51
|
Clark GM, Lum JAG. Procedural memory and speed of grammatical processing: Comparison between typically developing children and language impaired children. RESEARCH IN DEVELOPMENTAL DISABILITIES 2017; 71:237-247. [PMID: 29073489 DOI: 10.1016/j.ridd.2017.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/08/2017] [Accepted: 10/15/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Procedural memory has been proposed to underlie the acquisition of a range of skills including grammar, reading, and motor skills. In developmental language disorder (DLD) it has been suggested that procedural memory problems lead to the difficulties with grammar in this group. AIMS This study aimed to extend previous research by exploring associations between procedural memory and a range of cognitive skills, in children with and without language impairments. METHODS AND PROCEDURES Twenty children with DLD and 20 age-matched non-language impaired children undertook tasks assessing procedural memory, grammatical processing speed, single word and nonword reading, and motor skills (as indexed by a pegboard task). OUTCOMES AND RESULTS For the DLD group, no significant correlations between procedural memory and any of the variables were observed. The typically developing group showed a significant correlation (r=.482, p<0.05) between the measure of procedural memory and grammatical processing speed. Correlations between procedural memory and the remaining variables were all non-significant for this group. CONCLUSIONS AND IMPLICATIONS This study provides new evidence showing that grammatical processing speed is correlated with procedural memory in typically developing children. Furthermore, results suggest that the relationship with procedural memory does not extend to reading or the types of motor skills used on a pegboard task. For the DLD group the pattern of result indicate grammatical processing, reading, and motor sequencing are not supported by procedural memory or a common memory system.
Collapse
Affiliation(s)
- Gillian M Clark
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Australia.
| | - Jarrad A G Lum
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Australia
| |
Collapse
|
52
|
Sidtis D, Sidtis JJ. Subcortical Effects on Voice and Fluency in Dysarthria: Observations from Subthalamic Nucleus Stimulation. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2017; 7:392. [PMID: 29456879 PMCID: PMC5814133 DOI: 10.4172/2161-0460.1000392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Parkinson's disease (PD), caused by basal ganglia dysfunction, is associated with motor disturbances including dysarthria. Stimulation of the subthalamic nucleus, a preferred treatment targeting basal ganglia function, improves features of the motor disorder, but has uncertain effects on speech.We studied speech during contrasting stimulation states to reveal subcortical effects on voice and articulation. Measures were made on selected samples of spontaneous and repeated speech. METHODS Persons with Parkinson's disease (PWP) who had undergone bilateral deep brain stimulation of the subthalamic nucleus (DBS-STN) provided spontaneous speech samples and then repeated portions of their monologue both on and off stimulation. Excerpts were presented in a listening protocol probing intelligibility. Also analysed were a continuous phrase repetition task and a second spontaneous speech sample. Fundamental frequency (F0), harmonic-to-noise ratio (HNR), jitter, shimmer and fluency were measured in these three speech samples performed with DBS stimulation on and off. RESULTS During subcortical stimulation, spontaneous excerpts were less intelligible than repeated excerpts. F0 and HNR were higher and shimmer was decreased in repetition and stimulation. Articulatory dysfluencies were increased for spontaneous speech and during stimulation in all three speech samples. CONCLUSION Deep brain stimulation disrupts fluency and improves voice in spontaneous speech, reflecting an inverse influence of subcortical systems on articulatory posturing and laryngeal mechanisms. Better voice and less dysfluency in repetition may occur because an external model reduces the speech planning burden, as seen for gait and arm reach. These orthogonal results for fluency versus phonatory competence may account for ambivalent reports from dysarthric speakers and reveal the complexity of subcortical control of motor speech.
Collapse
Affiliation(s)
- Diana Sidtis
- Department of Communicative Disorders, New York University, New York 10012, USA
- Brain and Behaviour Laboratory, Geriatrics Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA
| | - John J Sidtis
- Brain and Behaviour Laboratory, Geriatrics Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA
- Department of Psychiatry, NYU Langone Medical Center, New York 10016, USA
| |
Collapse
|
53
|
Hinzen W, Rosselló J, Morey C, Camara E, Garcia-Gorro C, Salvador R, de Diego-Balaguer R. A systematic linguistic profile of spontaneous narrative speech in pre-symptomatic and early stage Huntington's disease. Cortex 2017; 100:71-83. [PMID: 28859906 PMCID: PMC5845634 DOI: 10.1016/j.cortex.2017.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/27/2017] [Accepted: 07/21/2017] [Indexed: 01/02/2023]
Abstract
Cognitive decline accompanying the clinically more salient motor symptoms of Huntington's disease (HD) has been widely noted and can precede motor symptoms onset. Less clear is how such decline bears on language functions in everyday life, though a small number of experimental studies have revealed difficulties with the application of rule-based aspects of language in early stages of the disease. Here we aimed to determine whether there is a systematic linguistic profile that characterizes spontaneous narrative speech in both pre-manifest and/or early manifest HD, and how it is related to striatal degeneration and neuropsychological profiles. Twenty-eight early-stage patients (19 manifest and 9 gene-carriers in the pre-manifest stage), matched with 28 controls, participated in a story-telling task. Speech was blindly scored by independent raters according to fine-grained linguistic variables distributed over 5 domains for which composite scores were computed (Quantitative, Fluency, Reference, Connectivity, and Concordance). Voxel-based morphometry (VBM) was used to link specific brain degeneration patterns to loci of linguistic decline. In all of these domains, significant differences were observed between groups. Deficits in Reference and Connectivity were seen in the pre-manifest stage, where no other neuropsychological impairment was detected. Among HD patients, there was a significant positive correlation only between the values in the Quantitative domain and gray matter volume bilaterally in the putamen and pallidum. These results fill the gap of qualitative data of spontaneous narrative speech in HD and reveal that HD is characterized by systematic linguistic impairments leading to dysfluencies and disorganization in core domains of grammatical organization. This includes the referential use of noun phrases and the embedding of clauses, which mediate crucial dimensions of meaning in language in its normal social use. Moreover, such impairment is seen prior to motor symptoms onset and when standardized neuropsychological test profiles are otherwise normal.
Collapse
Affiliation(s)
- Wolfram Hinzen
- ICREA (Catalan Institution for Research and Advanced Studies), Barcelona, Spain; Department of Translation and Language Sciences, Universitat Pompeu Fabra, Barcelona, Spain; FIDMAG Germanes Hospitalaries Research Foundation, Barcelona, Spain
| | - Joana Rosselló
- Department of Catalan Philology and General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | - Cati Morey
- Department of Catalan Philology and General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | - Estela Camara
- Cognition and Brain Plasticity Unit, IDIBELL, L'Hospitalet de Llobregat, Spain; Department of Cognition, Development and Educational Psychology, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Clara Garcia-Gorro
- Cognition and Brain Plasticity Unit, IDIBELL, L'Hospitalet de Llobregat, Spain; Department of Cognition, Development and Educational Psychology, Universitat de Barcelona, Barcelona, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalaries Research Foundation, Barcelona, Spain
| | - Ruth de Diego-Balaguer
- ICREA (Catalan Institution for Research and Advanced Studies), Barcelona, Spain; Cognition and Brain Plasticity Unit, IDIBELL, L'Hospitalet de Llobregat, Spain; Department of Cognition, Development and Educational Psychology, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
54
|
Hawes SL, Salinas AG, Lovinger DM, Blackwell KT. Long-term plasticity of corticostriatal synapses is modulated by pathway-specific co-release of opioids through κ-opioid receptors. J Physiol 2017; 595:5637-5652. [PMID: 28449351 DOI: 10.1113/jp274190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/24/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Both endogenous opioids and opiate drugs of abuse modulate learning of habitual and goal-directed actions, and can also modify long-term plasticity of corticostriatal synapses. Striatal projection neurons of the direct pathway co-release the opioid neuropeptide dynorphin which can inhibit dopamine release via κ-opioid receptors. Theta-burst stimulation of corticostriatal fibres produces long-term potentiation (LTP) in striatal projection neurons when measured using whole-cell patch recording. Optogenetic activation of direct pathway striatal projection neurons inhibits LTP while reducing dopamine release. Because the endogenous release of opioids is activity dependent, this modulation of synaptic plasticity represents a negative feedback mechanism that may limit runaway enhancement of striatal neuron activity in response to drugs of abuse. ABSTRACT Synaptic plasticity in the striatum adjusts behaviour adaptively during skill learning, or maladaptively in the case of addiction. Just as dopamine plays a critical role in synaptic plasticity underlying normal skill learning and addiction, endogenous and exogenous opiates also modulate learning and addiction-related striatal plasticity. Though the role of opioid receptors in long-term depression in striatum has been characterized, their effect on long-term potentiation (LTP) remains unknown. In particular, direct pathway (dopamine D1 receptor-containing; D1R-) spiny projection neurons (SPNs) co-release the opioid neuropeptide dynorphin, which acts at presynaptic κ-opioid receptors (KORs) on dopaminergic afferents and can negatively regulate dopamine release. Therefore, we evaluated the interaction of co-released dynorphin and KOR on striatal LTP. We optogenetically facilitate the release of endogenous dynorphin from D1R-SPNs in brain slice while using whole-cell patch recording to measure changes in the synaptic response of SPNs following theta-burst stimulation (TBS) of cortical afferents. Our results demonstrate that TBS evokes corticostriatal LTP, and that optogenetic activation of D1R-SPNs during induction impairs LTP. Additional experiments demonstrate that optogenetic activation of D1R-SPNs reduces stimulation-evoked dopamine release and that bath application of a KOR antagonist provides full rescue of both LTP induction and dopamine release during optogenetic activation of D1R-SPNs. These results suggest that an increase in the opioid neuropeptide dynorphin is responsible for reduced TBS LTP and illustrate a physiological phenomenon whereby heightened D1R-SPN activity can regulate corticostriatal plasticity. Our findings have important implications for learning in addictive states marked by elevated direct pathway activation.
