51
|
Sun L, Jiao X, Liu W, Wang Y, Cao Y, Bao SJ, Xu Z, Kang Y, Xue P. Novel Oxygen-Deficient Zirconia (ZrO 2-x) for Fluorescence/Photoacoustic Imaging-Guided Photothermal/Photodynamic Therapy for Cancer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41127-41139. [PMID: 31610123 DOI: 10.1021/acsami.9b16604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Theranostic nanoplatforms that integrate therapy and diagnosis in a single composite have become increasingly attractive in the field of precise and efficient tumor treatment. Herein, a novel oxygen-deficient zirconia (ZrO2-x) nanosystem based on the conjugation of thiol-polyethylene glycol-amine (SH-PEG-NH2) and chlorin e6 (Ce6) was elaborately designed and established for efficacious photothermal/photodynamic therapy (PTT/PDT) and fluorescence/photoacoustic (FL/PA) bimodal imaging for the first time. The crystalline-disordered, PEGylated ZrO2-x nanoparticles (ZP NPs) displayed strong optical absorption in the near-infrared (NIR) window and were featured with significant photothermal conversion capacity. The ZP NPs were further covalently conjugated with Ce6 to form ZrO2-x@PEG/Ce6 (ZPC) NPs, which displayed a long circulatory half-life, efficient tumor accumulation, and outstanding FL/PA imaging performance. Moreover, the nanocomposites effectively generated cytotoxic intracellular reactive oxygen species (ROS) responsive to laser activation. Both cell studies and animal experiments explicitly demonstrated that ZPC NPs mediated remarkable tumor ablation with minimal systemic toxicity thanks to their tumor-specific PTT/PDT effect. Collectively, these findings may open up new avenues to broaden the application of oxygen-deficient ZrO2-x nanostructures as high-performance photothermal agents in tumor theranostics through rational design and accurate control of their physiochemical properties.
Collapse
Affiliation(s)
- Lihong Sun
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Southwest University , Chongqing 400715 , China
| | - Xiaodan Jiao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Southwest University , Chongqing 400715 , China
| | - Weiwei Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital , Chongqing Medical University , Chongqing 400010 , China
| | - Ying Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital , Chongqing Medical University , Chongqing 400010 , China
| | - Shu-Juan Bao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , China
| | - Zhigang Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Southwest University , Chongqing 400715 , China
| | - Yuejun Kang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Southwest University , Chongqing 400715 , China
| | - Peng Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Southwest University , Chongqing 400715 , China
| |
Collapse
|
52
|
Huang C, Zhang Z, Guo Q, Zhang L, Fan F, Qin Y, Wang H, Zhou S, Ou‐Yang W, Sun H, Leng X, Pan X, Kong D, Zhang L, Zhu D. A Dual-Model Imaging Theragnostic System Based on Mesoporous Silica Nanoparticles for Enhanced Cancer Phototherapy. Adv Healthc Mater 2019; 8:e1900840. [PMID: 31512403 DOI: 10.1002/adhm.201900840] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/15/2019] [Indexed: 01/01/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) show great promise to be exploited as versatile multifunctional nanocarriers for effective cancer diagnosis and treatment. In this work, perfluorohexane (PFH)-encapsulated MSNs with indocyanine green (ICG)-polydopamine (PDA) layer and poly(ethylene glycol)-folic acid coating (designated as MSNs-PFH@PDA-ICG-PEG-FA) are successfully fabricated to achieve tumor ultrasonic (US)/near-infrared fluorescence (NIRF) imaging as well as photothermal therapy (PTT)/photodynamic therapy (PDT). MSNs-PFH@PDA-ICG-PEG-FA exhibits good monodispersity with high ICG loading, significantly enhances ICG photostability, and greatly improves cellular uptake. Upon single 808 nm NIR irradiation, the nanocarrier not only efficiently generates hyperthermia to realize PTT, but also produces reactive oxygen species (ROS) for effective PDT. Meanwhile, NIR irradiation can trigger PFH to undergo vaporization and provide a super-resolution US image. Thus, the PTT/PDT combination therapy can be dually guided by PFH-induced US imaging and ICG-induced NIRF imaging. In vivo antitumor studies demonstrate that PTT/PDT from MSNs-PFH@PDA-ICG-PEG-FA significantly inhibits tumor growth and achieves a cure rate of 60% (three out of five mice are completely cured). Hence, the multifunctional MSNs appear to be a promising theragnostic nanoplatform for multimodal cancer imaging and therapy.
