51
|
Zheng YW, Miao XY, Xiong L, Chen B, Kong FH, Zhou JJ, Liu ZT, Wen Y, Zhang ZJ, Zou H. Sulfasalazine Sensitizes Polyhematoporphyrin-Mediated Photodynamic Therapy in Cholangiocarcinoma by Targeting xCT. Front Pharmacol 2021; 12:723488. [PMID: 34483935 PMCID: PMC8414975 DOI: 10.3389/fphar.2021.723488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/27/2021] [Indexed: 01/17/2023] Open
Abstract
Cholangiocarcinoma (CCA), which is highly malignant, shows a relatively poor prognosis, due to the insensitivity of the tumour to chemotherapy and radiotherapy. Photodynamic therapy (PDT) has become a promising palliative therapeutic option for patients with unresectable cholangiocarcinoma (CCA), while the functional amount of ROS is limited by intracellular redox systemen. Sulfasalazine (SASP), a well-known anti-inflammatory agent, which also acts as an inhibitor of the amino acid transport system xc (xCT), decreases the intracellular glutathione (GSH) level, thus weakening the antioxidant defence of the cell by inhibition of the antiporter. However, the combination of SASP and PDT remains unexplored. We have reported that polyhematoporphyrin (PHP)-mediated PDT inhibits the cell viability of CCA cells and organoids. Furthermore, in PHP-enriched HCCC-9810 and TFK-1CCA cells, SASP enhances the sensitivity to PHP-mediated PDT through a GSH-dependent mechanism. We found that PHP-PDT can up-regulate xCT expression to promote cells against overloaded ROS, while SASP reduces GSH levels. After the combination of SASP and PHP-PDT, cell viability and GSH levels were significantly inhibited. xCT was also observed to be inhibited by SASP in human organoid samples. Our findings suggest that, in combination with PDT, SASP has potential as a promising approach against CCA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zi-Jian Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Heng Zou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
52
|
Qin X, Zhang M, Hu X, Du Q, Zhao Z, Jiang Y, Luan Y. Nanoengineering of a newly designed chlorin e6 derivative for amplified photodynamic therapy via regulating lactate metabolism. NANOSCALE 2021; 13:11953-11962. [PMID: 34212166 DOI: 10.1039/d1nr01083b] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chlorin e6 (Ce6) is a widely utilized photosensitizer in photodynamic therapy (PDT) against tumor growth, but its hydrophobic feature and the hypoxia in the tumor microenvironment greatly compromise its therapeutic efficacy. To address the issues, here we designed a new Ce6 derivative (TCe6) by coupling Ce6 with amphiphilic d-α-tocopherol polyethylene glycol 1000 succinate (TPGS), endowing Ce6 with an excellent amphiphilic feature. In particular, the overall reactive oxygen species (ROS) generation by TCe6 was significantly enhanced because TPGS could interact with mitochondrial complex II to induce extra ROS production, amplifying the total ROS production under PDT. Inspired by the unique property of α-cyano-4-hydroxycinnamate (CHC) in regulating lactate metabolism to spare more intracellular oxygen for PDT, TCe6 was further co-assembled with CHC to construct TCe6/CHC nanoparticles (NPs) for addressing the insufficient oxygen issue in PDT. The as-prepared TCe6/CHC NPs not only increased the efficiency of cell internalization but also improved the solubility and stability of Ce6 and CHC. Thanks to the extra ROS production by the TPGS unit, the amphiphilic feature of TCe6 and the CHC-mediated hypoxia microenvironment, the TCe6/CHC NPs demonstrated excellent PDT against tumor growth. This work provided a versatile strategy to solve the current bottleneck in photosensitizer-based PDT, holding great promise for the design of advanced photodynamic nanoplatforms.