Collapse
Affiliation(s)
- Sarah L Hawes
- George Mason University, Krasnow Institute for Advanced Study, Fairfax, VA, 22030-4444, USA
| | - Armando G Salinas
- George Mason University, Krasnow Institute for Advanced Study, Fairfax, VA, 22030-4444, USA.,Laboratory for Integrative Neuroscience, Section on Synaptic Pharmacology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, Section on Synaptic Pharmacology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Kim T Blackwell
- George Mason University, Krasnow Institute for Advanced Study, Fairfax, VA, 22030-4444, USA
| |
Collapse
|
55
|
Chen X, Zhang Q, Wang J, Liu J, Zhang W, Qi S, Xu H, Li C, Zhang J, Zhao H, Meng S, Li D, Lu H, Aschner M, Li B, Yin H, Chen J, Luo W. Cognitive and neuroimaging changes in healthy immigrants upon relocation to a high altitude: A panel study. Hum Brain Mapp 2017; 38:3865-3877. [PMID: 28480993 DOI: 10.1002/hbm.23635] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Cognitive and neuroimaging changes under chronic high-altitude exposure have never been followed up and dynamically assessed. OBJECTIVES To investigate the cognitive and brain structural/functional alterations associated with chronic high-altitude exposure. METHODS Sixty-nine college freshmen that were immigrating to Tibet were enrolled and followed up for two years. Neuropsychological tests, including verbal/visual memory and simple/recognition reaction time, were utilized to determine whether the subjects' cognitive function had changed in response to chronic high-altitude exposure. Structural magnetic resonance imaging (MRI) and resting-state functional MRI (rs-fMRI) were used to quantify brain gray matter (GM) volumes, regional homogeneity (ReHo) and functional connectivity (FC) alterations before and after exposure. Areas with changes in both GM and ReHo were used as seeds in the inter-regional FC analysis. RESULTS The subjects showed significantly lower accuracy in memory tests and longer reaction times after exposure, and neuroimaging analysis showed markedly decreased GM volumes and ReHo in the left putamen. FC analysis seeding of the left putamen showed significantly weakened FC with the superior temporal gyrus, anterior/middle cingulate gyrus and other brain regions. In addition, decreased ReHo was found in the superior temporal gyrus, superior parietal lobule, anterior cingulate gyrus and medial frontal gyrus, while increased ReHo was found in the hippocampus. Differences in ReHo/FC before and after high-altitude exposure in multiple regions were significantly correlated with the cognitive changes. CONCLUSION Cognitive functions such as working memory and psychomotor function are impaired during chronic high-altitude exposure. The putamen may play an important role in chronic hypoxia-induced cognitive impairment. Hum Brain Mapp 38:3865-3877, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoming Chen
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Qian Zhang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Jiye Wang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Jie Liu
- Department of Radiology, General Hospital of Tibet Military Region, Lhasa, China
| | - Wenbin Zhang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Shun Qi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Xu
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Li
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinsong Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haitao Zhao
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shanshan Meng
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Dan Li
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Huanyu Lu
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York
| | - Bin Li
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingyuan Chen
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
56
|
Habit formation generates secondary modules that emulate the efficiency of evolved behavior. Behav Brain Sci 2017; 40:e214. [DOI: 10.1017/s0140525x16001734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractWe discuss the evolutionary implications of connections drawn between the authors' learned “secondary modules” and the habit-formation system that appears to be ubiquitous among vertebrates. Prior to any subsequent coevolution with social learning, we suggest that aspects of general intelligence likely arose in tandem with mechanisms of adaptive motor control that rely on basal ganglia circuitry.
Collapse
|
57
|
Chalavi S, Adab HZ, Pauwels L, Beets IAM, van Ruitenbeek P, Boisgontier MP, Monteiro TS, Maes C, Sunaert S, Swinnen SP. Anatomy of Subcortical Structures Predicts Age-Related Differences in Skill Acquisition. Cereb Cortex 2016; 28:459-473. [DOI: 10.1093/cercor/bhw382] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sima Chalavi
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Hamed Zivari Adab
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Lisa Pauwels
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Iseult A M Beets
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
- BrainCTR, Lilid bvba, 3290 Diest, Belgium
| | - Peter van Ruitenbeek
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
- Faculty of Psychology and Neuroscience, Department of Clinical Psychological Science, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Matthieu P Boisgontier
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Thiago Santos Monteiro
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Celine Maes
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Stefan Sunaert
- Department of Imaging and Pathology, Biomedical Sciences Group, Translational MRI Unit, KU Leuven, 3000 Leuven, Belgium
| | - Stephan P Swinnen
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
- Leuven Research Institute for Neuroscience & Disease (LIND), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
58
|
Jarvers C, Brosch T, Brechmann A, Woldeit ML, Schulz AL, Ohl FW, Lommerzheim M, Neumann H. Reversal Learning in Humans and Gerbils: Dynamic Control Network Facilitates Learning. Front Neurosci 2016; 10:535. [PMID: 27909395 PMCID: PMC5112252 DOI: 10.3389/fnins.2016.00535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/03/2016] [Indexed: 12/27/2022] Open
Abstract
Biologically plausible modeling of behavioral reinforcement learning tasks has seen great improvements over the past decades. Less work has been dedicated to tasks involving contingency reversals, i.e., tasks in which the original behavioral goal is reversed one or multiple times. The ability to adjust to such reversals is a key element of behavioral flexibility. Here, we investigate the neural mechanisms underlying contingency-reversal tasks. We first conduct experiments with humans and gerbils to demonstrate memory effects, including multiple reversals in which subjects (humans and animals) show a faster learning rate when a previously learned contingency re-appears. Motivated by recurrent mechanisms of learning and memory for object categories, we propose a network architecture which involves reinforcement learning to steer an orienting system that monitors the success in reward acquisition. We suggest that a model sensory system provides feature representations which are further processed by category-related subnetworks which constitute a neural analog of expert networks. Categories are selected dynamically in a competitive field and predict the expected reward. Learning occurs in sequentialized phases to selectively focus the weight adaptation to synapses in the hierarchical network and modulate their weight changes by a global modulator signal. The orienting subsystem itself learns to bias the competition in the presence of continuous monotonic reward accumulation. In case of sudden changes in the discrepancy of predicted and acquired reward the activated motor category can be switched. We suggest that this subsystem is composed of a hierarchically organized network of dis-inhibitory mechanisms, dubbed a dynamic control network (DCN), which resembles components of the basal ganglia. The DCN selectively activates an expert network, corresponding to the current behavioral strategy. The trace of the accumulated reward is monitored such that large sudden deviations from the monotonicity of its evolution trigger a reset after which another expert subnetwork can be activated-if it has already been established before-or new categories can be recruited and associated with novel behavioral patterns.
Collapse
Affiliation(s)
- Christian Jarvers
- Faculty of Engineering, Computer Science and Psychology, Institute of Neural Information Processing, Ulm UniversityUlm, Germany
| | - Tobias Brosch
- Faculty of Engineering, Computer Science and Psychology, Institute of Neural Information Processing, Ulm UniversityUlm, Germany
| | - André Brechmann
- Special Lab Non-Invasive Brain Imaging, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Marie L. Woldeit
- Department Systems Physiology, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Andreas L. Schulz
- Department Systems Physiology, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Frank W. Ohl
- Department Systems Physiology, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Marcel Lommerzheim
- Special Lab Non-Invasive Brain Imaging, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Heiko Neumann
- Faculty of Engineering, Computer Science and Psychology, Institute of Neural Information Processing, Ulm UniversityUlm, Germany
| |
Collapse
|
59
|
Berthet P, Lindahl M, Tully PJ, Hellgren-Kotaleski J, Lansner A. Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity. Front Neural Circuits 2016; 10:53. [PMID: 27493625 PMCID: PMC4954853 DOI: 10.3389/fncir.2016.00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
The brain enables animals to behaviorally adapt in order to survive in a complex and dynamic environment, but how reward-oriented behaviors are achieved and computed by its underlying neural circuitry is an open question. To address this concern, we have developed a spiking model of the basal ganglia (BG) that learns to dis-inhibit the action leading to a reward despite ongoing changes in the reward schedule. The architecture of the network features the two pathways commonly described in BG, the direct (denoted D1) and the indirect (denoted D2) pathway, as well as a loop involving striatum and the dopaminergic system. The activity of these dopaminergic neurons conveys the reward prediction error (RPE), which determines the magnitude of synaptic plasticity within the different pathways. All plastic connections implement a versatile four-factor learning rule derived from Bayesian inference that depends upon pre- and post-synaptic activity, receptor type, and dopamine level. Synaptic weight updates occur in the D1 or D2 pathways depending on the sign of the RPE, and an efference copy informs upstream nuclei about the action selected. We demonstrate successful performance of the system in a multiple-choice learning task with a transiently changing reward schedule. We simulate lesioning of the various pathways and show that a condition without the D2 pathway fares worse than one without D1. Additionally, we simulate the degeneration observed in Parkinson's disease (PD) by decreasing the number of dopaminergic neurons during learning. The results suggest that the D1 pathway impairment in PD might have been overlooked. Furthermore, an analysis of the alterations in the synaptic weights shows that using the absolute reward value instead of the RPE leads to a larger change in D1.
