51
|
Jarrahi A, Ahluwalia M, Khodadadi H, da Silva Lopes Salles E, Kolhe R, Hess DC, Vale F, Kumar M, Baban B, Vaibhav K, Dhandapani KM. Neurological consequences of COVID-19: what have we learned and where do we go from here? J Neuroinflammation 2020; 17:286. [PMID: 32998763 PMCID: PMC7525232 DOI: 10.1186/s12974-020-01957-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
The coronavirus disease-19 (COVID-19) pandemic is an unprecedented worldwide health crisis. COVID-19 is caused by SARS-CoV-2, a highly infectious pathogen that is genetically similar to SARS-CoV. Similar to other recent coronavirus outbreaks, including SARS and MERS, SARS-CoV-2 infected patients typically present with fever, dry cough, fatigue, and lower respiratory system dysfunction, including high rates of pneumonia and acute respiratory distress syndrome (ARDS); however, a rapidly accumulating set of clinical studies revealed atypical symptoms of COVID-19 that involve neurological signs, including headaches, anosmia, nausea, dysgeusia, damage to respiratory centers, and cerebral infarction. These unexpected findings may provide important clues regarding the pathological sequela of SARS-CoV-2 infection. Moreover, no efficacious therapies or vaccines are currently available, complicating the clinical management of COVID-19 patients and emphasizing the public health need for controlled, hypothesis-driven experimental studies to provide a framework for therapeutic development. In this mini-review, we summarize the current body of literature regarding the central nervous system (CNS) effects of SARS-CoV-2 and discuss several potential targets for therapeutic development to reduce neurological consequences in COVID-19 patients.
Collapse
Affiliation(s)
- Abbas Jarrahi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 15th Street, 30912, Augusta, Georgia
| | - Meenakshi Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia
| | - Evila da Silva Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Fernando Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 15th Street, 30912, Augusta, Georgia
| | - Manish Kumar
- Department of Allied Health Science, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura, Karnataka, India
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 15th Street, 30912, Augusta, Georgia
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 15th Street, 30912, Augusta, Georgia.
| |
Collapse
|
52
|
Revisiting Traumatic Brain Injury: From Molecular Mechanisms to Therapeutic Interventions. Biomedicines 2020; 8:biomedicines8100389. [PMID: 33003373 PMCID: PMC7601301 DOI: 10.3390/biomedicines8100389] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022] Open
Abstract
Studying the complex molecular mechanisms involved in traumatic brain injury (TBI) is crucial for developing new therapies for TBI. Current treatments for TBI are primarily focused on patient stabilization and symptom mitigation. However, the field lacks defined therapies to prevent cell death, oxidative stress, and inflammatory cascades which lead to chronic pathology. Little can be done to treat the mechanical damage that occurs during the primary insult of a TBI; however, secondary injury mechanisms, such as inflammation, blood-brain barrier (BBB) breakdown, edema formation, excitotoxicity, oxidative stress, and cell death, can be targeted by therapeutic interventions. Elucidating the many mechanisms underlying secondary injury and studying targets of neuroprotective therapeutic agents is critical for developing new treatments. Therefore, we present a review on the molecular events following TBI from inflammation to programmed cell death and discuss current research and the latest therapeutic strategies to help understand TBI-mediated secondary injury.