Collapse
Affiliation(s)
- Xiaohan Qin
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | | | | | | | | | | | | |
Collapse
|
53
|
Tan R, Tian D, Liu J, Wang C, Wan Y. Doxorubicin-Bound Hydroxyethyl Starch Conjugate Nanoparticles with pH/Redox Responsive Linkage for Enhancing Antitumor Therapy. Int J Nanomedicine 2021; 16:4527-4544. [PMID: 34276212 PMCID: PMC8277972 DOI: 10.2147/ijn.s314705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chemotherapeutic drugs used for tumor treatments often show limited efficiency due to their short lifetime, nonspecific delivery, and slow or insufficient intracellular drug release, and also, they can cause severe system or organ toxicity. The development of chemotherapeutic nanomedicines with high efficacy and satisfactory safety still remains a challenge for current tumor chemotherapy. METHODS A novel type of conjugate was synthesized using hydroxyethyl starch (HES) as a carrier while binding doxorubicin (DOX) onto HES backbone through a pH/redox responsive linker containing both disulfide and hydrazone bonds in series. The built conjugates were self-assembled into nanoparticles (NPs) (HES-SS-hyd-DOX NPs) for achieving enhanced antitumor therapy and adequate safety. RESULTS HES-SS-hyd-DOX NPs had a certain ability for the tumor-orientated drug accumulation and were capable of releasing DOX itself rather than DOX derivatives. It was found that the pH/redox responsive linkage enabled the NPs to achieve fast and sufficient intracellular drug release. Based on the tumor-bearing mouse model, antitumor results demonstrated that these NPs were able to inhibit the growth of the advanced tumors with significantly enhanced efficacy when compared to free DOX, and to those conjugate NPs containing only a single responsive or unresponsive bond. Besides, HES-SS-hyd-DOX NPs also showed adequate safety to the normal organs of the treated mice. CONCLUSION The pH/redox responsive linkage in HES-SS-hyd-DOX was found to play a critical role in mediating the drug accumulation and the fast and sufficient intracellular drug release. The HES-exposed surface of HES-SS-hyd-DOX NPs endowed the NPs with long circulation capability and remarkably reduced the DOX-induced side effects.
Collapse
Affiliation(s)
- Ronghua Tan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Danlei Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Jiaoyan Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Congcong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Ying Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| |
Collapse
|
54
|
Qin L, Zhang H, Zhou Y, Umeshappa CS, Gao H. Nanovaccine-Based Strategies to Overcome Challenges in the Whole Vaccination Cascade for Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006000. [PMID: 33768693 DOI: 10.1002/smll.202006000] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Nanovaccine-based immunotherapy (NBI) has received greater attention recently for its potential to prime tumor-specific immunity and establish a long-term immune memory that prevents tumor recurrence. Despite encouraging results in the recent studies, there are still numerous challenges to be tackled for eliciting potent antitumor immunity using NBI strategies. Based on the principles that govern immune response, here it is proposed that these challenges need to be addressed at the five critical cascading events: Loading tumor-specific antigens by nanoscale drug delivery systems (L); Draining tumor antigens to lymph nodes (D); Internalization by dendritic cells (DCs) (I); Maturation of DCs by costimulatory signaling (M); and Presenting tumor-peptide-major histocompatibility complexes to T cells (P) (LDIMP cascade in short). This review provides a detailed and objective overview of emerging NBI strategies to improve the efficacy of nanovaccines in each step of the LDIMP cascade. It is concluded that the balance between each step must be optimized by delicate designing and modification of nanovaccines and by combining with complementary approaches to provide a synergistic immunity in the fight against cancer.