Collapse
Affiliation(s)
- Pierre Berthet
- Numerical Analysis and Computer Science, Stockholm UniversityStockholm, Sweden
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
| | - Mikael Lindahl
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
| | - Philip J. Tully
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
- Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, UK
| | - Jeanette Hellgren-Kotaleski
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
- Department of Neuroscience, Karolinska InstituteStockholm, Sweden
| | - Anders Lansner
- Numerical Analysis and Computer Science, Stockholm UniversityStockholm, Sweden
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholm, Sweden
- Stockholm Brain Institute, Karolinska InstituteStockholm, Sweden
| |
Collapse
|
60
|
Abstract
Unidirectional connections from the cortex to the matrix of the corpus striatum initiate the cortico-basal ganglia (BG)-thalamocortical loop, thought to be important in momentary action selection and in longer-term fine tuning of behavioural repertoire; a discrete set of striatal compartments, striosomes, has the complementary role of registering or anticipating reward that shapes corticostriatal plasticity. Re-entrant signals traversing the cortico-BG loop impact predominantly frontal cortices, conveyed through topographically ordered output channels; by contrast, striatal input signals originate from a far broader span of cortex, and are far more divergent in their termination. The term 'disclosed loop' is introduced to describe this organisation: a closed circuit that is open to outside influence at the initial stage of cortical input. The closed circuit component of corticostriatal afferents is newly dubbed 'operative', as it is proposed to establish the bid for action selection on the part of an incipient cortical action plan; the broader set of converging corticostriatal afferents is described as contextual. A corollary of this proposal is that every unit of the striatal volume, including the long, C-shaped tail of the caudate nucleus, should receive a mandatory component of operative input, and hence include at least one area of BG-recipient cortex amongst the sources of its corticostriatal afferents. Individual operative afferents contact twin classes of GABAergic striatal projection neuron (SPN), distinguished by their neurochemical character, and onward circuitry. This is the basis of the classic direct and indirect pathway model of the cortico-BG loop. Each pathway utilises a serial chain of inhibition, with two such links, or three, providing positive and negative feedback, respectively. Operative co-activation of direct and indirect SPNs is, therefore, pictured to simultaneously promote action, and to restrain it. The balance of this rival activity is determined by the contextual inputs, which summarise the external and internal sensory environment, and the state of ongoing behavioural priorities. Notably, the distributed sources of contextual convergence upon a striatal locus mirror the transcortical network harnessed by the origin of the operative input to that locus, thereby capturing a similar set of contingencies relevant to determining action. The disclosed loop formulation of corticostriatal and subsequent BG loop circuitry, as advanced here, refines the operating rationale of the classic model and allows the integration of more recent anatomical and physiological data, some of which can appear at variance with the classic model. Equally, it provides a lucid functional context for continuing cellular studies of SPN biophysics and mechanisms of synaptic plasticity.
Collapse
|
61
|
Gustafsson J, Ternström S, Södersten M, Schalling E. Motor-Learning-Based Adjustment of Ambulatory Feedback on Vocal Loudness for Patients With Parkinson's Disease. J Voice 2016; 30:407-15. [DOI: 10.1016/j.jvoice.2015.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
|
62
|
Constans A, Pin-Barre C, Temprado JJ, Decherchi P, Laurin J. Influence of Aerobic Training and Combinations of Interventions on Cognition and Neuroplasticity after Stroke. Front Aging Neurosci 2016; 8:164. [PMID: 27445801 PMCID: PMC4928497 DOI: 10.3389/fnagi.2016.00164] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/21/2016] [Indexed: 12/17/2022] Open
Abstract
Stroke often aggravated age-related cognitive impairments that strongly affect several aspects of quality of life. However, few studies are, to date, focused on rehabilitation strategies that could improve cognition. Among possible interventions, aerobic training is well known to enhance cardiovascular and motor functions but may also induce beneficial effects on cognitive functions. To assess the effectiveness of aerobic training on cognition, it seems necessary to know whether training promotes the neuroplasticity in brain areas involved in cognitive functions. In the present review, we first explore in both human and animal how aerobic training could improve cognition after stroke by highlighting the neuroplasticity mechanisms. Then, we address the potential effect of combinations between aerobic training with other interventions, including resistance exercises and pharmacological treatments. In addition, we postulate that classic recommendations for aerobic training need to be reconsidered to target both cognition and motor recovery because the current guidelines are only focused on cardiovascular and motor recovery. Finally, methodological limitations of training programs and cognitive function assessment are also developed in this review to clarify their effectiveness in stroke patients.
Collapse
Affiliation(s)
| | - Caroline Pin-Barre
- Aix-Marseille Université, CNRS, ISM, UMR 7287Marseille, France; Université Nice Sophia Antipolis, LAMHESS, UPRES EA 6309Nice, France
| | | | | | - Jérôme Laurin
- Aix-Marseille Université, CNRS, ISM, UMR 7287 Marseille, France
| |
Collapse
|
63
|
Reappraising striatal D1- and D2-neurons in reward and aversion. Neurosci Biobehav Rev 2016; 68:370-386. [PMID: 27235078 DOI: 10.1016/j.neubiorev.2016.05.021] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/16/2016] [Accepted: 05/22/2016] [Indexed: 12/31/2022]
Abstract
The striatum has been involved in complex behaviors such as motor control, learning, decision-making, reward and aversion. The striatum is mainly composed of medium spiny neurons (MSNs), typically divided into those expressing dopamine receptor D1, forming the so-called direct pathway, and those expressing D2 receptor (indirect pathway). For decades it has been proposed that these two populations exhibit opposing control over motor output, and recently, the same dichotomy has been proposed for valenced behaviors. Whereas D1-MSNs mediate reinforcement and reward, D2-MSNs have been associated with punishment and aversion. In this review we will discuss pharmacological, genetic and optogenetic studies that indicate that there is still controversy to what concerns the role of striatal D1- and D2-MSNs in this type of behaviors, highlighting the need to reconsider the early view that they mediate solely opposing aspects of valenced behaviour.
Collapse
|
64
|
Rock C, Zurita H, Wilson C, Apicella AJ. An inhibitory corticostriatal pathway. eLife 2016; 5. [PMID: 27159237 PMCID: PMC4905740 DOI: 10.7554/elife.15890] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/08/2016] [Indexed: 12/05/2022] Open
Abstract
Anatomical and physiological studies have led to the assumption that the dorsal striatum receives exclusively excitatory afferents from the cortex. Here we test the hypothesis that the dorsal striatum receives also GABAergic projections from the cortex. We addressed this fundamental question by taking advantage of optogenetics and directly examining the functional effects of cortical GABAergic inputs to spiny projection neurons (SPNs) of the mouse auditory and motor cortex. We found that the cortex, via corticostriatal somatostatin neurons (CS-SOM), has a direct inhibitory influence on the output of the striatum SPNs. Our results describe a corticostriatal long-range inhibitory circuit (CS-SOM inhibitory projections → striatal SPNs) underlying the control of spike timing/generation in SPNs and attributes a specific function to a genetically defined type of cortical interneuron in corticostriatal communication. DOI:http://dx.doi.org/10.7554/eLife.15890.001 The striatum is located beneath the cerebral cortex, where it contributes to processes including learning and movement. The Spanish anatomist Ramon y Cajal, working in the early 20th century, was the first to observe individual neurons extending from the cortex to the striatum. Cajal published drawings of these neurons in his now celebrated anatomical papers, but knew little about their properties. In the 1980s, advances in techniques for labeling individual cells made it possible to study these neurons in detail. The results suggested that the pathways are exclusively excitatory: that is, the cortical neurons always increase the activity of their partners in the striatum. However, this result made it difficult to explain why electrically stimulating the cortex can sometimes reduce or inhibit the activity of the striatum. To reconcile these facts, most people assumed that inhibition must occur when excitatory cortical neurons activate networks of inhibitory cells within the striatum itself. Rock et al. now challenge this view by providing anatomical and physiological evidence for the existence of long-range inhibitory pathways from the cortex to the striatum in the mouse brain. These inhibitory neurons project from the auditory and motor regions of the cortex, and contain a substance called somatostatin. These neurons form connections with a specific type of striatal neuron called medium spiny neurons, which in turn project to other brain regions outside the striatum. The inhibitory cortical neurons can alter the activity of the medium spiny neurons, and can therefore directly control the output of the striatum. The discovery that the striatum receives both excitatory and inhibitory inputs from cortex suggests that the timing and relative strength of these inputs can affect the activity of the striatum. Future experiments should examine whether this is a general mechanism by which sensory stimuli can influence the processes controlled by the striatum, such as movement. DOI:http://dx.doi.org/10.7554/eLife.15890.002
Collapse
Affiliation(s)
- Crystal Rock
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, United States
| | - Hector Zurita
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, United States
| | - Charles Wilson
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, United States
| | - Alfonso Junior Apicella
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, United States
| |
Collapse
|
65
|
Sweatt JD. Neural plasticity and behavior - sixty years of conceptual advances. J Neurochem 2016; 139 Suppl 2:179-199. [PMID: 26875778 DOI: 10.1111/jnc.13580] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 02/06/2023]
Abstract
