51
|
Rabbah JPM, Saikrishnan N, Siefert AW, Santhanakrishnan A, Yoganathan AP. Mechanics of healthy and functionally diseased mitral valves: a critical review. J Biomech Eng 2013; 135:021007. [PMID: 23445052 DOI: 10.1115/1.4023238] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mitral valve is a complex apparatus with multiple constituents that work cohesively to ensure unidirectional flow between the left atrium and ventricle. Disruption to any or all of the components-the annulus, leaflets, chordae, and papillary muscles-can lead to backflow of blood, or regurgitation, into the left atrium, which deleteriously effects patient health. Through the years, a myriad of surgical repairs have been proposed; however, a careful appreciation for the underlying structural mechanics can help optimize long-term repair durability and inform medical device design. In this review, we aim to present the experimental methods and significant results that have shaped the current understanding of mitral valve mechanics. Data will be presented for all components of the mitral valve apparatus in control, pathological, and repaired conditions from human, animal, and in vitro studies. Finally, current strategies of patient specific and noninvasive surgical planning will be critically outlined.
Collapse
Affiliation(s)
- Jean-Pierre M Rabbah
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
52
|
Functional mitral regurgitation: a 30-year unresolved surgical journey from valve replacement to complex valve repairs. Heart Fail Rev 2013; 19:341-58. [DOI: 10.1007/s10741-013-9392-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
53
|
|
54
|
Abstract
The mitral valve apparatus is a complex 3-dimensional (3D) functional unit that is critical to unidirectional heart pump function. This review details the normal anatomy, histology, and function of the main mitral valve apparatus components: mitral annulus, mitral valve leaflets, chordae tendineae, and papillary muscles. Two-dimensional and 3D echocardiography is ideally suited to examine the mitral valve apparatus and has provided important insights into the mechanism of mitral valve disease. An overview of standardized echocardiography image acquisition and interpretation is provided. Understanding normal mitral valve apparatus function is essential to comprehend alterations in mitral valve disease and the rationale for repair strategies.
Collapse
|
55
|
Lee APW, Hsiung MC, Salgo IS, Fang F, Xie JM, Zhang YC, Lin QS, Looi JL, Wan S, Wong RHL, Underwood MJ, Sun JP, Yin WH, Wei J, Tsai SK, Yu CM. Quantitative analysis of mitral valve morphology in mitral valve prolapse with real-time 3-dimensional echocardiography: importance of annular saddle shape in the pathogenesis of mitral regurgitation. Circulation 2012; 127:832-41. [PMID: 23266859 DOI: 10.1161/circulationaha.112.118083] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Few data exist on the relation of the 3-dimensional morphology of mitral valve and degree of mitral regurgitation (MR) in mitral valve prolapse. METHODS AND RESULTS Real-time 3-dimensional transesophageal echocardiography of the mitral valve was acquired in 112 subjects, including 36 patients with mitral valve prolapse and significant MR (≥3+; MR+ group), 32 patients with mitral valve prolapse but no or mild MR (≤2+; MR- group), 12 patients with significant MR resulting from nonprolapse pathologies (nonprolapse group), and 32 control subjects. The 3-dimensional geometry of mitral valve apparatus was measured with dedicated quantification software. Compared with the normal and MR- groups, the MR+ group had more dilated mitral annulus (P<0.0001), a reduced annular height to commissural width ratio (AHCWR) (P<0.0001) indicating flattening of annular saddle shape, redundant leaflet surfaces (P<0.0001), greater leaflet billow volume (P<0.0001) and billow height (P<0.0001), longer lengths from papillary muscles to coaptation (P<0.0001), and more frequent chordal rupture (P<0.0001). Prevalence of chordal rupture increased progressively with annulus flattening (7% versus 24% versus 42% for AHCWR >20%, 15%-20%, and <15%, respectively; P=0.004). Leaflet billow volume increased exponentially with decreasing AHCWR in patients without chordal rupture (r(2)=0.66, P<0.0001). MR severity correlated strongly with leaflet billow volume (r(2)=0.74, P<0.0001) and inversely with AHCWR (r(2)=0.44, P<0.0001). In contrast, annulus dilatation but not flattening occurred in nonprolapse MR patients. An AHCWR <15% (odds ratio=7.1; P=0.0004) was strongly associated with significant MR in mitral valve prolapse. CONCLUSION Flattening of the annular saddle shape is associated with progressive leaflet billowing and increased frequencies of chordal rupture and may be important in the pathogenesis of MR in mitral valve prolapse.