Collapse
|
53
|
Scherschel K, Hedenus K, Jungen C, Lemoine MD, Rübsamen N, Veldkamp MW, Klatt N, Lindner D, Westermann D, Casini S, Kuklik P, Eickholt C, Klöcker N, Shivkumar K, Christ T, Zeller T, Willems S, Meyer C. Cardiac glial cells release neurotrophic S100B upon catheter-based treatment of atrial fibrillation. Sci Transl Med 2020; 11:11/493/eaav7770. [PMID: 31118294 DOI: 10.1126/scitranslmed.aav7770] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Atrial fibrillation (AF), the most common sustained heart rhythm disorder worldwide, is linked to dysfunction of the intrinsic cardiac autonomic nervous system (ICNS). The role of ICNS damage occurring during catheter-based treatment of AF, which is the therapy of choice for many patients, remains controversial. We show here that the neuronal injury marker S100B is expressed in cardiac glia throughout the ICNS and is released specifically upon catheter ablation of AF. Patients with higher S100B release were more likely to be AF free during follow-up. Subsequent in vitro studies revealed that murine intracardiac neurons react to S100B with diminished action potential firing and increased neurite growth. This suggests that release of S100B from cardiac glia upon catheter-based treatment of AF is a hallmark of acute neural damage that contributes to nerve sprouting and can be used to assess ICNS damage.
Collapse
Affiliation(s)
- Katharina Scherschel
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Katja Hedenus
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Christiane Jungen
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Marc D Lemoine
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nicole Rübsamen
- Department of General and Interventional Cardiology, University Heart Center Hamburg, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marieke W Veldkamp
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, 1105 AZ, Amsterdam, Netherlands
| | - Niklas Klatt
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Diana Lindner
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Department of General and Interventional Cardiology, University Heart Center Hamburg, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dirk Westermann
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Department of General and Interventional Cardiology, University Heart Center Hamburg, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Simona Casini
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, 1105 AZ, Amsterdam, Netherlands
| | - Pawel Kuklik
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Christian Eickholt
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Kalyanam Shivkumar
- Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, Molecular, Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, CA 90095, USA
| | - Torsten Christ
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tanja Zeller
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Department of General and Interventional Cardiology, University Heart Center Hamburg, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stephan Willems
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Christian Meyer
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| |
Collapse
|
54
|
Cisneros-Mejorado AJ, Pérez-Samartín A, Domercq M, Arellano RO, Gottlieb M, Koch-Nolte F, Matute C. P2X7 Receptors as a Therapeutic Target in Cerebrovascular Diseases. Front Mol Neurosci 2020; 13:92. [PMID: 32714144 PMCID: PMC7340211 DOI: 10.3389/fnmol.2020.00092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
Shortage of oxygen and nutrients in the brain induces the release of glutamate and ATP that can cause excitotoxicity and contribute to neuronal and glial damage. Our understanding of the mechanisms of ATP release and toxicity in cerebrovascular diseases is incomplete. This review aims at summarizing current knowledge about the participation of key elements in the ATP-mediated deleterious effects in these pathologies. This includes pannexin-1 hemichannels, calcium homeostasis modulator-1 (CALHM1), purinergic P2X7 receptors, and other intermediaries of CNS injury downstream of ATP release. Available data together with recent pharmacological developments in purinergic signaling may constitute a new opportunity to translate preclinical findings into more effective therapies in cerebrovascular diseases.
Collapse
Affiliation(s)
| | - Alberto Pérez-Samartín
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco, CIBERNED, Leioa, Spain
| | - María Domercq
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco, CIBERNED, Leioa, Spain
| | - Rogelio O Arellano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Miroslav Gottlieb
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| | | | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco, CIBERNED, Leioa, Spain
| |
Collapse
|
55
|
Logsdon AF, Schindler AG, Meabon JS, Yagi M, Herbert MJ, Banks WA, Raskind MA, Marshall DA, Keene CD, Perl DP, Peskind ER, Cook DG. Nitric oxide synthase mediates cerebellar dysfunction in mice exposed to repetitive blast-induced mild traumatic brain injury. Sci Rep 2020; 10:9420. [PMID: 32523011 PMCID: PMC7287110 DOI: 10.1038/s41598-020-66113-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/16/2020] [Indexed: 02/02/2023] Open
Abstract
We investigated the role of nitric oxide synthase (NOS) in mediating blood-brain barrier (BBB) disruption and peripheral immune cell infiltration in the cerebellum following blast exposure. Repetitive, but not single blast exposure, induced delayed-onset BBB disruption (72 hours post-blast) in cerebellum. The NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) administered after blast blocked BBB disruption and prevented CD4+ T-cell infiltration into cerebellum. L-NAME also blocked blast-induced increases in intercellular adhesion molecule-1 (ICAM-1), a molecule that plays a critical role in regulating blood-to-brain immune cell trafficking. Blocking NOS-mediated BBB dysfunction during this acute/subacute post-blast interval (24-71 hours after the last blast) also prevented sensorimotor impairment on a rotarod task 30 days later, long after L-NAME cleared the body. In postmortem brains from Veterans/military Servicemembers with blast-related TBI, we found marked Purkinje cell dendritic arbor structural abnormalities, which were comparable to neuropathologic findings in the blast-exposed mice. Taken collectively, these results indicate that blast provokes delayed-onset of NOS-dependent pathogenic cascades that can later emerge as behavioral dysfunction. These results also further implicate the cerebellum as a brain region vulnerable to blast-induced mTBI.