This brief review summarizes 60 years of conceptual advances that have demonstrated a role for active changes in neuronal connectivity as a controller of behavior and behavioral change. Seminal studies in the first phase of the six-decade span of this review firmly established the cellular basis of behavior - a concept that we take for granted now, but which was an open question at the time. Hebbian plasticity, including long-term potentiation and long-term depression, was then discovered as being important for local circuit refinement in the context of memory formation and behavioral change and stabilization in the mammalian central nervous system. Direct demonstration of plasticity of neuronal circuit function in vivo, for example, hippocampal neurons forming place cell firing patterns, extended this concept. However, additional neurophysiologic and computational studies demonstrated that circuit development and stabilization additionally relies on non-Hebbian, homoeostatic, forms of plasticity, such as synaptic scaling and control of membrane intrinsic properties. Activity-dependent neurodevelopment was found to be associated with cell-wide adjustments in post-synaptic receptor density, and found to occur in conjunction with synaptic pruning. Pioneering cellular neurophysiologic studies demonstrated the critical roles of transmembrane signal transduction, NMDA receptor regulation, regulation of neural membrane biophysical properties, and back-propagating action potential in critical time-dependent coincidence detection in behavior-modifying circuits. Concerning the molecular mechanisms underlying these processes, regulation of gene transcription was found to serve as a bridge between experience and behavioral change, closing the 'nature versus nurture' divide. Both active DNA (de)methylation and regulation of chromatin structure have been validated as crucial regulators of gene transcription during learning. The discovery of protein synthesis dependence on the acquisition of behavioral change was an influential discovery in the neurochemistry of behavioral modification. Higher order cognitive functions such as decision making and spatial and language learning were also discovered to hinge on neural plasticity mechanisms. The role of disruption of these processes in intellectual disabilities, memory disorders, and drug addiction has recently been clarified based on modern genetic techniques, including in the human. The area of neural plasticity and behavior has seen tremendous advances over the last six decades, with many of those advances being specifically in the neurochemistry domain. This review provides an overview of the progress in the area of neuroplasticity and behavior over the life-span of the Journal of Neurochemistry. To organize the broad literature base, the review collates progress into fifteen broad categories identified as 'conceptual advances', as viewed by the author. The fifteen areas are delineated in the figure above. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- J David Sweatt
- Department of Neurobiology, Evelyn F. McKnight Brain Institute and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
66
|
Gazzina S, Premi E, Zanella I, Biasiotto G, Archetti S, Cosseddu M, Scarpini E, Galimberti D, Serpente M, Gasparotti R, Padovani A, Borroni B. Iron in Frontotemporal Lobar Degeneration: A New Subcortical Pathological Pathway? NEURODEGENER DIS 2015; 16:172-8. [PMID: 26613252 DOI: 10.1159/000440843] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Brain iron homeostasis dysregulation has been widely related to neurodegeneration. In particular, human haemochromatosis protein (HFE) is involved in iron metabolism, and HFE H63D polymorphism has been related to the risk of amyotrophic lateral sclerosis and Alzheimer's disease. Recently, iron accumulation in the basal ganglia of frontotemporal lobar degeneration (FTLD) patients has been described. OBJECTIVE To explore the relationship between HFE genetic variation and demographic, clinical and imaging characteristics in a large cohort of FTLD patients. METHODS A total of 110 FTLD patients underwent neuropsychological and imaging evaluation and blood sampling for HFE polymorphism determination. HFE H63D polymorphism was considered in the present study. Two imaging approaches were applied to evaluate the effect of HFE genetic variation on brain atrophy, namely voxel-based morphometry and region of interest-based probabilistic approach (SPM8; Wellcome Trust Centre for Neuroimaging). RESULTS FTLD patients carrying the D* genotype (H/D or D/D) showed greater atrophy in the basal ganglia, bilaterally, compared to H/H carriers (x, y, z: -22, -4, 0; T = 3.45; cluster size: 33 voxels, x, y, z: 24, 4, -2; T = 3.38; cluster size: 36 voxels). The former group had even more pronounced behavioural symptoms, as defined by the Frontal Behavioural Inventory total scores. CONCLUSIONS Our data suggest that H63D polymorphism could represent a disease-modifying gene in FTLD, fostering iron deposition in the basal ganglia. This suggests a new possible mechanism of FTLD-associated neurodegeneration.
Collapse
Affiliation(s)
- Stefano Gazzina
- Neurology Unit, Centre for Ageing Brain and Neurodegenerative Disorders, Spedali Civili, University of Brescia, Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Bailey DJ, Saldanha CJ. The importance of neural aromatization in the acquisition, recall, and integration of song and spatial memories in passerines. Horm Behav 2015; 74:116-24. [PMID: 26122300 PMCID: PMC9366902 DOI: 10.1016/j.yhbeh.2015.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 01/13/2023]
Abstract
This article is part of a Special Issue "Estradiol and cognition". In addition to their well-studied and crucial effects on brain development and aging, an increasing number of investigations across vertebrate species indicate that estrogens like 17β-estradiol (E2) have pronounced and rapid effects on cognitive function. The incidence and regulation of the E2-synthesizing enzyme aromatase at the synapse in regions of the brain responsible for learning, memory, social communication and other complex cognitive processes suggest that local E2 production and action affect the acute and chronic activity of individual neurons and circuits. Songbirds in particular are excellent models for the study of this "synaptocrine" hormone provision given that aromatase is abundantly expressed in neuronal soma, dendrites, and at the synapse across many brain regions in both sexes. Additionally, songbirds readily acquire and recall memories in laboratory settings, and their stereotyped behaviors may be manipulated and measured with relative ease. This leads to a rather unparalleled advantage in the use of these animals in studies of the role of neural aromatization in cognition. In this review we describe the results of a number of experiments in songbird species with a focus on the influence of synaptic E2 provision on two cognitive processes: auditory discrimination reliant on the caudomedial nidopallium (NCM), a telencephalic region likely homologous to the auditory cortex in mammals, and spatial memory dependent on the hippocampus. Data from these studies are providing evidence that the local and acute provision of E2 modulates the hormonal, electrical, and cognitive outputs of the vertebrate brain and aids in memory acquisition, retention, and perhaps the confluence of memory systems.
Collapse
Affiliation(s)
- David J Bailey
- Biology, St. Norbert College, De Pere, WI 54115, United States.
| | - Colin J Saldanha
- Department of Biology, American University, Washington, DC 20016, United States; Department of Psychology, American University, Washington, DC 20016, United States.
| |
Collapse
|
68
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|
69
|
Carrillo-Reid L, Lopez-Huerta VG, Garcia-Munoz M, Theiss S, Arbuthnott GW. Cell Assembly Signatures Defined by Short-Term Synaptic Plasticity in Cortical Networks. Int J Neural Syst 2015; 25:1550026. [PMID: 26173906 DOI: 10.1142/s0129065715500264] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cell assembly (CA) hypothesis has been used as a conceptual framework to explain how groups of neurons form memories. CAs are defined as neuronal pools with synchronous, recurrent and sequential activity patterns. However, neuronal interactions and synaptic properties that define CAs signatures have been difficult to examine because identities and locations of assembly members are usually unknown. In order to study synaptic properties that define CAs, we used optical and electrophysiological approaches to record activity of identified neurons in mouse cortical cultures. Population analysis and graph theory techniques allowed us to find sequential patterns that represent repetitive transitions between network states. Whole cell pair recordings of neurons participating in repeated sequences demonstrated that synchrony is exhibited by groups of neurons with strong synaptic connectivity (concomitant firing) showing short-term synaptic depression (STD), whereas alternation (sequential firing) is seen in groups of neurons with weaker synaptic connections showing short-term synaptic facilitation (STF). Decreasing synaptic weights of a network promoted the generation of sequential activity patterns, whereas increasing synaptic weights restricted state transitions. Thus in simple cortical networks of real neurons, basic signatures of CAs, the properties that underlie perception and memory in Hebb's original description, are already present.
Collapse
Affiliation(s)
| | - Violeta G Lopez-Huerta
- Brain Mechanisms for Behavior Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| | - Marianela Garcia-Munoz
- Brain Mechanisms for Behavior Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| | | | - Gordon W Arbuthnott
- Brain Mechanisms for Behavior Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| |
Collapse
|
70
|
Abstract
The basal ganglia (BG) play an important role in motor control, reinforcement learning, and perceptual decision making. Modeling and experimental evidence suggest that, in a speed-accuracy tradeoff, the corticostriatal pathway can adaptively adjust a decision threshold (the amount of information needed to make a choice). In this study, we go beyond the focus of previous works on the direct and hyperdirect pathways to examine the contribution of the indirect pathway of the BG system to decision making in a biophysically based spiking network model. We find that the mechanism of adjusting the decision threshold by plasticity of the corticostriatal connections is effective, provided that the indirect pathway counterbalances the direct pathway in their projections to the output nucleus. Furthermore, in our model, changes within basal ganglia connections similar to those that arise in parkinsonism give rise to strong beta oscillations. Specifically, beta oscillations are produced by an abnormal enhancement of the interactions between the subthalamic nucleus (STN) and the external segment of globus pallidus (GPe) in the indirect pathway, with an oscillation frequency that depends on the excitatory cortical input to the STN and the inhibitory input to the GPe from the striatum. In a parkinsonian state characterized by pronounced beta oscillations, the mean reaction time and range of threshold variation (a measure of behavioral flexibility) are significantly reduced compared with the normal state. Our work thus reveals a specific circuit mechanism for impairments of perceptual decision making associated with Parkinson's disease.
Collapse
|
71
|
Converging structural and functional connectivity of orbitofrontal, dorsolateral prefrontal, and posterior parietal cortex in the human striatum. J Neurosci 2015; 35:3865-78. [PMID: 25740516 DOI: 10.1523/jneurosci.2636-14.2015] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Modification of spatial attention via reinforcement learning (Lee and Shomstein, 2013) requires the integration of reward, attention, and executive processes. Corticostriatal pathways are an ideal neural substrate for this integration because these projections exhibit a globally parallel (Alexander et al., 1986), but locally overlapping (Haber, 2003), topographical organization. Here we explore whether there are unique striatal regions that exhibit convergent anatomical connections from orbitofrontal cortex, dorsolateral prefrontal cortex, and posterior parietal cortex. Deterministic fiber tractography on diffusion spectrum imaging data from neurologically healthy adults (N = 60) was used to map frontostriatal and parietostriatal projections. In general, projections from cortex were organized according to both a medial-lateral and a rostral-caudal gradient along the striatal nuclei. Within rostral aspects of the striatum, we identified two bilateral convergence zones (one in the caudate nucleus and another in the putamen) that consisted of voxels with unique projections from orbitofrontal cortex, dorsolateral prefrontal cortex, and parietal regions. The distributed cortical connectivity of these striatal convergence zones was confirmed with follow-up functional connectivity analysis from resting state fMRI data, in which a high percentage of structurally connected voxels also showed significant functional connectivity. The specificity of this convergent architecture to these regions of the rostral striatum was validated against control analysis of connectivity within the motor putamen. These results delineate a neurologically plausible network of converging corticostriatal projections that may support the integration of reward, executive control, and spatial attention that occurs during spatial reinforcement learning.