Collapse
Affiliation(s)
- Chenlu Huang
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Zhiming Zhang
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Qing Guo
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Li Zhang
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Fan Fan
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Yu Qin
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Hai Wang
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Sheng Zhou
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Wenbin Ou‐Yang
- State Key Laboratory of Translational Cardiovascular MedicineFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical College Beijing 100037 China
| | - Hongfan Sun
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Xigang Leng
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Xiangbin Pan
- State Key Laboratory of Translational Cardiovascular MedicineFuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical College Beijing 100037 China
| | - Deling Kong
- The Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesNankai University Tianjin 300071 China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical University Xuzhou 221004 Jiangsu China
| | - Linhua Zhang
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical MaterialsInstitute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin 300192 China
| |
Collapse
|
53
|
Tran HQ, Batul R, Bhave M, Yu A. Current Advances in the Utilization of Polydopamine Nanostructures in Biomedical Therapy. Biotechnol J 2019; 14:e1900080. [DOI: 10.1002/biot.201900080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Huy Q. Tran
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| | - Rahila Batul
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| | - Mrinal Bhave
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| | - Aimin Yu
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| |
Collapse
|
54
|
Yang R, Fang XL, Zhen Q, Chen QY, Feng C. Mitochondrial targeting nano-curcumin for attenuation on PKM2 and FASN. Colloids Surf B Biointerfaces 2019; 182:110405. [PMID: 31377611 DOI: 10.1016/j.colsurfb.2019.110405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 12/16/2022]
Abstract
Tumor cells are sensitive to the disturbance of mitochondrial functions. Attenuation of dysfunctional mitochondria by natural compounds is an emerging strategy for the recovery of abnormal energy metabolism of cancer. To develop a nano-sized curcumin (CUR) in attenuating the energy metabolism of cancer cells, herein, a coral-shaped nano-transporter DNA-FeS2-DA nanoparticle was synthesized using double-stranded DNA rich in 'GAG' and 'GC' series as a template and poly-dopamine as an adhesive. CUR was successfully loaded to DNA-FeS2-DA with a molar ratio of ssDNA: CUR of 1:16, forming CUR@DNA-FeS2-DA. This nano-curcumin can readily enter mitochondrion in MCF-7 cancer cells. The CUR@DNA-FeS2-DA nanocomposite displays desirable photothermal effect and stability, while its CUR can be released gradually in the weak acid environment. The expression of both pyruvate kinase M2 and fatty acid synthase in the MCF-7 cancer cells were noticeably inhibited by CUR@DNA-FeS2-DA. Given the controlled release and mitochondria-targeting properties, this CUR@DNA-FeS2-DA nanocomposite is a promising new drug entity for intervening the energy metabolism of cancer cells.
Collapse
Affiliation(s)
- Rui Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xiu-Lin Fang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qin Zhen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qiu-Yun Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
55
|
Wang T, Zhang H, Han Y, Liu H, Ren F, Zeng J, Sun Q, Li Z, Gao M. Light-Enhanced O 2-Evolving Nanoparticles Boost Photodynamic Therapy To Elicit Antitumor Immunity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16367-16379. [PMID: 30994323 DOI: 10.1021/acsami.9b03541] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Breast cancer remains to show high mortality and poor prognosis in women despite of significant progress in recent diagnosis and treatment. Herein, we report the rational design of a highly efficient ultrasmall nanotheranostic agent with excellent photodynamic therapy (PDT) performance to against breast cancer and its metastasis by eliciting antitumor immunity. The ultrasmall nanoagent (3.1 ± 0.4 nm) was fabricated from polyethylene glycol modified Cu2- xSe nanoparticles, β-cyclodextrin, and chlorin e6 under ambient conditions. The resultant nanoplatform (CS-CD-Ce6 NPs) can be passively accumulated into the tumor to exhibit dramatic antitumor efficacy through the excellent PDT effect under near-infrared irradiation. The excellent PDT performance of this nanoplatform is owing to its role as a Fenton-like Haber-Weiss catalyst for the efficient degradation of H2O2 within the tumor to release hydroxyl radicals (·OH) and very toxic singlet oxygen (1O2) under irradiation. The generated vast amounts of reactive oxygen species not only killed primary tumor cells but also elicited immunogenic cell death (ICD) to release damage-associated molecular patterns (DAMPs) and induced proinflammatory M1-macrophages polarization. Thereby, antitumor immune responses against the metastasis of breast cancer were robustly evoked. Our work demonstrates that ultrasmall Cu2- xSe nanoparticle-based nanoplatform offers a promising way to prevent cancer metastasis via immunogenic effects through its excellent PDT performance.
Collapse
Affiliation(s)
- Tingting Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Hanghang Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Feng Ren
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| |
Collapse
|
56
|
Maleki Dizaj S, Sharifi S, Ahmadian E, Eftekhari A, Adibkia K, Lotfipour F. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Expert Opin Drug Deliv 2019; 16:331-345. [DOI: 10.1080/17425247.2019.1587408] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Department of Pharmacology and Toxicology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Khosro Adibkia
- Food and Drug Safety Research Centre, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Lotfipour
- Food and Drug Safety Research Centre, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical and Food control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|