Collapse
Affiliation(s)
- Alex Pui-Wai Lee
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong SAR
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Rausch MK, Famaey N, Shultz TO, Bothe W, Miller DC, Kuhl E. Mechanics of the mitral valve: a critical review, an in vivo parameter identification, and the effect of prestrain. Biomech Model Mechanobiol 2012; 12:1053-71. [PMID: 23263365 DOI: 10.1007/s10237-012-0462-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/04/2012] [Indexed: 11/28/2022]
Abstract
Alterations in mitral valve mechanics are classical indicators of valvular heart disease, such as mitral valve prolapse, mitral regurgitation, and mitral stenosis. Computational modeling is a powerful technique to quantify these alterations, to explore mitral valve physiology and pathology, and to classify the impact of novel treatment strategies. The selection of the appropriate constitutive model and the choice of its material parameters are paramount to the success of these models. However, the in vivo parameters values for these models are unknown. Here, we identify the in vivo material parameters for three common hyperelastic models for mitral valve tissue, an isotropic one and two anisotropic ones, using an inverse finite element approach. We demonstrate that the two anisotropic models provide an excellent fit to the in vivo data, with local displacement errors in the sub-millimeter range. In a complementary sensitivity analysis, we show that the identified parameter values are highly sensitive to prestrain, with some parameters varying up to four orders of magnitude. For the coupled anisotropic model, the stiffness varied from 119,021 kPa at 0 % prestrain via 36 kPa at 30 % prestrain to 9 kPa at 60 % prestrain. These results may, at least in part, explain the discrepancy between previously reported ex vivo and in vivo measurements of mitral leaflet stiffness. We believe that our study provides valuable guidelines for modeling mitral valve mechanics, selecting appropriate constitutive models, and choosing physiologically meaningful parameter values. Future studies will be necessary to experimentally and computationally investigate prestrain, to verify its existence, to quantify its magnitude, and to clarify its role in mitral valve mechanics.
Collapse
Affiliation(s)
- Manuel K Rausch
- Department of Mechanical Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA,
| | | | | | | | | | | |
Collapse
|
57
|
A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics. Ann Biomed Eng 2012; 41:305-15. [PMID: 22965640 DOI: 10.1007/s10439-012-0651-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 08/27/2012] [Indexed: 01/02/2023]
Abstract
Numerical models of the mitral valve have been used to elucidate mitral valve function and mechanics. These models have evolved from simple two-dimensional approximations to complex three-dimensional fully coupled fluid structure interaction models. However, to date these models lack direct one-to-one experimental validation. As computational solvers vary considerably, experimental benchmark data are critically important to ensure model accuracy. In this study, a novel left heart simulator was designed specifically for the validation of numerical mitral valve models. Several distinct experimental techniques were collectively performed to resolve mitral valve geometry and hemodynamics. In particular, micro-computed tomography was used to obtain accurate and high-resolution (39 μm voxel) native valvular anatomy, which included the mitral leaflets, chordae tendinae, and papillary muscles. Three-dimensional echocardiography was used to obtain systolic leaflet geometry. Stereoscopic digital particle image velocimetry provided all three components of fluid velocity through the mitral valve, resolved every 25 ms in the cardiac cycle. A strong central filling jet (V ~ 0.6 m/s) was observed during peak systole with minimal out-of-plane velocities. In addition, physiologic hemodynamic boundary conditions were defined and all data were synchronously acquired through a central trigger. Finally, the simulator is a precisely controlled environment, in which flow conditions and geometry can be systematically prescribed and resultant valvular function and hemodynamics assessed. Thus, this work represents the first comprehensive database of high fidelity experimental data, critical for extensive validation of mitral valve fluid structure interaction simulations.
