AP firing threshold, enhances neuronal and network excitability, modifies CA3-CA1 pathway gain, enhances the frequency of spontaneous synaptic events, decreases inhibitory network activity, and improves AP timing reliability. Moreover, copper chelation by bathocuproine decreases spontaneous network spiking activity. These results allow the proposal that copper affects the network activity from cellular to circuit levels on a moment-by-moment basis, and should be considered a crucial functional component of hippocampal neuronal circuitry.
Collapse
Affiliation(s)
- Carlos Maureira
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800003, Chile
| | - Juan Carlos Letelier
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800003, Chile
| | - Osvaldo Alvarez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800003, Chile
| | - Ricardo Delgado
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800003, Chile
| | - Cecilia Vergara
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800003, Chile
| |
Collapse
|
93
|
The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion. Sci Rep 2015; 5:15253. [PMID: 26482532 PMCID: PMC4651146 DOI: 10.1038/srep15253] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
The conversion of the prion protein (PrPC) into prions plays a key
role in transmissible spongiform encephalopathies. Despite the importance for
pathogenesis, the mechanism of prion formation has escaped detailed characterization
due to the insoluble nature of prions. PrPC interacts with copper
through octarepeat and non-octarepeat binding sites. Copper coordination to the
non-octarepeat region has garnered interest due to the possibility that this
interaction may impact prion conversion. We used X-ray absorption spectroscopy to
study copper coordination at pH 5.5 and 7.0 in human PrPC constructs,
either wild-type (WT) or carrying pathological mutations. We show that mutations and
pH cause modifications of copper coordination in the non-octarepeat region. In the
WT at pH 5.5, copper is anchored to His96 and His111, while at pH 7 it is
coordinated by His111. Pathological point mutations alter the copper coordination at
acidic conditions where the metal is anchored to His111. By using in vitro
approaches, cell-based and computational techniques, we propose a model whereby
PrPC coordinating copper with one His in the non-octarepeat
region converts to prions at acidic condition. Thus, the non-octarepeat region may
act as the long-sought-after prion switch, critical for disease onset and
propagation.
Collapse
|
94
|
Barritt JD, Viles JH. Truncated Amyloid-β(11-40/42) from Alzheimer Disease Binds Cu2+ with a Femtomolar Affinity and Influences Fiber Assembly. J Biol Chem 2015; 290:27791-802. [PMID: 26408196 DOI: 10.1074/jbc.m115.684084] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 01/05/2023] Open
Abstract
Alzheimer disease coincides with the formation of extracellular amyloid plaques composed of the amyloid-β (Aβ) peptide. Aβ is typically 40 residues long (Aβ(1-40)) but can have variable C and N termini. Naturally occurring N-terminally truncated Aβ(11-40/42) is found in the cerebrospinal fluid and has a similar abundance to Aβ(1-42), constituting one-fifth of the plaque load. Based on its specific N-terminal sequence we hypothesized that truncated Aβ(11-40/42) would have an elevated affinity for Cu(2+). Various spectroscopic techniques, complemented with transmission electron microscopy, were used to determine the properties of the Cu(2+)-Aβ(11-40/42) interaction and how Cu(2+) influences amyloid fiber formation. We show that Cu(2+)-Aβ(11-40) forms a tetragonal complex with a 34 ± 5 fm dissociation constant at pH 7.4. This affinity is 3 orders of magnitude tighter than Cu(2+) binding to Aβ(1-40/42) and more than an order of magnitude tighter than that of serum albumin, the extracellular Cu(2+) transport protein. Furthermore, Aβ(11-40/42) forms fibers twice as fast as Aβ(1-40) with a very different morphology, forming bundles of very short amyloid rods. Substoichiometric Cu(2+) drastically perturbs Aβ(11-40/42) assembly, stabilizing much longer fibers. The very tight fm affinity of Cu(2+) for Aβ(11-40/42) explains the high levels of Cu(2+) observed in Alzheimer disease plaques.
