51
|
Sellers SL, Milad N, White Z, Pascoe C, Chan R, Payne GW, Seow C, Rossi F, Seidman MA, Bernatchez P. Increased nonHDL cholesterol levels cause muscle wasting and ambulatory dysfunction in the mouse model of LGMD2B. J Lipid Res 2017; 59:261-272. [PMID: 29175948 DOI: 10.1194/jlr.m079459] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
Progressive limb and girdle muscle atrophy leading to loss of ambulation is a hallmark of dysferlinopathies, which include limb-girdle muscular dystrophy type 2B and Miyoshi myopathy. However, animal models fail to fully reproduce the disease severity observed in humans, with dysferlin-null (Dysf-/-) mice exhibiting minor muscle damage and weakness without dramatic ambulatory dysfunction. As we have previously reported significant Dysf expression in blood vessels, we investigated the role of vascular function in development of muscle pathology by generating a Dysf-deficient mouse model with vascular disease. This was achieved by crossing Dysf-/- mice with ApoE-/- mice, which have high levels of nonHDL-associated cholesterol. Double-knockout Dysf-/-ApoE-/- mice exhibited severe ambulatory dysfunction by 11 months of age. In limb-girdle muscles, histology confirmed dramatic muscle wasting, fibrofatty replacement, and myofiber damage in Dysf-/-ApoE-/- mice without affecting the ratio of centrally nucleated myofibers. Although there were no major changes in ex vivo diaphragm and soleus muscle function, histological analyses revealed these muscles to be untouched by damage and remodelling. In all, these data suggest that cholesterol may be deleterious to dysferlinopathic muscle and lead to ambulatory dysfunction. Moreover, differences in plasma lipid handling between mice and humans could be a key factor affecting dysferlinopathy severity.
Collapse
Affiliation(s)
- Stephanie L Sellers
- Department of Anesthesiology, Pharmacology & Therapeutics and UBC Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada.,St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Nadia Milad
- Department of Anesthesiology, Pharmacology & Therapeutics and UBC Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada.,St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Zoe White
- Department of Anesthesiology, Pharmacology & Therapeutics and UBC Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada.,St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Chris Pascoe
- St. Paul's Hospital, University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Rayleigh Chan
- Department of Anesthesiology, Pharmacology & Therapeutics and UBC Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada.,St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Geoffrey W Payne
- Providence Health Care, University of Northern British Columbia, Prince George, Canada
| | - Chun Seow
- Department of Anesthesiology, Pharmacology & Therapeutics and UBC Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada.,St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Fabio Rossi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Biomedical Research Centre, University of British Columbia, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Michael A Seidman
- St. Paul's Hospital, University of British Columbia, Vancouver, Canada.,Department of Pathology, Prince George, Canada
| | - Pascal Bernatchez
- Department of Anesthesiology, Pharmacology & Therapeutics and UBC Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada .,St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| |
Collapse
|
52
|
Defour A, Medikayala S, Van der Meulen JH, Hogarth MW, Holdreith N, Malatras A, Duddy W, Boehler J, Nagaraju K, Jaiswal JK. Annexin A2 links poor myofiber repair with inflammation and adipogenic replacement of the injured muscle. Hum Mol Genet 2017; 26:1979-1991. [PMID: 28334824 DOI: 10.1093/hmg/ddx065] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/17/2017] [Indexed: 01/12/2023] Open
Abstract
Repair of skeletal muscle after sarcolemmal damage involves dysferlin and dysferlin-interacting proteins such as annexins. Mice and patient lacking dysferlin exhibit chronic muscle inflammation and adipogenic replacement of the myofibers. Here, we show that similar to dysferlin, lack of annexin A2 (AnxA2) also results in poor myofiber repair and progressive muscle weakening with age. By longitudinal analysis of AnxA2-deficient muscle we find that poor myofiber repair due to the lack of AnxA2 does not result in chronic inflammation or adipogenic replacement of the myofibers. Further, deletion of AnxA2 in dysferlin deficient mice reduced muscle inflammation, adipogenic replacement of myofibers, and improved muscle function. These results identify multiple roles of AnxA2 in muscle repair, which includes facilitating myofiber repair, chronic muscle inflammation and adipogenic replacement of dysferlinopathic muscle. It also identifies inhibition of AnxA2-mediated inflammation as a novel therapeutic avenue for treating muscle loss in dysferlinopathy.