Collapse
|
72
|
Hervais-Adelman A, Moser-Mercer B, Golestani N. Brain functional plasticity associated with the emergence of expertise in extreme language control. Neuroimage 2015; 114:264-74. [PMID: 25869858 DOI: 10.1016/j.neuroimage.2015.03.072] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/02/2015] [Accepted: 03/27/2015] [Indexed: 01/05/2023] Open
Abstract
We used functional magnetic resonance imaging (fMRI) to longitudinally examine brain plasticity arising from long-term, intensive simultaneous interpretation training. Simultaneous interpretation is a bilingual task with heavy executive control demands. We compared brain responses observed during simultaneous interpretation with those observed during simultaneous speech repetition (shadowing) in a group of trainee simultaneous interpreters, at the beginning and at the end of their professional training program. Age, sex and language-proficiency matched controls were scanned at similar intervals. Using multivariate pattern classification, we found distributed patterns of changes in functional responses from the first to second scan that distinguished the interpreters from the controls. We also found reduced recruitment of the right caudate nucleus during simultaneous interpretation as a result of training. Such practice-related change is consistent with decreased demands on multilingual language control as the task becomes more automatized with practice. These results demonstrate the impact of simultaneous interpretation training on the brain functional response in a cerebral structure that is not specifically linguistic, but that is known to be involved in learning, in motor control, and in a variety of domain-general executive functions. Along with results of recent studies showing functional and structural adaptations in the caudate nuclei of experts in a broad range of domains, our results underline the importance of this structure as a central node in expertise-related networks.
Collapse
Affiliation(s)
- Alexis Hervais-Adelman
- Brain and Language Lab, Department of Clinical Neuroscience, University of Geneva, Switzerland.
| | | | - Narly Golestani
- Brain and Language Lab, Department of Clinical Neuroscience, University of Geneva, Switzerland
| |
Collapse
|
73
|
Enhanced GABAergic Inputs Contribute to Functional Alterations of Cholinergic Interneurons in the R6/2 Mouse Model of Huntington's Disease. eNeuro 2015. [PMID: 26203463 PMCID: PMC4507822 DOI: 10.1523/eneuro.0008-14.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Although large cholinergic interneurons (LCIs) in striatum are spared in Huntington's disease (HD), deficits in cholinergic function have been described. Here we demonstrate in a mouse model of HD that the firing patterns of LCIs are disrupted and this is due to aberrant GABAergic neurotransmission. This explains cholinergic deficits in HD. In Huntington’s disease (HD), a hereditary neurodegenerative disorder, striatal medium-sized spiny neurons undergo degenerative changes. In contrast, large cholinergic interneurons (LCIs) are relatively spared. However, their ability to release acetylcholine (ACh) is impaired. The present experiments examined morphological and electrophysiological properties of LCIs in the R6/2 mouse model of HD. R6/2 mice show a severe, rapidly progressing phenotype. Immunocytochemical analysis of choline acetyltransferase-positive striatal neurons showed that, although the total number of cells was not changed, somatic areas were significantly smaller in symptomatic R6/2 mice compared to wild-type (WT) littermates, For electrophysiology, brain slices were obtained from presymptomatic (3-4 weeks) and symptomatic (>8 weeks) R6/2 mice and their WT littermates. Striatal LCIs were identified by somatic size and spontaneous action potential firing in the cell-attached mode. Passive and active membrane properties of LCIs were similar in presymptomatic R6/2 and WT mice. In contrast, LCIs from symptomatic R6/2 animals displayed smaller membrane capacitance and higher input resistance, consistent with reduced somatic size. In addition, more LCIs from symptomatic mice displayed irregular firing patterns and bursts of action potentials. They also displayed a higher frequency of spontaneous GABAergic IPSCs and larger amplitude of electrically evoked IPSCs. Selective optogenetic stimulation of somatostatin- but not parvalbumin-containing interneurons also evoked larger amplitude IPSCs in LCIs from R6/2 mice. In contrast, glutamatergic spontaneous or evoked postsynaptic currents were not affected. Morphological and electrophysiological alterations, in conjunction with the presence of mutant huntingtin in LCIs, could explain impaired ACh release in HD mouse models.
Collapse
|
74
|
Park SW, Sternad D. Robust retention of individual sensorimotor skill after self-guided practice. J Neurophysiol 2015; 113:2635-45. [PMID: 25652928 DOI: 10.1152/jn.00884.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/03/2015] [Indexed: 11/22/2022] Open
Abstract
Long-term retention of a motor skill has received relatively little systematic study, even though lasting neuroplasticity is the holy grail of any clinical intervention. This study examined the acquisition and retention of a novel bimanual polyrhythmic skill, practiced with sparse explicit feedback mimicking real-life scenarios. Self-paced and metronome-paced practice conditions were compared in their effect on long-term retention. Two groups of subjects first underwent extensive practice of 20 practice sessions over 2 mo, then followed up with three retention sessions after 3 mo. Results showed that subjects developed robust spatiotemporal patterns, despite the lack of reward and little quantitative error feedback about their performance (Hypothesis 1). These movement patterns were reproduced after a 3-mo interval, frequently even in the first trial, with no intermediate practice (Hypothesis 2). Self-paced training of movement patterns led to slightly less variability in the retention test (Hypothesis 3). These results document the specificity and stability of kinematic patterns and their underlying neuroplastic changes and underscore the effectiveness of self-guided practice. The findings are discussed in the context of current neuroimaging results and their clinical implications.
Collapse
Affiliation(s)
- Se-Woong Park
- Department of Biology, Northeastern University, Boston, Massachusetts;
| | - Dagmar Sternad
- Department of Biology, Northeastern University, Boston, Massachusetts; Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts; Department of Physics, Northeastern University, Boston, Massachusetts; and Center for the Interdisciplinary Research of Complex Systems, Northeastern University, Boston, Massachusetts
| |
Collapse
|
75
|
Ferreira SG, Gonçalves FQ, Marques JM, Tomé ÂR, Rodrigues RJ, Nunes-Correia I, Ledent C, Harkany T, Venance L, Cunha RA, Köfalvi A. Presynaptic adenosine A2A receptors dampen cannabinoid CB1 receptor-mediated inhibition of corticostriatal glutamatergic transmission. Br J Pharmacol 2015; 172:1074-86. [PMID: 25296982 DOI: 10.1111/bph.12970] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Both cannabinoid CB1 and adenosine A2A receptors (CB1 receptors and A2A receptors) control synaptic transmission at corticostriatal synapses, with great therapeutic importance for neurological and psychiatric disorders. A postsynaptic CB1 -A2A receptor interaction has already been elucidated, but the presynaptic A2A receptor-mediated control of presynaptic neuromodulation by CB1 receptors remains to be defined. Because the corticostriatal terminals provide the major input to the basal ganglia, understanding the interactive nature of converging neuromodulation on them will provide us with novel powerful tools to understand the physiology of corticostriatal synaptic transmission and interpret changes associated with pathological conditions. EXPERIMENTAL APPROACH Pharmacological manipulation of CB1 and A2A receptors was carried out in brain nerve terminals isolated from rats and mice, using flow synaptometry, immunoprecipitation, radioligand binding, ATP and glutamate release measurement. Whole-cell patch-clamp recordings were made in horizontal corticostriatal slices. KEY RESULTS Flow synaptometry showed that A2A receptors were extensively co-localized with CB1 receptor-immunopositive corticostriatal terminals and A2A receptors co-immunoprecipitated CB1 receptors in these purified terminals. A2A receptor activation decreased CB1 receptor radioligand binding and decreased the CB1 receptor-mediated inhibition of high-K(+) -evoked glutamate release in corticostriatal terminals. Accordingly, A2A receptor activation prevented CB1 receptor-mediated paired-pulse facilitation and attenuated the CB1 receptor-mediated inhibition of synaptic transmission in glutamatergic synapses of corticostriatal slices. CONCLUSIONS AND IMPLICATIONS Activation of presynaptic A2A receptors dampened CB1 receptor-mediated inhibition of corticostriatal terminals. This constitutes a thus far unrecognized mechanism to modulate the potent CB1 receptor-mediated presynaptic inhibition, allowing frequency-dependent enhancement of synaptic efficacy at corticostriatal synapses.