Collapse
Affiliation(s)
- Aric F. Logsdon
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Abigail G. Schindler
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - James S. Meabon
- 0000 0004 0420 6540grid.413919.7VA Northwest Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Mayumi Yagi
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA
| | - Melanie J. Herbert
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA
| | - William A. Banks
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Murray A. Raskind
- 0000 0004 0420 6540grid.413919.7VA Northwest Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Desiree A. Marshall
- 0000000122986657grid.34477.33Department of Pathology, University of Washington, Seattle, WA 98195 USA
| | - C. Dirk Keene
- 0000000122986657grid.34477.33Department of Pathology, University of Washington, Seattle, WA 98195 USA
| | - Daniel P. Perl
- 0000 0001 0421 5525grid.265436.0Department of Pathology, Center for Neuroscience and Regenerative Medicine, School of Medicine, Uniformed Services University, Bethesda, MD 20814 USA
| | - Elaine R. Peskind
- 0000 0004 0420 6540grid.413919.7VA Northwest Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - David G. Cook
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| |
Collapse
|
56
|
Reddy V, Grogan D, Ahluwalia M, Salles ÉL, Ahluwalia P, Khodadadi H, Alverson K, Nguyen A, Raju SP, Gaur P, Braun M, Vale FL, Costigliola V, Dhandapani K, Baban B, Vaibhav K. Targeting the endocannabinoid system: a predictive, preventive, and personalized medicine-directed approach to the management of brain pathologies. EPMA J 2020; 11:217-250. [PMID: 32549916 PMCID: PMC7272537 DOI: 10.1007/s13167-020-00203-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Cannabis-inspired medical products are garnering increasing attention from the scientific community, general public, and health policy makers. A plethora of scientific literature demonstrates intricate engagement of the endocannabinoid system with human immunology, psychology, developmental processes, neuronal plasticity, signal transduction, and metabolic regulation. Despite the therapeutic potential, the adverse psychoactive effects and historical stigma, cannabinoids have limited widespread clinical application. Therefore, it is plausible to weigh carefully the beneficial effects of cannabinoids against the potential adverse impacts for every individual. This is where the concept of "personalized medicine" as a promising approach for disease prediction and prevention may take into the account. The goal of this review is to provide an outline of the endocannabinoid system, including endocannabinoid metabolizing pathways, and will progress to a more in-depth discussion of the therapeutic interventions by endocannabinoids in various neurological disorders.