Collapse
Affiliation(s)
- Aurelia Defour
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Sushma Medikayala
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Jack H Van der Meulen
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Marshall W Hogarth
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Nicholas Holdreith
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Apostolos Malatras
- Center for Research in Myology 75013, Sorbonne Universités, UPMC University Paris 06, INSERM UMRS975, CNRS FRE3617, GH Pitié Salpêtrière, Paris 13, Paris, France
| | - William Duddy
- Center for Research in Myology 75013, Sorbonne Universités, UPMC University Paris 06, INSERM UMRS975, CNRS FRE3617, GH Pitié Salpêtrière, Paris 13, Paris, France
- Northern Ireland Centre for Stratified Medicine, Altnagelvin Hospital Campus, Ulster University, Londonderry, Northern Ireland, BT52 1SJ UK
| | - Jessica Boehler
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20052 USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20052 USA
| |
Collapse
|
53
|
Quattrocelli M, Salamone IM, Page PG, Warner JL, Demonbreun AR, McNally EM. Intermittent Glucocorticoid Dosing Improves Muscle Repair and Function in Mice with Limb-Girdle Muscular Dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2520-2535. [PMID: 28823869 DOI: 10.1016/j.ajpath.2017.07.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/03/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022]
Abstract
The muscular dystrophies are genetically diverse. Shared pathological features among muscular dystrophies include breakdown, or loss of muscle, and accompanying fibrotic replacement. Novel strategies are needed to enhance muscle repair and function and to slow this pathological remodeling. Glucocorticoid steroids, like prednisone, are known to delay loss of ambulation in patients with Duchenne muscular dystrophy but are accompanied by prominent adverse effects. However, less is known about the effects of steroid administration in other types of muscular dystrophies, including limb-girdle muscular dystrophies (LGMDs). LGMD 2B is caused by loss of dysferlin, a membrane repair protein, and LGMD 2C is caused by loss of the dystrophin-associated protein, γ-sarcoglycan. Herein, we assessed the efficacy of steroid dosing on sarcolemmal repair, muscle function, histopathology, and the regenerative capacity of primary muscle cells. We found that in murine models of LGMD 2B and 2C, daily prednisone dosing reduced muscle damage and fibroinflammatory infiltration. However, daily prednisone dosing also correlated with increased muscle adipogenesis and atrophic remodeling. Conversely, intermittent dosing of prednisone, provided once weekly, enhanced muscle repair and did not induce atrophy or adipogenesis, and was associated with improved muscle function. These data indicate that dosing frequency of glucocorticoid steroids affects muscle remodeling in non-Duchenne muscular dystrophies, suggesting a positive outcome associated with intermittent steroid dosing in LGMD 2B and 2C muscle.
Collapse
Affiliation(s)
- Mattia Quattrocelli
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Isabella M Salamone
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Patrick G Page
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - James L Warner
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
54
|
Treatment with Recombinant Human MG53 Protein Increases Membrane Integrity in a Mouse Model of Limb Girdle Muscular Dystrophy 2B. Mol Ther 2017; 25:2360-2371. [PMID: 28750735 DOI: 10.1016/j.ymthe.2017.06.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022] Open
Abstract
Limb girdle muscular dystrophy type 2B (LGMD2B) and other dysferlinopathies are degenerative muscle diseases that result from mutations in the dysferlin gene and have limited treatment options. The dysferlin protein has been linked to multiple cellular functions including a Ca2+-dependent membrane repair process that reseals disruptions in the sarcolemmal membrane. Recombinant human MG53 protein (rhMG53) can increase the membrane repair process in multiple cell types both in vitro and in vivo. Here, we tested whether rhMG53 protein can improve membrane repair in a dysferlin-deficient mouse model of LGMD2B (B6.129-Dysftm1Kcam/J). We found that rhMG53 can increase the integrity of the sarcolemmal membrane of isolated muscle fibers and whole muscles in a Ca2+-independent fashion when assayed by a multi-photon laser wounding assay. Intraperitoneal injection of rhMG53 into mice before acute eccentric treadmill exercise can decrease the release of intracellular enzymes from skeletal muscle and decrease the entry of immunoglobulin G and Evans blue dye into muscle fibers in vivo. These results indicate that short-term rhMG53 treatment can ameliorate one of the underlying defects in dysferlin-deficient muscle by increasing sarcolemmal membrane integrity. We also provide evidence that rhMG53 protein increases membrane integrity independently of the canonical dysferlin-mediated, Ca2+-dependent pathway known to be important for sarcolemmal membrane repair.