Collapse
Affiliation(s)
- Joseph D Barritt
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | - John H Viles
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
95
|
D'Ambrosi N, Rossi L. Copper at synapse: Release, binding and modulation of neurotransmission. Neurochem Int 2015; 90:36-45. [PMID: 26187063 DOI: 10.1016/j.neuint.2015.07.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/30/2015] [Accepted: 07/10/2015] [Indexed: 10/23/2022]
Abstract
Over the last decade, a piece of the research studying copper role in biological systems was devoted to unravelling a still elusive, but extremely intriguing, aspect that is the involvement of copper in synaptic function. These studies were prompted to provide a rationale to the finding that copper is released in the synaptic cleft upon depolarization. The copper pump ATP7A, which mutations are responsible for diseases with a prominent neurodegenerative component, seems to play a pivotal role in the release of copper at synapses. Furthermore, it was found that, when in the synaptic cleft, copper can control, directly or indirectly, the activity of the neurotransmitter receptors (NMDA, AMPA, GABA, P2X receptors), thus affecting excitability. In turn, neurotransmission can affect copper trafficking and delivery in neuronal cells. Furthermore, it was reported that copper can also modulate synaptic vesicles trafficking and the interaction between proteins of the secretory pathways. Interestingly, proteins with a still unclear role in neuronal system though associated with the pathogenesis of neurodegenerative diseases (the amyloid precursor protein, APP, the prion protein, PrP, α-synuclein, α-syn) show copper-binding domains. They may act as copper buffer at synapses and participate in the interplay between copper and the neurotransmitters receptors. Given that copper dysmetabolism occurs in several diseases affecting central and peripheral nervous system, the findings on the contribution of copper in synaptic transmission, beside its more consolidate role as a neuronal enzymes cofactor, may open new insights for therapy interventions.
Collapse
Affiliation(s)
- Nadia D'Ambrosi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
96
|
Pedersen JT, Borg CB, Michaels TCT, Knowles TPJ, Faller P, Teilum K, Hemmingsen L. Aggregation-Prone Amyloid-β⋅CuIISpecies Formed on the Millisecond Timescale under Mildly Acidic Conditions. Chembiochem 2015; 16:1293-7. [DOI: 10.1002/cbic.201500080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 12/24/2022]
|
97
|
Voltage-gated calcium channels: Determinants of channel function and modulation by inorganic cations. Prog Neurobiol 2015; 129:1-36. [PMID: 25817891 DOI: 10.1016/j.pneurobio.2014.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 12/15/2014] [Accepted: 12/27/2014] [Indexed: 11/20/2022]
Abstract
Voltage-gated calcium channels (VGCCs) represent a key link between electrical signals and non-electrical processes, such as contraction, secretion and transcription. Evolved to achieve high rates of Ca(2+)-selective flux, they possess an elaborate mechanism for selection of Ca(2+) over foreign ions. It has been convincingly linked to competitive binding in the pore, but the fundamental question of how this is reconcilable with high rates of Ca(2+) transfer remains unanswered. By virtue of their similarity to Ca(2+), polyvalent cations can interfere with the function of VGCCs and have proven instrumental in probing the mechanisms underlying selective permeation. Recent emergence of crystallographic data on a set of Ca(2+)-selective model channels provides a structural framework for permeation in VGCCs, and warrants a reconsideration of their diverse modulation by polyvalent cations, which can be roughly separated into three general mechanisms: (I) long-range interactions with charged regions on the surface, affecting the local potential sensed by the channel or influencing voltage-sensor movement by repulsive forces (electrostatic effects), (II) short-range interactions with sites in the ion-conducting pathway, leading to physical obstruction of the channel (pore block), and in some cases (III) short-range interactions with extracellular binding sites, leading to non-electrostatic modifications of channel gating (allosteric effects). These effects, together with the underlying molecular modifications, provide valuable insights into the function of VGCCs, and have important physiological and pathophysiological implications. Allosteric suppression of some of the pore-forming Cavα1-subunits (Cav2.3, Cav3.2) by Zn(2+) and Cu(2+) may play a major role for the regulation of excitability by endogenous transition metal ions. The fact that these ions can often traverse VGCCs can contribute to the detrimental intracellular accumulation of metal ions following excessive release of endogenous Cu(2+) and Zn(2+) or exposure to non-physiological toxic metal ions.