Collapse
Affiliation(s)
- Vamsi Reddy
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Dayton Grogan
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Meenakshi Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Katelyn Alverson
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Andy Nguyen
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Srikrishnan P. Raju
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
- Brown University, Providence, RI USA
| | - Pankaj Gaur
- Georgia Cancer Center, Augusta University, Augusta, GA USA
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, USA
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, USA
| | - Fernando L. Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | | | - Krishnan Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| |
Collapse
|
57
|
Massey N, Puttachary S, Bhat SM, Kanthasamy AG, Charavaryamath C. HMGB1-RAGE Signaling Plays a Role in Organic Dust-Induced Microglial Activation and Neuroinflammation. Toxicol Sci 2020; 169:579-592. [PMID: 30859215 DOI: 10.1093/toxsci/kfz071] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Occupational exposure to contaminants in agriculture and other industries is known to cause significant respiratory ailments. The effect of organic dust on lung inflammation and tissue remodeling has been actively investigated over many years but the adverse effect of organic dust-exposure on the central vital organ brain is beginning to emerge. Brain microglial cells are a major driver of neuroinflammation upon exposure to danger signals. Therefore, we tested a hypothesis that organic dust-exposure of microglial cells induces microglial cell activation and inflammation through HMGB1-RAGE signaling. Mouse microglial cells were exposed to organic dust extract showed a time-dependent increase in cytoplasmic translocation of high-mobility group box 1 (HMGB1) from the nucleus, increased expression of receptor for advanced glycation end products (RAGE) and activation of Iba1 as compared to control cells. Organic dust also induced reactive oxygen species generation, NF-κB activation, and proinflammatory cytokine release. To establish a functional relevance of HMGB1-RAGE activation in microglia-mediated neuroinflammation, we used both pharmacological and genetic approaches involving HMGB1 translocation inhibitor ethyl pyruvate (EP), anti-HMGB1 siRNA, and NOX-inhibitor mitoapocynin. Interestingly, EP effectively reduced HMGB1 nucleocytoplasmic translocation and RAGE expression along with reactive oxygen species (ROS) generation and TNF-α and IL-6 production but not NF-κB activation. HMGB1 knockdown by siRNA also reduced both ROS and reactive nitrogen species (RNS) and IL-6 levels but not TNF-α. NOX2 inhibitor mitoapocynin significantly reduced RNS levels. Collectively, our results demonstrate that organic dust activates HMGB1-RAGE signaling axis to induce a neuroinflammatory response in microglia and that attenuation of HMGB1-RAGE activation by EP and mitoapocynin treatments or genetic knockdown can dampen the neuroinflammation.
Collapse
Affiliation(s)
- Nyzil Massey
- *Biomedical Sciences, Iowa State University, Ames, Iowa 50011
| | | | | | | | | |
Collapse
|
58
|
Warnock A, Toomey LM, Wright AJ, Fisher K, Won Y, Anyaegbu C, Fitzgerald M. Damage Mechanisms to Oligodendrocytes and White Matter in Central Nervous System Injury: The Australian Context. J Neurotrauma 2020; 37:739-769. [DOI: 10.1089/neu.2019.6890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Lillian M. Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Alexander J. Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Katherine Fisher
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yerim Won
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
59
|
Transcriptional activation of antioxidant gene expression by Nrf2 protects against mitochondrial dysfunction and neuronal death associated with acute and chronic neurodegeneration. Exp Neurol 2020; 328:113247. [PMID: 32061629 DOI: 10.1016/j.expneurol.2020.113247] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are both a primary source of reactive oxygen species (ROS) and a sensitive target of oxidative stress; damage to mitochondria can result in bioenergetic dysfunction and both necrotic and apoptotic cell death. These relationships between mitochondria and cell death are particularly strong in both acute and chronic neurodegenerative disorders. ROS levels are affected by both the production of superoxide and its toxic metabolites and by antioxidant defense mechanisms. Mitochondrial antioxidant activities include superoxide dismutase 