Collapse
Affiliation(s)
- S G Ferreira
- Neuromodulation Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; Laboratory of Neuromodulation and Metabolism, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Wang M, Li M, Geng X, Song Z, Albers HE, Yang M, Zhang X, Xie J, Qu Q, He T. Altered neuronal activity in the primary motor cortex and globus pallidus after dopamine depletion in rats. J Neurol Sci 2015; 348:231-40. [DOI: 10.1016/j.jns.2014.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/09/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
|
77
|
Yoon JH, Larson P, Grandelis A, La C, Cui E, Carter CS, Minzenberg MJ. Delay Period Activity of the Substantia Nigra during Proactive Control of Response Selection as Determined by a Novel fMRI Localization Method. J Cogn Neurosci 2014; 27:1238-48. [PMID: 25514657 DOI: 10.1162/jocn_a_00775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The ability to proactively control motor responses, particularly to overcome overlearned or automatic actions, is an essential prerequisite for adaptive, goal-oriented behavior. The substantia nigra (SN), an element of the BG, has figured prominently in current models of response selection. However, because of its small size and proximity to functionally distinct subcortical structures, it has been challenging to test the SN's involvement in response selection using conventional in vivo functional neuroimaging approaches. We developed a new fMRI localization method for directly distinguishing, on echo-planar images, the SN BOLD signal from that of neighboring structures, including the subthalamic nucleus (STN). Using this method, we tested the hypothesis that the SN supports the proactive control of response selection. We acquired high-resolution EPI volumes at 3 T from 16 healthy participants while they completed the Preparing to Overcome Prepotency task of proactive control. There was significantly elevated delay period signal selectively during high- compared with low-control trials in the SN. The STN did not show delay period activity in either condition. SN delay period signal was significantly inversely associated with task performance RTs across participants. These results suggest that our method offers a novel means for measuring SN BOLD responses, provides unique evidence of SN involvement in cognitive control in humans, and suggests a novel mechanism for proactive response selection.
Collapse
|
78
|
Beverley JA, Piekarski C, Van Waes V, Steiner H. Potentiated gene regulation by methylphenidate plus fluoxetine treatment: Long-term gene blunting ( Zif268, Homer1a) and behavioral correlates. BASAL GANGLIA 2014; 4:109-116. [PMID: 25530939 PMCID: PMC4267118 DOI: 10.1016/j.baga.2014.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Use of psychostimulants such as methylphenidate (Ritalin) in medical treatments and as cognitive enhancers in the healthy is increasing. Methylphenidate produces some addiction-related gene regulation in animal models. Recent findings show that combining selective serotonin reuptake inhibitor (SSRI) antidepressants such as fluoxetine with methylphenidate potentiates methylphenidate-induced gene regulation. We investigated the endurance of such abnormal gene regulation by assessing an established marker for altered gene regulation after drug treatments - blunting (repression) of immediate-early gene (IEG) inducibility - 14 days after repeated methylphenidate+fluoxetine treatment in adolescent rats. Thus, we measured the effects of a 6-day repeated treatment with methylphenidate (5 mg/kg), fluoxetine (5 mg/kg) or their combination on the inducibility (by cocaine) of neuroplasticity-related IEGs (Zif268, Homer1a) in the striatum, by in situ hybridization histochemistry. Repeated methylphenidate treatment alone produced modest gene blunting, while fluoxetine alone had no effect. In contrast, fluoxetine given in conjunction with methylphenidate produced pronounced potentiation of methylphenidate-induced blunting for both genes. This potentiation was seen in many functional domains of the striatum, but was most robust in the lateral, sensorimotor striatum. These enduring molecular changes were associated with potentiated induction of behavioral stereotypies in an open-field test. For illicit psychostimulants, blunting of gene expression is considered part of the molecular basis of addiction. Our results thus suggest that SSRIs such as fluoxetine may increase the addiction liability of methylphenidate. Key words: cognitive enhancer, dopamine, serotonin, gene expression, psychostimulant, SSRI antidepressant, striatum.
Collapse
Affiliation(s)
- Joel A Beverley
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Cassandra Piekarski
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Vincent Van Waes
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Heinz Steiner
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
79
|
Hervais-Adelman A, Moser-Mercer B, Michel CM, Golestani N. fMRI of Simultaneous Interpretation Reveals the Neural Basis of Extreme Language Control. Cereb Cortex 2014; 25:4727-39. [DOI: 10.1093/cercor/bhu158] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
80
|
Nakamura T, Sato A, Kitsukawa T, Momiyama T, Yamamori T, Sasaoka T. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior. Front Integr Neurosci 2014; 8:56. [PMID: 25076876 PMCID: PMC4097398 DOI: 10.3389/fnint.2014.00056] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 06/20/2014] [Indexed: 11/13/2022] Open
Abstract
Both D1R and D2R knock out (KO) mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT) mice. First, we examined spontaneous motor activity in the home cage environment for consecutive 5 days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT and mutant mice.
Collapse
Affiliation(s)
- Toru Nakamura
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan ; Department of Basic Biology, Graduate University for Advanced Studies (SOKENDAI) Okazaki, Japan
| | - Asako Sato
- Laboratory of Neurochemistry, National Institute for Basic Biology Okazaki, Japan ; Department of Laboratory Animal Science, Kitasato University School of Medicine Sagamihara, Japan
| | - Takashi Kitsukawa
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan ; KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University Osaka, Japan
| | - Toshihiko Momiyama
- Department of Pharmacology, Jikei University School of Medicine Tokyo, Japan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan ; Department of Basic Biology, Graduate University for Advanced Studies (SOKENDAI) Okazaki, Japan
| | - Toshikuni Sasaoka
- Laboratory of Neurochemistry, National Institute for Basic Biology Okazaki, Japan ; Department of Laboratory Animal Science, Kitasato University School of Medicine Sagamihara, Japan ; Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University Niigata, Japan
| |
Collapse
|
81
|
Differences in the emergent coding properties of cortical and striatal ensembles. Nat Neurosci 2014; 17:1100-6. [PMID: 24974796 PMCID: PMC4978541 DOI: 10.1038/nn.3753] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 06/04/2014] [Indexed: 11/16/2022]
Abstract
The function of a given brain region is often defined by the coding properties of its individual neurons, yet how this information is combined at the ensemble level is an equally important consideration. In the present study, multiple neurons from the anterior cingulate cortex (ACC) and the dorsal striatum (DS) were recorded simultaneously as rats performed different sequences of the same three actions. Sequence and lever decoding was remarkably similar on a per-neuron basis in the two regions. At the ensemble level, sequence-specific representations in the DS appeared synchronously but transiently along with the representation of lever location, while these two streams of information appeared independently and asynchronously in the ACC. As a result the ACC achieved superior ensemble decoding accuracy overall. Thus, the manner in which information was combined across neurons in an ensemble determined the functional separation of the ACC and DS on this task.
Collapse
|
82
|
Tamura A, Yamada N, Yaguchi Y, Machida Y, Mori I, Osanai M. Both neurons and astrocytes exhibited tetrodotoxin-resistant metabotropic glutamate receptor-dependent spontaneous slow Ca2+ oscillations in striatum. PLoS One 2014; 9:e85351. [PMID: 24454845 PMCID: PMC3893197 DOI: 10.1371/journal.pone.0085351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/25/2013] [Indexed: 12/16/2022] Open
Abstract
The striatum plays an important role in linking cortical activity to basal ganglia outputs. Group I metabotropic glutamate receptors (mGluRs) are densely expressed in the medium spiny projection neurons and may be a therapeutic target for Parkinson's disease. The group I mGluRs are known to modulate the intracellular Ca2+ signaling. To characterize Ca2+ signaling in striatal cells, spontaneous cytoplasmic Ca2+ transients were examined in acute slice preparations from transgenic mice expressing green fluorescent protein (GFP) in the astrocytes. In both the GFP-negative cells (putative-neurons) and astrocytes of the striatum, spontaneous slow and long-lasting intracellular Ca2+ transients (referred to as slow Ca2+ oscillations), which lasted up to approximately 200 s, were found. Neither the inhibition of action potentials nor ionotropic glutamate receptors blocked the slow Ca2+ oscillation. Depletion of the intracellular Ca2+ store and the blockade of inositol 1,4,5-trisphosphate receptors greatly reduced the transient rate of the slow Ca2+ oscillation, and the application of an antagonist against mGluR5 also blocked the slow Ca2+ oscillation in both putative-neurons and astrocytes. Thus, the mGluR5-inositol 1,4,5-trisphosphate signal cascade is the primary contributor to the slow Ca2+ oscillation in both putative-neurons and astrocytes. The slow Ca2+ oscillation features multicellular synchrony, and both putative-neurons and astrocytes participate in the synchronous activity. Therefore, the mGluR5-dependent slow Ca2+ oscillation may involve in the neuron-glia interaction in the striatum.
Collapse
Affiliation(s)
- Atsushi Tamura
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Naohiro Yamada
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Yuichi Yaguchi
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Yoshio Machida
- Department of Medical Imaging and Applied Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Issei Mori
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Osanai
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
- * E-mail:
| |
Collapse
|
83
|
Affiliation(s)
- Philip Lieberman
- Cognitive and Linguistic Sciences, Brown University, 190 Thayer Street, Providence, RI 02912, USA
| |
Collapse
|
84
|
Hawes SL, Gillani F, Evans RC, Benkert EA, Blackwell KT. Sensitivity to theta-burst timing permits LTP in dorsal striatal adult brain slice. J Neurophysiol 2013; 110:2027-36. [PMID: 23926032 DOI: 10.1152/jn.00115.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Long-term potentiation (LTP) of excitatory afferents to the dorsal striatum likely occurs with learning to encode new skills and habits, yet corticostriatal LTP is challenging to evoke reliably in brain slice under physiological conditions. Here we test the hypothesis that stimulating striatal afferents with theta-burst timing, similar to recently reported in vivo temporal patterns corresponding to learning, evokes LTP. Recording from adult mouse brain slice extracellularly in 1 mM Mg(2+), we find LTP in dorsomedial and dorsolateral striatum is preferentially evoked by certain theta-burst patterns. In particular, we demonstrate that greater LTP is produced using moderate intraburst and high theta-range frequencies, and that pauses separating bursts of stimuli are critical for LTP induction. By altering temporal pattern alone, we illustrate the importance of burst-patterning for LTP induction and demonstrate that corticostriatal long-term depression is evoked in the same preparation. In accord with prior studies, LTP is greatest in dorsomedial striatum and relies on N-methyl-d-aspartate receptors. We also demonstrate a requirement for both Gq- and Gs/olf-coupled pathways, as well as several kinases associated with memory storage: PKC, PKA, and ERK. Our data build on previous reports of activity-directed plasticity by identifying effective values for distinct temporal parameters in variants of theta-burst LTP induction paradigms. We conclude that those variants which best match reports of striatal activity during learning behavior are most successful in evoking dorsal striatal LTP in adult brain slice without altering artificial cerebrospinal fluid. Future application of this approach will enable diverse investigations of plasticity serving striatal-based learning.