Collapse
|
58
|
Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann Biomed Eng 2012; 41:142-53. [PMID: 22805982 DOI: 10.1007/s10439-012-0620-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/05/2012] [Indexed: 10/28/2022]
Abstract
The objective of this study was to develop a patient-specific finite element (FE) model of a human mitral valve. The geometry of the mitral valve was reconstructed from multi-slice computed tomography (MSCT) scans at middle diastole with distinguishable mitral leaflet thickness, chordal origins, chordal insertion points, and papillary muscle locations. Mitral annulus and papillary muscle dynamic motions were also quantified from MSCT scans and prescribed as boundary conditions for the FE simulation. Material properties of the human mitral leaflet tissues were obtained from biaxial tests and characterized by an anisotropic hyperelastic material model. In vivo dynamic closing of the mitral valve was simulated. The closed shape of the mitral valve output from the simulation was similar to the mitral valve geometry reconstructed from MSCT images at middle systole. Forces from the anterolateral and posteromedial papillary muscle groups at middle systole were 4.51 N and 5.17 N, respectively. The average maximum principal stress of the midsection of the anterior mitral leaflet was approximately 160 kPa at the systolic peak. Results demonstrated that the developed FE model could closely replicate in vivo mitral valve dynamic motion during middle diastole and systole. This model may serve as a basis for utilizing computational simulations to obtain a better understanding of mitral valve mechanics, disease and surgical repair.
Collapse
|
59
|
de Vlaming A, Sauls K, Hajdu Z, Visconti RP, Mehesz AN, Levine RA, Slaugenhaupt SA, Hagège A, Chester AH, Markwald RR, Norris RA. Atrioventricular valve development: new perspectives on an old theme. Differentiation 2012; 84:103-16. [PMID: 22579502 DOI: 10.1016/j.diff.2012.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/26/2012] [Accepted: 04/01/2012] [Indexed: 11/19/2022]
Abstract
Atrioventricular valve development commences with an EMT event whereby endocardial cells transform into mesenchyme. The molecular events that induce this phenotypic change are well understood and include many growth factors, signaling components, and transcription factors. Besides their clear importance in valve development, the role of these transformed mesenchyme and the function they serve in the developing prevalve leaflets is less understood. Indeed, we know that these cells migrate, but how and why do they migrate? We also know that they undergo a transition to a mature, committed cell, largely defined as an interstitial fibroblast due to their ability to secrete various matrix components including collagen type I. However, we have yet to uncover mechanisms by which the matrix is synthesized, how it is secreted, and how it is organized. As valve disease is largely characterized by altered cell number, cell activation, and matrix disorganization, answering questions of how the valves are built will likely provide us with information of real clinical relevance. Although expression profiling and descriptive or correlative analyses are insightful, to advance the field, we must now move past the simplicity of these assays and ask fundamental, mechanistic based questions aimed at understanding how valves are "built". Herein we review current understandings of atrioventricular valve development and present what is known and what isn't known. In most cases, basic, biological questions and hypotheses that were presented decades ago on valve development still are yet to be answered but likely hold keys to uncovering new discoveries with relevance to both embryonic development and the developmental basis of adult heart valve diseases. Thus, the goal of this review is to remind us of these questions and provide new perspectives on an old theme of valve development.