Collapse
Affiliation(s)
- Lin Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Chongqing Vocational College of Transportation, Chongqing, 400715, China
| | - Huilin Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Channakeshava Sokke Umeshappa
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
55
|
Xie R, Ruan S, Liu J, Qin L, Yang C, Tong F, Lei T, Shevtsov M, Gao H, Qin Y. Furin-instructed aggregated gold nanoparticles for re-educating tumor associated macrophages and overcoming breast cancer chemoresistance. Biomaterials 2021; 275:120891. [PMID: 34051669 DOI: 10.1016/j.biomaterials.2021.120891] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022]
Abstract
Insufficient drug accumulation and chemoresistance remain two major challenges in cancer chemotherapy. Herein, we designed a furin-responsive aggregated nanoplatform loaded with doxorubicin (DOX) and hydroxychloroquine (HCQ) (AuNPs-D&H-R&C) to combine chemotherapy, autophagy inhibition and macrophage polarization. AuNPs-D&H-R&C could passively target breast tumor via enhanced permeability and retention (EPR) effect after systemic administration and further aggregate together triggered by furin overexpressed in breast cancer. The in situ aggregations hindered the back-flow of NPs to the bloodstream and exocytosis of tumor cells, leading to enhanced drug accumulation within tumors. Moreover, upon exposure to acidic pH in the endosomes/lysosomes, HCQ was efficiently released and it inhibited autophagy and thus restored the sensitivity of tumor cell to DOX. Meanwhile, autophagy inhibition could reprogram tumor-promoting M2-like TAMs to anti-tumor M1 phenotype, exerting a synergistic effect in overcoming chemoresistance. In vitro studies demonstrated the superiority of furin-triggered aggregated AuNPs delivery system in enhancing drug accumulation in breast tumor, compared with PEGlyated AuNPs. The co-delivery of DOX and HCQ showed much improved chemotherapeutic efficiency to chemoresistant MCF-7/ADR breast tumor, in large part due to macrophage polarization. In conclusion, we developed a stimulus-responsive delivery system and proposed a potential combination strategy to overcome chemoresistance in cancer chemotherapy.
Collapse
Affiliation(s)
- Rou Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Shaobo Ruan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Jiaqi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Lin Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Chuanyao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Fan Tong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, 194064, Russia
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| | - Yi Qin
- Department of Orthopedics, Zhuhai Hospital, Jinan University, Zhuhai People's Hospital, 79 Kangning Road, Zhuhai, 519000, China.
| |
Collapse
|
56
|
Li N, Duan Z, Wang L, Guo C, Zhang H, Gu Z, Gong Q, Luo K. An Amphiphilic PEGylated Peptide Dendron-Gemcitabine Prodrug-Based Nanoagent for Cancer Therapy. Macromol Rapid Commun 2021; 42:e2100111. [PMID: 33871122 DOI: 10.1002/marc.202100111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Indexed: 02/05/2023]
Abstract
An amphiphilic peptide dendrimer conjugated with gemcitabine (GEM), PEGylated dendron-Gly-Phe-Leu-Gly-GEM (PEGylated dendron-GFLG-GEM), is developed as a nano-prodrug for breast cancer therapy. The self-assembled behavior is observed under a transmission electron microscopy and dynamic light scattering. The negatively charged surface and hydrodynamic size of the amphiphilic nanosized prodrug supported that the prodrug can maintain the stability of GEM during circulation and accumulate in the tumor tissue. Drug release assays are conducted to monitor the release of GEM from this nanodrug delivery system in response to the tumor microenvironment, and these assays confirm that GEM released from the nanocarrier is identical to free GEM. The GEM prodrug can prevent proliferation of tumor cells. The therapeutic effect against breast cancer is systematically investigated using an in vivo animal model. Immunohistochemical results are aligned with the significantly enhanced anticancer efficacy of GEM released from the prodrug. This self-assembled amphiphilic drug delivery nanocarrier may broaden the application for GEM and other anticancer agents for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Ning Li
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University Chengdu, Chengdu, 610041, P. R. China.,School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhenyu Duan
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University Chengdu, Chengdu, 610041, P. R. China
| | - Lili Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Chunhua Guo
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University Chengdu, Chengdu, 610041, P. R. China.,Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Zhongwei Gu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University Chengdu, Chengdu, 610041, P. R. China
| | - Qiyong Gong
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University Chengdu, Chengdu, 610041, P. R. China
| | - Kui Luo
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University Chengdu, Chengdu, 610041, P. R. China
| |
Collapse
|
57
|
Hu J, Yuan X, Wang F, Gao H, Liu X, Zhang W. The progress and perspective of strategies to improve tumor penetration of nanomedicines. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|