Collapse
Affiliation(s)
- Sarah L Hawes
- Molecular Neuroscience Department, The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia
| | | | | | | | | |
Collapse
|
85
|
Hall LM, Brauer SG, Horak F, Hodges PW. The effect of Parkinson's disease and levodopa on adaptation of anticipatory postural adjustments. Neuroscience 2013; 250:483-92. [PMID: 23867768 DOI: 10.1016/j.neuroscience.2013.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/18/2013] [Accepted: 07/06/2013] [Indexed: 11/28/2022]
Abstract
Postural support alters anticipatory postural adjustments (APAs). Efficient adaptation to changes in postural support in reactive and centrally initiated postural synergies is impaired in Parkinson's disease (PD). This study examined whether APAs are affected differently by familiar and novel supports in people with PD, ON and OFF levodopa. The effect of PD and levodopa on the ability to immediately adapt APAs to changes in support and refine with practice was also investigated. Fourteen people with PD and 14 healthy control participants performed 20 single rapid leg lift tasks in four support conditions: unsupported, bilateral handgrip (familiar), bite plate (novel) and a combined handgrip+bite plate condition. APAs, identified from force plate data, were characterized by an increase in the vertical ground reaction force under the lifted leg as a result of a shift of weight toward the stance limb. Results showed the ability to incorporate familiar and novel external supports into the postural strategy was preserved in PD. Controls and PD patients in the OFF state further refined the postural strategy with practice as evidenced by changes in amplitude of vertical ground reaction forces and forces applied to support apparatus within conditions between the initial and final trials. In the ON state, people with PD failed to refine the use of postural supports in any condition. The results suggest that immediate postural adaptation is intact in people with PD and unaffected by levodopa administration but the ability to refine postural adaptations with task experience is compromised by dopamine therapy.
Collapse
Affiliation(s)
- L M Hall
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, St. Lucia, Qld 4072, Australia
| | | | | | | |
Collapse
|
86
|
Zhang Y, Meredith GE, Mendoza-Elias N, Rademacher DJ, Tseng KY, Steece-Collier K. Aberrant restoration of spines and their synapses in L-DOPA-induced dyskinesia: involvement of corticostriatal but not thalamostriatal synapses. J Neurosci 2013; 33:11655-67. [PMID: 23843533 PMCID: PMC3724545 DOI: 10.1523/jneurosci.0288-13.2013] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/07/2013] [Accepted: 06/05/2013] [Indexed: 11/21/2022] Open
Abstract
We examined the structural plasticity of excitatory synapses from corticostriatal and thalamostriatal pathways and their postsynaptic targets in adult Sprague-Dawley rats to understand how these striatal circuits change in l-DOPA-induced dyskinesias (LIDs). We present here detailed electron and light microscopic analyses that provide new insight into the nature of the structural and synaptic remodeling of medium spiny neurons in response to LIDs. Numerous studies have implicated enhanced glutamate signaling and persistent long-term potentiation as central to the behavioral sensitization phenomenon of LIDs. Moreover, experience-dependent alterations in behavior are thought to involve structural modifications, specifically alterations in patterns of synaptic connectivity. Thus, we hypothesized that in the striatum of rats with LIDs, one of two major glutamatergic pathways would form new or altered contacts, especially onto the spines of medium spiny neuron (MSNs). Our data provide compelling evidence for a dramatic rewiring of the striatum of dyskinetic rats and that this rewiring involves corticostriatal but not thalamostriatal contacts onto MSNs. There is a dramatic increase in corticostriatal contacts onto spines and dendrites that appear to be directly linked to dyskinetic behaviors, since they were not seen in the striatum of animals that did not develop dyskinesia. There is also an aberrant increase in spines receiving more than one excitatory contact(i.e., multisynaptic spines) in the dyskinetic animals compared with the 6-hydroxydopamine-treated and control rats. Such alterations could substantially impair the ability of striatal neurons to gate cortically driven signals and contribute to the loss of bidirectional synaptic plasticity.
Collapse
Affiliation(s)
- Yiyue Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, and
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, and
| | | | - Nasya Mendoza-Elias
- Department of Pharmaceutical Sciences, College of Pharmacy, and
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, and
| | - David J. Rademacher
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan 49503
| | - Kuei Y. Tseng
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, and
| | - Kathy Steece-Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan 49503
| |
Collapse
|
87
|
Complementary Roles of the Hippocampus and the Dorsomedial Striatum during Spatial and Sequence-Based Navigation Behavior. PLoS One 2013; 8:e67232. [PMID: 23826243 PMCID: PMC3695082 DOI: 10.1371/journal.pone.0067232] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/15/2013] [Indexed: 11/19/2022] Open
Abstract
We investigated the neural bases of navigation based on spatial or sequential egocentric representation during the completion of the starmaze, a complex goal-directed navigation task. In this maze, mice had to swim along a path composed of three choice points to find a hidden platform. As reported previously, this task can be solved by using two hippocampal-dependent strategies encoded in parallel i) the allocentric strategy requiring encoding of the contextual information, and ii) the sequential egocentric strategy requiring temporal encoding of a sequence of successive body movements associated to specific choice points. Mice were trained during one day and tested the following day in a single probe trial to reveal which of the two strategies was spontaneously preferred by each animal. Imaging of the activity-dependent gene c-fos revealed that both strategies are supported by an overlapping network involving the dorsal hippocampus, the dorsomedial striatum (DMS) and the medial prefrontal cortex. A significant higher activation of the ventral CA1 subregion was observed when mice used the sequential egocentric strategy. To investigate the potential different roles of the dorsal hippocampus and the DMS in both types of navigation, we performed region-specific excitotoxic lesions of each of these two structures. Dorsal hippocampus lesioned mice were unable to optimally learn the sequence but improved their performances by developing a serial strategy instead. DMS lesioned mice were severely impaired, failing to learn the task. Our data support the view that the hippocampus organizes information into a spatio-temporal representation, which can then be used by the DMS to perform goal-directed navigation.
Collapse
|
88
|
Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron 2013; 79:347-60. [PMID: 23810541 DOI: 10.1016/j.neuron.2013.05.014] [Citation(s) in RCA: 338] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2013] [Indexed: 11/24/2022]
Abstract
The striatum integrates information from multiple brain regions to shape motor learning. The two major projection cell types in striatum target different downstream basal ganglia targets and have opposing effects on motivated behavior, yet differential innervation of these neuronal subtypes is not well understood. To examine whether input specificity provides a substrate for information segregation in these circuits, we used a monosynaptic rabies virus system to generate brain-wide maps of neurons that form synapses with direct- or indirect-pathway striatal projection neurons. We discovered that sensory cortical and limbic structures preferentially innervated the direct pathway, whereas motor cortex preferentially targeted the indirect pathway. Thalamostriatal input, dopaminergic input, as well as input from specific cortical layers, was similar onto both pathways. We also confirm synaptic innervation of striatal projection neurons by the raphe and pedunculopontine nuclei. Together, these findings provide a framework for guiding future studies of basal ganglia circuit function.
Collapse
|
89
|
Chan SH, Ryan L, Bever TG. Role of the striatum in language: Syntactic and conceptual sequencing. BRAIN AND LANGUAGE 2013; 125:283-294. [PMID: 22200490 DOI: 10.1016/j.bandl.2011.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 09/08/2011] [Accepted: 11/21/2011] [Indexed: 05/31/2023]
Abstract
The basal ganglia (BG) have long been associated with cognitive control, and it is widely accepted that they also subserve an indirect, control role in language. Nevertheless, it cannot be completely ruled out that the BG may be involved in language in some domain-specific manner. The present study aimed to investigate one type of cognitive control-sequencing, a function that has long been connected with the BG-and to test whether the BG could be specifically implicated in language. Participants were required to rearrange materials sequentially based on linguistic (syntactic or conceptual) or non-linguistic (order switching) rules, or to repeat a previously ordered sequence as a control task. Functional magnetic resonance imaging (fMRI) data revealed a strongly active left-lateralized corticostriatal network, encompassing the anterior striatum, dorsolaterial and ventrolateral prefrontal cortex and presupplementary motor area, while the participants were sequencing materials using linguistic vs. non-linguistic rules. This functional network has an anatomical basis and is strikingly similar to the well-known associative loop implicated in sensorimotor sequence learning. We concluded that the anterior striatum has extended its original sequencing role and worked in concert with frontal cortical regions to subserve the function of linguistic sequencing in a domain-specific manner.