Collapse
Affiliation(s)
- Annemarieke de Vlaming
- Department of Regenerative Medicine and Cell Biology, School of Medicine, Cardiovascular Developmental Biology Center, Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Xu C, Jassar AS, Nathan DP, Eperjesi TJ, Brinster CJ, Levack MM, Vergnat M, Gorman RC, Gorman JH, Jackson BM. Augmented mitral valve leaflet area decreases leaflet stress: a finite element simulation. Ann Thorac Surg 2012; 93:1141-5. [PMID: 22397985 PMCID: PMC3462015 DOI: 10.1016/j.athoracsur.2012.01.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/17/2012] [Accepted: 01/20/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND Using human mitral valve (MV) models derived from three-dimensional echocardiography, finite element analysis was used to predict mechanical leaflet and chordal stress. Subsequently, valve geometries were altered to examine the effects on stresses of the following: (1) varying coaptation area; (2) varying noncoapted leaflet tissue area; and (3) varying interleaflet coefficient of friction (μ). METHODS Three human MV models were loaded with a transvalvular pressure of 80 mm Hg using finite element analysis. Initially leaflet coaptation was set to 10%, 50%, or 100% of actual coaptation length to test the influence of coaptation length on stress distribution. Next, leaflet surface areas were augmented by 1% overall and by 2% in the noncoapted "belly" region to test the influence of increased leaflet billowing without changing the gross geometry of the MV. Finally, the coefficient of friction between the coapted leaflets was set to μ = 0, 0.05, or 0.3, to assess the influence of friction on MV function. RESULTS Leaflet coaptation length did not affect stress distribution in either the coapted or noncoapted leaflet regions; peak leaflet stress was 0.36 ± 0.17 MPa at 100%, 0.35 ± 0.14 MPa at 50%, and 0.35 ± 0.15 MPa at 10% coaptation lengths (p = 0.85). Similarly, coaptation length did not affect peak chordal tension (p = 0.74). Increasing the noncoapted leaflet area decreased the peak valvular stresses by 5 ± 2% (p = 0.02). Varying the coefficient of friction between leaflets did not alter leaflet or chordal stress distribution (p = 0.18). CONCLUSIONS Redundant MV leaflet tissue reduces mechanical stress on the noncoapted leaflets; the extent of coaptation or frictional interleaflet interaction does not independently influence leaflet stresses. Repair techniques that increase or preserve noncoapted leaflet area may decrease mechanical stresses and thereby enhance repair durability.
Collapse
Affiliation(s)
- Chun Xu
- Gorman Cardiovascular Research Group, University of Pennsylvania, Glenolden, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Rausch MK, Bothe W, Kvitting JPE, Swanson JC, Miller DC, Kuhl E. Mitral valve annuloplasty: a quantitative clinical and mechanical comparison of different annuloplasty devices. Ann Biomed Eng 2012; 40:750-61. [PMID: 22037916 PMCID: PMC3288426 DOI: 10.1007/s10439-011-0442-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
Mitral valve annuloplasty is a common surgical technique used in the repair of a leaking valve by implanting an annuloplasty device. To enhance repair durability, these devices are designed to increase leaflet coaptation, while preserving the native annular shape and motion; however, the precise impact of device implantation on annular deformation, strain, and curvature is unknown. In this article, we quantify how three frequently used devices significantly impair native annular dynamics. In controlled in vivo experiments, we surgically implanted 11 flexible-incomplete, 11 semi-rigid-complete, and 12 rigid-complete devices around the mitral annuli of 34 sheep, each tagged with 16 equally spaced tantalum markers. We recorded four-dimensional marker coordinates using biplane videofluoroscopy, first with device and then without, which were used to create mathematical models using piecewise cubic splines. Clinical metrics (characteristic anatomical distances) revealed significant global reduction in annular dynamics upon device implantation. Mechanical metrics (strain and curvature fields) explained this reduction via a local loss of anterior dilation and posterior contraction. Overall, all three devices unfavorably caused reduction in annular dynamics. The flexible-incomplete device, however, preserved native annular dynamics to a larger extent than the complete devices. Heterogeneous strain and curvature profiles suggest the need for heterogeneous support, which may spawn more rational design of annuloplasty devices using design concepts of functionally graded materials.