Collapse
|
55
|
Abstract
Unique to striated muscle cells, transverse tubules (t-tubules) are membrane organelles that consist of sarcolemma penetrating into the myocyte interior, forming a highly branched and interconnected network. Mature t-tubule networks are found in mammalian ventricular cardiomyocytes, with the transverse components of t-tubules occurring near sarcomeric z-discs. Cardiac t-tubules contain membrane microdomains enriched with ion channels and signaling molecules. The microdomains serve as key signaling hubs in regulation of cardiomyocyte function. Dyad microdomains formed at the junctional contact between t-tubule membrane and neighboring sarcoplasmic reticulum are critical in calcium signaling and excitation-contraction coupling necessary for beat-to-beat heart contraction. In this review, we provide an overview of the current knowledge in gross morphology and structure, membrane and protein composition, and function of the cardiac t-tubule network. We also review in detail current knowledge on the formation of functional membrane subdomains within t-tubules, with a particular focus on the cardiac dyad microdomain. Lastly, we discuss the dynamic nature of t-tubules including membrane turnover, trafficking of transmembrane proteins, and the life cycles of membrane subdomains such as the cardiac BIN1-microdomain, as well as t-tubule remodeling and alteration in diseased hearts. Understanding cardiac t-tubule biology in normal and failing hearts is providing novel diagnostic and therapeutic opportunities to better treat patients with failing hearts.
Collapse
Affiliation(s)
- TingTing Hong
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California; and Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Robin M Shaw
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California; and Department of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
56
|
Hofhuis J, Bersch K, Büssenschütt R, Drzymalski M, Liebetanz D, Nikolaev VO, Wagner S, Maier LS, Gärtner J, Klinge L, Thoms S. Dysferlin mediates membrane tubulation and links T-tubule biogenesis to muscular dystrophy. J Cell Sci 2017; 130:841-852. [PMID: 28104817 DOI: 10.1242/jcs.198861] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/28/2016] [Indexed: 12/30/2022] Open
Abstract
The multi-C2 domain protein dysferlin localizes to the plasma membrane and the T-tubule system in skeletal muscle; however, its physiological mode of action is unknown. Mutations in the DYSF gene lead to autosomal recessive limb-girdle muscular dystrophy type 2B and Miyoshi myopathy. Here, we show that dysferlin has membrane tubulating capacity and that it shapes the T-tubule system. Dysferlin tubulates liposomes, generates a T-tubule-like membrane system in non-muscle cells, and links the recruitment of phosphatidylinositol 4,5-bisphosphate to the biogenesis of the T-tubule system. Pathogenic mutant forms interfere with all of these functions, indicating that muscular wasting and dystrophy are caused by the dysferlin mutants' inability to form a functional T-tubule membrane system.
Collapse
Affiliation(s)
- Julia Hofhuis
- Department of Child and Adolescent Health, University Medical Centre Göttingen, Göttingen 37075, Germany
| | - Kristina Bersch
- Department of Child and Adolescent Health, University Medical Centre Göttingen, Göttingen 37075, Germany
| | - Ronja Büssenschütt
- Department of Child and Adolescent Health, University Medical Centre Göttingen, Göttingen 37075, Germany
| | - Marzena Drzymalski
- Department of Child and Adolescent Health, University Medical Centre Göttingen, Göttingen 37075, Germany
| | - David Liebetanz
- Department of Clinical Neurophysiology, University Medical Centre Göttingen, Göttingen 37075, Germany
| | - Viacheslav O Nikolaev
- Department of Cardiology and Pneumology, Heart Research Centre Göttingen, Göttingen 37075, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Medical Centre Regensburg, Regensburg 93042, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Medical Centre Regensburg, Regensburg 93042, Germany
| | - Jutta Gärtner
- Department of Child and Adolescent Health, University Medical Centre Göttingen, Göttingen 37075, Germany
| | - Lars Klinge
- Department of Child and Adolescent Health, University Medical Centre Göttingen, Göttingen 37075, Germany
| | - Sven Thoms
- Department of Child and Adolescent Health, University Medical Centre Göttingen, Göttingen 37075, Germany
| |
Collapse
|
57
|
Mahdy MA, Warita K, Hosaka YZ. Early ultrastructural events of skeletal muscle damage following cardiotoxin-induced injury and glycerol-induced injury. Micron 2016; 91:29-40. [DOI: 10.1016/j.micron.2016.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 11/29/2022]
|
58
|
Cárdenas AM, González-Jamett AM, Cea LA, Bevilacqua JA, Caviedes P. Dysferlin function in skeletal muscle: Possible pathological mechanisms and therapeutical targets in dysferlinopathies. Exp Neurol 2016; 283:246-54. [PMID: 27349407 DOI: 10.1016/j.expneurol.2016.06.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 12/18/2022]
Abstract
Mutations in the dysferlin gene are linked to a group of muscular dystrophies known as dysferlinopathies. These myopathies are characterized by progressive atrophy. Studies in muscle tissue from dysferlinopathy patients or dysferlin-deficient mice point out its importance in membrane repair. However, expression of dysferlin homologous proteins that restore sarcolemma repair function in dysferlinopathy animal models fail to arrest muscle wasting, therefore suggesting that dysferlin plays other critical roles in muscle function. In the present review, we discuss dysferlin functions in the skeletal muscle, as well as pathological mechanisms related to dysferlin mutations. Particular focus is presented related the effect of dysferlin on cell membrane related function, which affect its repair, vesicle trafficking, as well as Ca(2+) homeostasis. Such mechanisms could provide accessible targets for pharmacological therapies.