Collapse
Affiliation(s)
- Shiao-Hui Chan
- Department of English, National Taiwan Normal University, Taipei, Taiwan.
| | | | | |
Collapse
|
90
|
Perspectives. ACTA ACUST UNITED AC 2013. [DOI: 10.1201/b14428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
91
|
Chukoskie L, Townsend J, Westerfield M. Motor Skill in Autism Spectrum Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:207-49. [DOI: 10.1016/b978-0-12-418700-9.00007-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
92
|
Berthet P, Hellgren-Kotaleski J, Lansner A. Action selection performance of a reconfigurable basal ganglia inspired model with Hebbian-Bayesian Go-NoGo connectivity. Front Behav Neurosci 2012; 6:65. [PMID: 23060764 PMCID: PMC3462417 DOI: 10.3389/fnbeh.2012.00065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/11/2012] [Indexed: 12/22/2022] Open
Abstract
Several studies have shown a strong involvement of the basal ganglia (BG) in action selection and dopamine dependent learning. The dopaminergic signal to striatum, the input stage of the BG, has been commonly described as coding a reward prediction error (RPE), i.e., the difference between the predicted and actual reward. The RPE has been hypothesized to be critical in the modulation of the synaptic plasticity in cortico-striatal synapses in the direct and indirect pathway. We developed an abstract computational model of the BG, with a dual pathway structure functionally corresponding to the direct and indirect pathways, and compared its behavior to biological data as well as other reinforcement learning models. The computations in our model are inspired by Bayesian inference, and the synaptic plasticity changes depend on a three factor Hebbian–Bayesian learning rule based on co-activation of pre- and post-synaptic units and on the value of the RPE. The model builds on a modified Actor-Critic architecture and implements the direct (Go) and the indirect (NoGo) pathway, as well as the reward prediction (RP) system, acting in a complementary fashion. We investigated the performance of the model system when different configurations of the Go, NoGo, and RP system were utilized, e.g., using only the Go, NoGo, or RP system, or combinations of those. Learning performance was investigated in several types of learning paradigms, such as learning-relearning, successive learning, stochastic learning, reversal learning and a two-choice task. The RPE and the activity of the model during learning were similar to monkey electrophysiological and behavioral data. Our results, however, show that there is not a unique best way to configure this BG model to handle well all the learning paradigms tested. We thus suggest that an agent might dynamically configure its action selection mode, possibly depending on task characteristics and also on how much time is available.
Collapse
Affiliation(s)
- Pierre Berthet
- Computational Biology, School of Computer Science and Communication, KTH Royal Institute of Technology Stockholm, Sweden ; Numerical Analysis and Computer Science, Stockholm University Stockholm, Sweden ; Stockholm Brain Institute Stockholm, Sweden
| | | | | |
Collapse
|
93
|
Janes AC, Nickerson L, Frederick BD, Kaufman MJ. Prefrontal and limbic resting state brain network functional connectivity differs between nicotine-dependent smokers and non-smoking controls. Drug Alcohol Depend 2012; 125:252-9. [PMID: 22459914 PMCID: PMC3389311 DOI: 10.1016/j.drugalcdep.2012.02.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 01/19/2023]
Abstract
BACKGROUND Brain dysfunction in prefrontal cortex (PFC) and dorsal striatum (DS) contributes to habitual drug use. These regions are constituents of brain networks thought to be involved in drug addiction. To investigate whether networks containing these regions differ between nicotine dependent female smokers and age-matched female non-smokers, we employed functional MRI (fMRI) at rest. METHODS Data were processed with independent component analysis (ICA) to identify resting state networks (RSNs). We identified a subcortical limbic network and three discrete PFC networks: a medial prefrontal cortex (mPFC) network and right and left lateralized fronto-parietal networks common to all subjects. We then compared these RSNs between smokers and non-smokers using a dual regression approach. RESULTS Smokers had greater coupling versus non-smokers between left fronto-parietal and mPFC networks. Smokers with the greatest mPFC-left fronto-parietal coupling had the most DS smoking cue reactivity as measured during an fMRI smoking cue reactivity paradigm. This may be important because the DS plays a critical role in maintaining drug-cue associations. Furthermore, subcortical limbic network amplitude was greater in smokers. CONCLUSIONS Our results suggest that prefrontal brain networks are more strongly coupled in smokers, which could facilitate drug-cue responding. Our data also are the first to document greater reward-related network fMRI amplitude in smokers. Our findings suggest that resting state PFC network interactions and limbic network amplitude can differentiate nicotine-dependent smokers from controls, and may serve as biomarkers for nicotine dependence severity and treatment efficacy.
Collapse
Affiliation(s)
- Amy C. Janes
- Correspondence should be addressed to: Amy C. Janes, Brain Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA 02478 USA,
| | | | | | | |
Collapse
|
94
|
Information content and reward processing in the human striatum during performance of a declarative memory task. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2012; 12:361-72. [PMID: 22194237 PMCID: PMC3341523 DOI: 10.3758/s13415-011-0077-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Negative feedback can signal poor performance, but it also provides information that can help learners reach the goal of task mastery. The primary aim of this study was to test the hypothesis that the amount of information provided by negative feedback during a paired-associate learning task influences feedback-related processing in the caudate nucleus. To do this, we manipulated the number of response options: With two options, positive and negative feedback provide equal amounts of information, whereas with four options, positive feedback provides more information than does negative feedback. We found that positive and negative feedback activated the caudate similarly when there were two response options. With four options, the caudate’s response to negative feedback was reduced. A secondary goal was to investigate the link between brain-based measures of feedback-related processing and behavioral indices of learning. Analysis of the posttest measures showed that trials with positive feedback were associated with higher posttest confidence ratings. Additionally, when positive feedback was delivered, caudate activity was greater for trials with high than with low posttest confidence. This experiment demonstrated the context sensitivity of feedback processing and provided evidence that feedback processing in the striatum can contribute to the strengthening of the representations available within declarative memory.
Collapse
|
95
|
Pendt LK, Maurer H, Müller H. The influence of movement initiation deficits on the quantification of retention in Parkinson's disease. Front Hum Neurosci 2012; 6:226. [PMID: 22870067 PMCID: PMC3409424 DOI: 10.3389/fnhum.2012.00226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/13/2012] [Indexed: 11/29/2022] Open
Abstract
In patients with an impaired motor system, like Parkinson’s disease (PD), deficits in motor learning are expected and results of various studies seem to confirm these expectations. However, most studies in this regard are behaviorally based and quantify learning by performance changes between at least two points in time, e.g., baseline and retention. But, performance in a retention test is also dependent on other factors than learning. Especially in patients, the functional capacity of the control system might be altered unspecific to a certain task and learning episode. The aim of the study is to test whether characteristic temporal deficits exist in PD patients that affect retention performance. We tested the confounding effects of typical PD motor control deficits, here movement initiation deficits, on retention performance in the motor learning process. 12 PD patients and 16 healthy control participants practiced a virtual throwing task over 3 days with 24 h rest between sessions. Retention was tested comparing performance before rest with performance after rest. Movement initiation deficits were quantified by the timing of throwing release that should be affected by impairments in movement initiation. To scrutinize the influence of the initiation deficits on retention performance we gave participants a specific initiation intervention prior to practice on one of the three practice days. We found that only for the PD patients, post-rest performance as well as release timing was better with intervention as compared to without intervention. Their performance could be enhanced through a tuning of release initiation. Thus, we suggest that in PD patients, performance decline after rest that might be easily interpreted as learning deficits could rather result from disease-related deficiencies in motor control.
Collapse
Affiliation(s)
- Lisa K Pendt
- Department of Psychology and Sport Science, Justus-Liebig-University Giessen, Germany
| | | | | |
Collapse
|
96
|
Vicente AF, Bermudez MA, Romero MDC, Perez R, Gonzalez F. Putamen neurons process both sensory and motor information during a complex task. Brain Res 2012; 1466:70-81. [DOI: 10.1016/j.brainres.2012.05.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/23/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
|
97
|
Bosch C, Mailly P, Degos B, Deniau JM, Venance L. Preservation of the hyperdirect pathway of basal ganglia in a rodent brain slice. Neuroscience 2012; 215:31-41. [DOI: 10.1016/j.neuroscience.2012.04.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/28/2012] [Accepted: 04/09/2012] [Indexed: 11/26/2022]
|
98
|
Park J, Wu YH, Lewis MM, Huang X, Latash ML. Changes in multifinger interaction and coordination in Parkinson's disease. J Neurophysiol 2012; 108:915-24. [PMID: 22552184 DOI: 10.1152/jn.00043.2012] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this study, we tested several hypotheses related to changes in finger interaction and multifinger synergies during multifinger force production tasks in Parkinson's disease. Ten patients with Parkinson's disease, mostly early stage, and 11 healthy control subjects participated in the study. Synergies were defined as covaried adjustment of commands to fingers that stabilized the total force produced by the hand. Both Parkinson's disease patients and control subjects performed accurate isometric force production tasks with the fingers of both the dominant and nondominant hands. The Parkinson's disease patients showed significantly lower maximal finger forces and higher unintended force production (enslaving). These observations suggest that changes in supraspinal control have a major effect on finger individuation. The synergy indexes in the patients were weaker in both steady-state and cyclic force production tasks compared with the controls. These indexes also were stronger in the left (nondominant) hand in support of the dynamic-dominance hypothesis. Half of the patients could not perform the cyclic task at the highest frequency (2 Hz). Anticipatory adjustments of synergies prior to a quick force pulse production were delayed and reduced in the patients compared with the controls. Similar differences were observed between the asymptomatic hands of the patients with symptoms limited to one side of the body and matched hands of control subjects. Our study demonstrates that the elusive changes in motor coordination in Parkinson's disease can be quantified objectively, even in patients at a relatively early stage of the disease. The results suggest an important role of the basal ganglia in synergy formation and demonstrate a previously unknown component of impaired feedforward control in Parkinson's disease reflected in the reduced and delayed anticipatory synergy adjustments.
Collapse
Affiliation(s)
- Jaebum Park
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
99
|
Benítez-Burraco A. Aspectos problemáticos del análisis genético de los trastornos específicos del lenguaje: FOXP2 como paradigma. Neurologia 2012; 27:225-33. [DOI: 10.1016/j.nrl.2011.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/01/2011] [Accepted: 04/05/2011] [Indexed: 01/05/2023] Open
|
100
|
Benítez-Burraco A. Problematic aspects of the genetic analysis of the specific disorders of the language: FOXP2 as paradigm. NEUROLOGÍA (ENGLISH EDITION) 2012. [DOI: 10.1016/j.nrleng.2012.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|