Collapse
Affiliation(s)
- Manuel K Rausch
- Department of Mechanical Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
62
|
Amini R, Eckert CE, Koomalsingh K, McGarvey J, Minakawa M, Gorman JH, Gorman RC, Sacks MS. On the in vivo deformation of the mitral valve anterior leaflet: effects of annular geometry and referential configuration. Ann Biomed Eng 2012; 40:1455-67. [PMID: 22327292 DOI: 10.1007/s10439-012-0524-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 01/25/2012] [Indexed: 11/29/2022]
Abstract
Alteration of the native mitral valve (MV) shape has been hypothesized to have a profound effect on the local tissue stress distribution, and is potentially linked to limitations in repair durability. The present study was undertaken to elucidate the relation between MV annular shape and central mitral valve anterior leaflet (MVAL) strain history, using flat annuloplasty in an ovine model. In addition, we report for the first time the presence of residual in vivo leaflet strains. In vivo leaflet deformations were measured using sonocrystal transducers sutured to the MVAL (n = 10), with the 3D positions acquired over the full cardiac cycle. In six animals a flat ring was sutured to the annulus and the transducer positions recorded, while in the remaining four the MV was excised from the exsanguinated heart and the stress-free transducer positions obtained. In the central region of the MVAL the peak stretch values, referenced to the minimum left ventricular pressure (LVP), were 1.10 ± 0.01 and 1.31 ± 0.03 (mean ± standard error) in the circumferential and radial directions, respectively. Following flat ring annuloplasty, the central MVAL contracted 28% circumferentially and elongated 16% radially at minimum LVP, and the circumferential direction was under a negative strain state during the entire cardiac cycle. After valve excision from the exsanguinated heart, the MVAL contracted significantly (18 and 30% in the circumferential and radial directions, respectively), indicating the presence of substantial in vivo residual strains. While the physiological function of the residual strains (and their associated stresses) are at present unknown, accounting for their presence is clearly necessary for accurate computational simulations of MV function. Moreover, we demonstrated that changes in annular geometry dramatically alter valvular functional strains in vivo. As levels of homeostatic strains are related to tissue remodeling and homeostasis, our results suggest that surgically introduced alterations in MV shape could lead to the long term MV mechanobiological and microstructural alterations that could ultimately affect MV repair durability.
Collapse
Affiliation(s)
- Rouzbeh Amini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Pouch AM, Xu C, Yushkevich PA, Jassar AS, Vergnat M, Gorman JH, Gorman RC, Sehgal CM, Jackson BM. Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound. J Biomech 2012; 45:903-7. [PMID: 22281408 DOI: 10.1016/j.jbiomech.2011.11.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2011] [Indexed: 11/16/2022]
Abstract
In vivo human mitral valves (MV) were imaged using real-time 3D transesophageal echocardiography (rt-3DTEE), and volumetric images of the MV at mid-systole were analyzed by user-initialized segmentation and 3D deformable modeling with continuous medial representation, a compact representation of shape. The resulting MV models were loaded with physiologic pressures using finite element analysis (FEA). We present the regional leaflet stress distributions predicted in normal and diseased (regurgitant) MVs. Rt-3DTEE, semi-automated leaflet segmentation, 3D deformable modeling, and FEA modeling of the in vivo human MV is tenable and useful for evaluation of MV pathology.