Collapse
Affiliation(s)
- Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| | - Arlek M González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Luis A Cea
- Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Jorge A Bevilacqua
- Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Pablo Caviedes
- Programa de Farmacología Molecular y Clinica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
59
|
Demonbreun AR, Quattrocelli M, Barefield DY, Allen MV, Swanson KE, McNally EM. An actin-dependent annexin complex mediates plasma membrane repair in muscle. J Cell Biol 2016; 213:705-18. [PMID: 27298325 PMCID: PMC4915191 DOI: 10.1083/jcb.201512022] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 05/19/2016] [Indexed: 01/03/2023] Open
Abstract
Disruption of the plasma membrane often accompanies cellular injury, and in muscle, plasma membrane resealing is essential for efficient recovery from injury. Muscle contraction, especially of lengthened muscle, disrupts the sarcolemma. To define the molecular machinery that directs repair, we applied laser wounding to live mammalian myofibers and assessed translocation of fluorescently tagged proteins using high-resolution microscopy. Within seconds of membrane disruption, annexins A1, A2, A5, and A6 formed a tight repair "cap." Actin was recruited to the site of damage, and annexin A6 cap formation was both actin dependent and Ca(2+) regulated. Repair proteins, including dysferlin, EHD1, EHD2, MG53, and BIN1, localized adjacent to the repair cap in a "shoulder" region enriched with phosphatidlyserine. Dye influx into muscle fibers lacking both dysferlin and the related protein myoferlin was substantially greater than control or individual null muscle fibers, underscoring the importance of shoulder-localized proteins. These data define the cap and shoulder as subdomains within the repair complex accumulating distinct and nonoverlapping components.
Collapse
Affiliation(s)
| | | | - David Y Barefield
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611
| | - Madison V Allen
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611
| | - Kaitlin E Swanson
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611 Department of Pathology, The University of Chicago, Chicago, IL 60637
| | | |
Collapse
|
60
|
Abstract
Since an intact membrane is required for normal cellular homeostasis, membrane repair is essential for cell survival. Human genetic studies, combined with the development of novel animal models and refinement of techniques to study cellular injury, have now uncovered series of repair proteins highly relevant for human health. Many of the deficient repair pathways manifest in skeletal muscle, where defective repair processes result in myopathies or other forms of muscle disease. Dysferlin is a membrane-associated protein implicated in sarcolemmal repair and also linked to other membrane functions including the maintenance of transverse tubules in muscle. MG53, annexins, and Eps15 homology domain-containing proteins interact with dysferlin to form a membrane repair complex and similarly have roles in membrane trafficking in muscle. These molecular features of membrane repair are not unique to skeletal muscle, but rather skeletal muscle, due to its high demands, is more dependent on an efficient repair process. Phosphatidylserine and phosphatidylinositol 4,5-bisphosphate, as well as Ca(2+), are central regulators of membrane organization during repair. Given the importance of muscle health in disease and in aging, these pathways are targets to enhance muscle function and recovery from injury.