Collapse
|
98
|
Cu2+ accentuates distinct misfolding of Aβ(1–40) and Aβ(1–42) peptides, and potentiates membrane disruption. Biochem J 2015; 466:233-42. [DOI: 10.1042/bj20141168] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cu2+ homoeostasis has been linked to Alzheimer's disease. We demonstrate that Cu2+ causes oligomer and protofibril formation for Aβ(1–42) only, and promotes membrane disruption. Differences in synaptic toxicity of Aβ(1–42) and Aβ(1–40) may be enhanced by the presence of Cu2+.
Collapse
|
99
|
Amyloid precursor protein dimerization and synaptogenic function depend on copper binding to the growth factor-like domain. J Neurosci 2014; 34:11159-72. [PMID: 25122912 DOI: 10.1523/jneurosci.0180-14.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence suggests that the copper-binding amyloid precursor protein (APP) has an essential synaptic function. APP synaptogenic function depends on trans-directed dimerization of the extracellular E1 domain encompassing a growth factor-like domain (GFLD) and a copper-binding domain (CuBD). Here we report the 1.75 Å crystal structure of the GFLD in complex with a copper ion bound with high affinity to an extended hairpin loop at the dimerization interface. In coimmunoprecipitation assays copper binding promotes APP interaction, whereas mutations in the copper-binding sites of either the GFLD or CuBD result in a drastic reduction in APP cis-orientated dimerization. We show that copper is essential and sufficient to induce trans-directed dimerization of purified APP. Furthermore, a mixed culture assay of primary neurons with HEK293 cells expressing different APP mutants revealed that APP potently promotes synaptogenesis depending on copper binding to the GFLD. Together, these findings demonstrate that copper binding to the GFLD of APP is required for APP cis-/trans-directed dimerization and APP synaptogenic function. Thus, neuronal activity or disease-associated changes in copper homeostasis likely go along with altered APP synaptic function.
Collapse
|
100
|
Anandhan A, Rodriguez-Rocha H, Bohovych I, Griggs AM, Zavala-Flores L, Reyes-Reyes EM, Seravalli J, Stanciu LA, Lee J, Rochet JC, Khalimonchuk O, Franco R. Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways. Neurobiol Dis 2014; 81:76-92. [PMID: 25497688 DOI: 10.1016/j.nbd.2014.11.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/03/2014] [Accepted: 11/26/2014] [Indexed: 12/14/2022] Open
Abstract
Gene multiplications or point mutations in alpha (α)-synuclein are associated with familial and sporadic Parkinson's disease (PD). An increase in copper (Cu) levels has been reported in the cerebrospinal fluid and blood of PD patients, while occupational exposure to Cu has been suggested to augment the risk to develop PD. We aimed to elucidate the mechanisms by which α-synuclein and Cu regulate dopaminergic cell death. Short-term overexpression of wild type (WT) or mutant A53T α-synuclein had no toxic effect in human dopaminergic cells and primary midbrain cultures, but it exerted a synergistic effect on Cu-induced cell death. Cell death induced by Cu was potentiated by overexpression of the Cu transporter protein 1 (Ctr1) and depletion of intracellular glutathione (GSH) indicating that the toxic effects of Cu are linked to alterations in its intracellular homeostasis. Using the redox sensor roGFP, we demonstrated that Cu-induced oxidative stress was primarily localized in the cytosol and not in the mitochondria. However, α-synuclein overexpression had no effect on Cu-induced oxidative stress. WT or A53T α-synuclein overexpression exacerbated Cu toxicity in dopaminergic and yeast cells in the absence of α-synuclein aggregation. Cu increased autophagic flux and protein ubiquitination. Impairment of autophagy by overexpression of a dominant negative Atg5 form or inhibition of the ubiquitin/proteasome system (UPS) with MG132 enhanced Cu-induced cell death. However, only inhibition of the UPS stimulated the synergistic toxic effects of Cu and α-synuclein overexpression. Our results demonstrate that α-synuclein stimulates Cu toxicity in dopaminergic cells independent from its aggregation via modulation of protein degradation pathways.
Collapse
Affiliation(s)
- Annadurai Anandhan
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Humberto Rodriguez-Rocha
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Iryna Bohovych
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amy M Griggs
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Laura Zavala-Flores
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Javier Seravalli
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lia A Stanciu
- Weldon School of Biomedical Engineering and School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - Jaekwon Lee
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Oleh Khalimonchuk
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|