Collapse
Affiliation(s)
- Alison M Pouch
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Spinner EM, Buice D, Yap CH, Yoganathan AP. The effects of a three-dimensional, saddle-shaped annulus on anterior and posterior leaflet stretch and regurgitation of the tricuspid valve. Ann Biomed Eng 2011; 40:996-1005. [PMID: 22130636 DOI: 10.1007/s10439-011-0471-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 11/09/2011] [Indexed: 11/30/2022]
Abstract
Tricuspid regurgitation (TR) is present in trace amounts or more in 82-86% of the population and is greater than mild in 14% of the population. In severe cases, it can contribute to right heart failure and adversely affect mitral valve repair durability. One major cause of TR is the dilation of the tricuspid annulus, which alters the geometry of the annulus from a saddle-shape to a more planar profile. Another cause of TR is the displacement of the papillary muscles (PMs), which results from right ventricular dilation. The objective of this study was to identify the effect of a saddle-shaped annulus on native tricuspid leaflet stretch mechanics and TR. In addition, the effects of geometric alterations, including annular dilatation and PM displacement, on leaflet stretch was investigated. Fresh porcine tricuspid valves (TVs) (n = 8) were excised and sutured to an adjustable three-dimensional annulus plate (allowing for dilatation and saddle-shape) and three PM attachment rods. The valve was then placed in the in vitro Georgia Tech right heart simulator. Dual-camera photogrammetry, was used to quantify the stretch ratio experienced by the valve leaflets at peak systole for the following conditions: physiologically normal, 100% annular dilatation, displaced PMs, and a combination of annular dilatation and PM displacement. In addition, a saddle and flat annulus were implemented for each of the four conditions. PM displacement was simulated by displacing all PMs by 10 mm in all directions (laterally, apically, posteriorly/anteriorly). The physiologically normal condition-normal annulus area, saddle-shaped annulus with PMs in a normal position, was used as a control. The results showed that the posterior leaflet exhibited significantly (p ≤ 0.05) higher major and areal stretch ratios as compared to the anterior leaflet at peak systole for all conditions tested. No significant difference was seen in stretch when a flat annulus was compared to saddle for the anterior or posterior leaflet for normal or disease conditions. Investigation of the impact of disease found a significant increase (p ≤ 0.10) in stretch in the posterior leaflet with a combination of annular dilatation and PM displacement (2.01 ± 0.68) as compared to the normal condition with a saddle annulus (1.43 ± 0.20). In addition displacement of the PMs resulted in a significant (p ≤ 0.01) reduction in TR, although the actual volume reduced was minimal (1.2 mL). Stretch values were measured for the anterior and posterior leaflet under both physiologic and pathologic conditions for the first time. Further, these results provide an understanding of the effects of geometric parameters on valve mechanics and function, which may lead to improved TV repairs.
Collapse
Affiliation(s)
- Erin M Spinner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332-0535, USA
| | | | | | | |
Collapse
|
65
|
Bothe W, Kuhl E, Kvitting JPE, Rausch MK, Göktepe S, Swanson JC, Farahmandnia S, Ingels NB, Miller DC. Rigid, complete annuloplasty rings increase anterior mitral leaflet strains in the normal beating ovine heart. Circulation 2011; 124:S81-96. [PMID: 21911823 DOI: 10.1161/circulationaha.110.011163] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Annuloplasty ring or band implantation during surgical mitral valve repair perturbs mitral annular dimensions, dynamics, and shape, which have been associated with changes in anterior mitral leaflet (AML) strain patterns and suboptimal long-term repair durability. We hypothesized that rigid rings with nonphysiological three-dimensional shapes, but not saddle-shaped rigid rings or flexible bands, increase AML strains. METHODS AND RESULTS Sheep had 23 radiopaque markers inserted: 7 along the anterior mitral annulus and 16 equally spaced on the AML. True-sized Cosgrove-Edwards flexible, partial band (n=12), rigid, complete St Jude Medical rigid saddle-shaped (n=12), Carpentier-Edwards Physio (n=12), Edwards IMR ETlogix (n=11), and Edwards GeoForm (n=12) annuloplasty rings were implanted in a releasable fashion. Under acute open-chest conditions, 4-dimensional marker coordinates were obtained using biplane videofluoroscopy along with hemodynamic parameters with the ring inserted and after release. Marker coordinates were triangulated, and the largest maximum principal AML strains were determined during isovolumetric relaxation. No relevant changes in hemodynamics occurred. Compared with the respective control state, strains increased significantly with rigid saddle-shaped annuloplasty ring, Carpentier-Edwards Physio, Edwards IMR ETlogix, and Edwards GeoForm (0.14 ± 0.05 versus 0.16 ± 0.05, P=0.024, 0.15 ± 0.03 versus 0.18 ± 0.04, P=0.020, 0.11 ± 0.05 versus 0.14 ± 0.05, P=0.042, and 0.13 ± 0.05 versus 0.16 ± 0.05, P=0.009), but not with Cosgrove-Edwards band (0.15 ± 0.05 versus 0.15 ± 0.04, P=0.973). CONCLUSIONS Regardless of three-dimensional shape, rigid, complete annuloplasty rings, but not a flexible, partial band, increased AML strains in the normal beating ovine heart. Clinical studies are needed to determine whether annuloplasty rings affect AML strains in patients, and, if so, whether ring-induced perturbations in leaflet strain states are linked to repair failure.