Collapse
|
61
|
Demonbreun AR, Biersmith BH, McNally EM. Membrane fusion in muscle development and repair. Semin Cell Dev Biol 2015; 45:48-56. [PMID: 26537430 PMCID: PMC4679555 DOI: 10.1016/j.semcdb.2015.10.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022]
Abstract
Mature skeletal muscle forms from the fusion of skeletal muscle precursor cells, myoblasts. Myoblasts fuse to other myoblasts to generate multinucleate myotubes during myogenesis, and myoblasts also fuse to other myotubes during muscle growth and repair. Proteins within myoblasts and myotubes regulate complex processes such as elongation, migration, cell adherence, cytoskeletal reorganization, membrane coalescence, and ultimately fusion. Recent studies have identified cell surface proteins, intracellular proteins, and extracellular signaling molecules required for the proper fusion of muscle. Many proteins that actively participate in myoblast fusion also coordinate membrane repair. Here we will review mammalian membrane fusion with specific attention to proteins that mediate myoblast fusion and muscle repair.
Collapse
|
62
|
Demonbreun AR, Swanson KE, Rossi AE, Deveaux HK, Earley JU, Allen MV, Arya P, Bhattacharyya S, Band H, Pytel P, McNally EM. Eps 15 Homology Domain (EHD)-1 Remodels Transverse Tubules in Skeletal Muscle. PLoS One 2015; 10:e0136679. [PMID: 26325203 PMCID: PMC4556691 DOI: 10.1371/journal.pone.0136679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/06/2015] [Indexed: 11/19/2022] Open
Abstract
We previously showed that Eps15 homology domain-containing 1 (EHD1) interacts with ferlin proteins to regulate endocytic recycling. Myoblasts from Ehd1-null mice were found to have defective recycling, myoblast fusion, and consequently smaller muscles. When expressed in C2C12 cells, an ATPase dead-EHD1 was found to interfere with BIN1/amphiphysin 2. We now extended those findings by examining Ehd1-heterozygous mice since these mice survive to maturity in normal Mendelian numbers and provide a ready source of mature muscle. We found that heterozygosity of EHD1 was sufficient to produce ectopic and excessive T-tubules, including large intracellular aggregates that contained BIN1. The disorganized T-tubule structures in Ehd1-heterozygous muscle were accompanied by marked elevation of the T-tubule-associated protein DHPR and reduction of the triad linker protein junctophilin 2, reflecting defective triads. Consistent with this, Ehd1-heterozygous muscle had reduced force production. Introduction of ATPase dead-EHD1 into mature muscle fibers was sufficient to induce ectopic T-tubule formation, seen as large BIN1 positive structures throughout the muscle. Ehd1-heterozygous mice were found to have strikingly elevated serum creatine kinase and smaller myofibers, but did not display findings of muscular dystrophy. These data indicate that EHD1 regulates the maintenance of T-tubules through its interaction with BIN1 and links T-tubules defects with elevated creatine kinase and myopathy.
Collapse
Affiliation(s)
- Alexis R. Demonbreun
- Center for Genetic Medicine, Northwestern University, Chicago, IL, United States of America
- * E-mail:
| | - Kaitlin E. Swanson
- Department of Pathology, The University of Chicago, Chicago, IL, United States of America
| | - Ann E. Rossi
- Department of Medicine, The University of Chicago, Chicago, IL, United States of America
| | - H. Kieran Deveaux
- Department of Medicine, The University of Chicago, Chicago, IL, United States of America
| | - Judy U. Earley
- Center for Genetic Medicine, Northwestern University, Chicago, IL, United States of America
| | - Madison V. Allen
- Center for Genetic Medicine, Northwestern University, Chicago, IL, United States of America
| | - Priyanka Arya
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Sohinee Bhattacharyya
- Department of Pathology & Microbiology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Hamid Band
- Department of Pathology & Microbiology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Peter Pytel
- Department of Pathology, The University of Chicago, Chicago, IL, United States of America
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
63
|
Roche JA, Tulapurkar ME, Mueller AL, van Rooijen N, Hasday JD, Lovering RM, Bloch RJ. Myofiber damage precedes macrophage infiltration after in vivo injury in dysferlin-deficient A/J mouse skeletal muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1686-98. [PMID: 25920768 PMCID: PMC4450316 DOI: 10.1016/j.ajpath.2015.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 12/31/2014] [Accepted: 02/12/2015] [Indexed: 12/16/2022]
Abstract
Mutations in the dysferlin gene (DYSF) lead to human muscular dystrophies known as dysferlinopathies. The dysferlin-deficient A/J mouse develops a mild myopathy after 6 months of age, and when younger models the subclinical phase of the human disease. We subjected the tibialis anterior muscle of 3- to 4-month-old A/J mice to in vivo large-strain injury (LSI) from lengthening contractions and studied the progression of torque loss, myofiber damage, and inflammation afterward. We report that myofiber damage in A/J mice occurs before inflammatory cell infiltration. Peak edema and inflammation, monitored by magnetic resonance imaging and by immunofluorescence labeling of neutrophils and macrophages, respectively, develop 24 to 72 hours after LSI, well after the appearance of damaged myofibers. Cytokine profiles 72 hours after injury are consistent with extensive macrophage infiltration. Dysferlin-sufficient A/WySnJ mice show much less myofiber damage and inflammation and lesser cytokine levels after LSI than do A/J mice. Partial suppression of macrophage infiltration by systemic administration of clodronate-incorporated liposomes fails to suppress LSI-induced damage or to accelerate torque recovery in A/J mice. The findings from our studies suggest that, although macrophage infiltration is prominent in dysferlin-deficient A/J muscle after LSI, it is the consequence and not the cause of progressive myofiber damage.