Collapse
Affiliation(s)
- Wolfgang Bothe
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305-5247, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Gersh B, Granger C. Indirect mitral annuloplasty: a feasible or a mirage technology. EUROINTERVENTION 2011; 7:19-21. [PMID: 21550895 PMCID: PMC8657027 DOI: 10.4244/eijv7i1a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Bernard Gersh
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
67
|
Roscher C, Reidy C, Augoustides JGT. Progress in perioperative echocardiography: focus on safety, clinical outcomes, 3-dimensional imaging, and education. J Cardiothorac Vasc Anesth 2011; 25:559-64. [PMID: 21493095 DOI: 10.1053/j.jvca.2011.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Indexed: 12/14/2022]
Abstract
Gastric decompression with an orogastric tube after anesthetic induction does not appear to enhance image quality for routine cases. The insertion of a transesophageal echocardiographic (TEE) probe can cause significant upper-airway trauma, which can be minimized with rigid laryngoscopy. Limited TEE imaging without transgastric views appears to be safe and clinically adequate in patients with advanced liver disease and esophageal varices. Although esophagogastric perforation because of transesophageal echocardiography is rare, the risk is significantly higher with advanced age and female sex. The echocardiographic assessment of right ventricular function and left ventricular diastolic function can improve the prediction of atrial arrhythmias after elective lung resection. Furthermore, asymptomatic left ventricular systolic or diastolic dysfunction is an independent predictor of cardiovascular mortality and morbidity after open vascular surgery. Advances in 3D echocardiography have shown that hypertrophic cardiomyopathy frequently is associated with changes in the mitral valve complex that predispose to left ventricular outflow tract obstruction. Furthermore, 3D imaging of the mitral apparatus has highlighted the importance of the annular saddle shape and the anatomic variability in ischemic mitral regurgitation. Education in perioperative echocardiography is experiencing high demand that can be satisfied partially with simulators and Internet-based educational activities. These modalities will aid in the dissemination of echocardiography through perioperative practice.
Collapse
Affiliation(s)
- Christopher Roscher
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
68
|
Rausch MK, Bothe W, Kvitting JPE, Göktepe S, Miller DC, Kuhl E. In vivo dynamic strains of the ovine anterior mitral valve leaflet. J Biomech 2011; 44:1149-57. [PMID: 21306716 PMCID: PMC3111015 DOI: 10.1016/j.jbiomech.2011.01.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/30/2010] [Accepted: 01/18/2011] [Indexed: 11/19/2022]
Abstract
Understanding the mechanics of the mitral valve is crucial in terms of designing and evaluating medical devices and techniques for mitral valve repair. In the current study we characterize the in vivo strains of the anterior mitral valve leaflet. On cardiopulmonary bypass, we sew miniature markers onto the leaflets of 57 sheep. During the cardiac cycle, the coordinates of these markers are recorded via biplane fluoroscopy. From the resulting four-dimensional data sets, we calculate areal, maximum principal, circumferential, and radial leaflet strains and display their profiles on the averaged leaflet geometry. Average peak areal strains are 13.8±6.3%, maximum principal strains are 13.0±4.7%, circumferential strains are 5.0±2.7%, and radial strains are 7.8±4.3%. Maximum principal strains are largest in the belly region, where they are aligned with the circumferential direction during diastole switching into the radial direction during systole. Circumferential strains are concentrated at the distal portion of the belly region close to the free edge of the leaflet, while radial strains are highest in the center of the leaflet, stretching from the posterior to the anterior commissure. In summary, leaflet strains display significant temporal, regional, and directional variations with largest values inside the belly region and toward the free edge. Characterizing strain distribution profiles might be of particular clinical significance when optimizing mitral valve repair techniques in terms of forces on suture lines and on medical devices.