Collapse
Affiliation(s)
- Joseph A Roche
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland.
| | - Mohan E Tulapurkar
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Amber L Mueller
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Nico van Rooijen
- Clodronateliposomes.com, Amsterdam, the Netherlands; Department of Molecular Cell Biology, Faculty of Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Jeffrey D Hasday
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Richard M Lovering
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Robert J Bloch
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| |
Collapse
|
64
|
McDade JR, Archambeau A, Michele DE. Rapid actin-cytoskeleton-dependent recruitment of plasma membrane-derived dysferlin at wounds is critical for muscle membrane repair. FASEB J 2014; 28:3660-70. [PMID: 24784578 DOI: 10.1096/fj.14-250191] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Deficits in membrane repair may contribute to disease progression in dysferlin-deficient muscular dystrophy. Dysferlin, a type-II transmembrane phospholipid-binding protein, is hypothesized to regulate fusion of repair vesicles with the sarcolemma to facilitate membrane repair, but the dysferlin-containing compartments involved in membrane repair and the mechanism by which these compartments contribute to resealing are unclear. A dysferlin-pHluorin [dysf-pH-sensitive green fluorescent protein (pHGFP)] muscle-specific transgenic mouse was developed to examine the dynamic behavior and subcellular localization of dysferlin during membrane repair in adult skeletal muscle fibers. Live-cell confocal microscopy of uninjured adult dysf-pHGFP muscle fibers revealed that dysferlin is highly enriched in the sarcolemma and transverse tubules. Laser-wounding induced rapid recruitment of ∼30 μm of local dysferlin-containing sarcolemma, leading to formation of stable dysferlin accumulations surrounding lesions, endocytosis of dysferlin, and formation of large cytoplasmic vesicles from distal regions of the fiber. Disruption of the actin cytoskeleton decreased recruitment of sarcolemma-derived dysferlin to lesions in dysf-pHGFP fibers without affecting endocytosis and impaired membrane resealing in wild-type fibers, similar to findings in dysferlin deficiency (a 2-fold increase in FM1-43 uptake). Our data support a new mechanism whereby recruitment of sarcolemma-derived dysferlin creates an active zone of high lipid-binding activity at wounds to interact with repair vesicles and facilitate membrane resealing in skeletal muscle.
Collapse
Affiliation(s)
- Joel R McDade
- Department of Molecular and Integrative Physiology and
| | | | - Daniel E Michele
- Department of Molecular and Integrative Physiology and Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
65
|
Kerr JP, Ward CW, Bloch RJ. Dysferlin at transverse tubules regulates Ca(2+) homeostasis in skeletal muscle. Front Physiol 2014; 5:89. [PMID: 24639655 PMCID: PMC3944681 DOI: 10.3389/fphys.2014.00089] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/15/2014] [Indexed: 11/13/2022] Open
Abstract
The class of muscular dystrophies linked to the genetic ablation or mutation of dysferlin, including Limb Girdle Muscular Dystrophy 2B (LGMD2B) and Miyoshi Myopathy (MM), are late-onset degenerative diseases. In lieu of a genetic cure, treatments to prevent or slow the progression of dysferlinopathy are of the utmost importance. Recent advances in the study of dysferlinopathy have highlighted the necessity for the maintenance of calcium handling in altering or slowing the progression of muscular degeneration resulting from the loss of dysferlin. This review highlights new evidence for a role for dysferlin at the transverse (t-) tubule of striated muscle, where it is involved in maintaining t-tubule structure and function.
Collapse
Affiliation(s)
- Jaclyn P Kerr
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Christopher W Ward
- Department of Organizational Systems and Adult Health, University of Maryland School of Nursing Baltimore, MD, USA
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|