Collapse
Affiliation(s)
- Manuel K Rausch
- Department of Mechanical Engineering, School of Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
69
|
Quantitative Analysis of Mitral Valve Apparatus in Mitral Valve Prolapse Before and After Annuloplasty: A Three-Dimensional Intraoperative Transesophageal Study. J Am Soc Echocardiogr 2011; 24:405-13. [DOI: 10.1016/j.echo.2011.01.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Indexed: 11/16/2022]
|
70
|
Caiani EG, Fusini L, Veronesi F, Tamborini G, Maffessanti F, Gripari P, Corsi C, Naliato M, Zanobini M, Alamanni F, Pepi M. Quantification of mitral annulus dynamic morphology in patients with mitral valve prolapse undergoing repair and annuloplasty during a 6-month follow-up. EUROPEAN JOURNAL OF ECHOCARDIOGRAPHY 2011; 12:375-83. [DOI: 10.1093/ejechocard/jer016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
71
|
Characterization of Mitral Valve Annular Dynamics in the Beating Heart. Ann Biomed Eng 2011; 39:1690-702. [DOI: 10.1007/s10439-011-0272-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/04/2011] [Indexed: 11/25/2022]
|
72
|
Affiliation(s)
- Muralidhar Padala
- Joseph B. Whitehead Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine
| | - William Brent Keeling
- Joseph B. Whitehead Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine
| | - Robert A. Guyton
- Joseph B. Whitehead Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine
| | - Vinod H. Thourani
- Joseph B. Whitehead Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine
| |
Collapse
|
73
|
Kovalova S, Necas J. RT-3D TEE: characteristics of mitral annulus using mitral valve quantification (MVQ) program. Echocardiography 2010; 28:461-7. [PMID: 21175781 DOI: 10.1111/j.1540-8175.2010.01340.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIM To evaluate the mitral annulus characteristics in significant mitral regurgitant lesions using mitral valve quantification (MVQ) program. METHODS We examined 117 patients (39 women), aged 18-86. Patients were separated into four subgroups: 35 patients with ischemic mitral regurgitation, 42 patients with isolated prolapse of the mitral valve, 12 patients with Barlow disease, and 28 healthy controls. Mitral annulus was examined in end-systole. The following parameters were assessed: anteroposterior and intercommissural diameter, perimeter of annulus, area of minimal surface spanning annulus and height of the mitral annulus. A new parameter--mitral annulus height index (height/circumference × 100) was introduced. Values of these parameters in subgroups with mitral pathology were compared with corresponding parameters of control group using Student t-test. RESULTS In subgroups with mitral pathology all parameters except mitral annulus height and mitral annulus height index were significantly higher than those in the control group. Mitral annulus height was significantly higher in Barlow disease, significantly lower in mitral prolapse group and comparable to normal controls in the ischemic regurgitation group. Mitral annulus height index was significantly higher in Barlow disease and significantly lower in patients with prolapse and ischemic regurgitation. CONCLUSIONS Barlow disease is characterized by dilation and vertical deformation of the mitral annulus (annulus height and height index increase). Prolapse of the mitral valve and ischemic regurgitation of mitral annulus involve dilation and flattening of the annulus (annulus height decreases in prolapse group significantly, in ischemic regurgitation nonsignificantly, while annulus height index decreases significantly in both subgroups).
Collapse
Affiliation(s)
- Sylva Kovalova
- Center of Cardiovascular Surgery and Transplantation, Brno, Czech Republic.
| | | |
Collapse
|
74
|
Invited Commentary. Ann Thorac Surg 2009; 88:1504-5. [DOI: 10.1016/j.athoracsur.2009.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 07/06/2009] [Accepted: 07/14/2009] [Indexed: 11/17/2022]
|