2, glutathione peroxidase and reductase, and intramitochondrial glutathione. When intracellular conditions disrupt the homeostatic balance between ROS production and detoxification, a net increase in ROS and an oxidized shift in cellular redox state ensues. Cells respond to this imbalance by increasing the expression of genes that code for proteins that protect against oxidative stress and inhibit cytotoxic oxidation of proteins, DNA, and lipids. If, however, the genomic response to mitochondrial oxidative stress is insufficient to maintain homeostasis, mitochondrial bioenergetic dysfunction and release of pro-apoptotic mitochondrial proteins into the cytosol initiate a variety of cell death pathways, ultimately resulting in potentially lethal damage to vital organs, including the brain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a translational activating protein that enters the nucleus in response to oxidative stress, resulting in increased expression of numerous cytoprotective genes, including genes coding for mitochondrial and non-mitochondrial antioxidant proteins. Many experimental and some FDA-approved drugs promote this process. Since mitochondria are targets of ROS, it follows that protection against mitochondrial oxidative stress by the Nrf2 pathway of gene expression contributes to neuroprotection by these drugs. This document reviews the evidence that Nrf2 activation increases mitochondrial antioxidants, thereby protecting mitochondria from dysfunction and protecting neural cells from damage and death. New experimental results are provided demonstrating that post-ischemic administration of the Nrf2 activator sulforaphane protects against hippocampal neuronal death and neurologic injury in a clinically-relevant animal model of cardiac arrest and resuscitation.
Collapse
|
60
|
Hei Y, Zhang X, Chen R, Zhou Y, Gao D, Liu W. High-Mobility Group Box 1 Neutralization Prevents Chronic Cerebral Hypoperfusion-Induced Optic Tract Injuries in the White Matter Associated with Down-regulation of Inflammatory Responses. Cell Mol Neurobiol 2019; 39:1051-1060. [PMID: 31197745 PMCID: PMC11457824 DOI: 10.1007/s10571-019-00702-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
Chronic cerebral hypoperfusion (CCH)-induced white matter lesions (WMLs) are region-specific with the optic tract (OT) displaying the most severe damages and leading to visual-based behavioral impairment. Previously we have demonstrated that anti-high-mobility group box 1 (HMGB1) neutralizing antibody (Ab) prevents CCH-induced hippocampal damages via inhibition of neuroinflammation. Here we tested the protective role of the Ab on CCH-induced OT injuries. Rats were treated with permanent occlusion of common carotid arteries (2-VO) or a sham surgery, and then administered with PBS, anti-HMGB1 Ab, or paired control Ab. Pupillary light reflex examination, visual water maze, and tapered beam-walking were performed 28 days post-surgery to investigate the behavioral deficits. Meanwhile, WMLs were measured by Klüver-Barrera (KB) and H&E staining, and glial activation was further assessed to evaluate inflammatory responses in OT. Results revealed that anti-HMGB1 Ab ameliorated the morphological damages (grade scores, vacuoles, and thickness) in OT area and preserved visual abilities. Additionally, the increased levels of inflammatory responses and expressions of TLR4 and NF-κB p65 and phosphorylated NF-κB p65 (p-p65) in OT area were partly down-regulated after anti-HMGB1 treatment. Taken together, these findings suggested that HMGB1 neutralization could ease OT injuries and visual-guided behavioral deficits via suppressing inflammatory responses.
Collapse
Affiliation(s)
- Yue Hei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Xin Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Rong Chen
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Yuefei Zhou
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Dakuan Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Weiping Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
61
|
Rosciszewski G, Cadena V, Auzmendi J, Cieri MB, Lukin J, Rossi AR, Murta V, Villarreal A, Reinés A, Gomes FCA, Ramos AJ. Detrimental Effects of HMGB-1 Require Microglial-Astroglial Interaction: Implications for the Status Epilepticus -Induced Neuroinflammation. Front Cell Neurosci 2019; 13:380. [PMID: 31507379 PMCID: PMC6718475 DOI: 10.3389/fncel.2019.00380] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/02/2019] [Indexed: 01/23/2023] Open
Abstract
Temporal Lobe Epilepsy (TLE) is the most common form of human epilepsy and available treatments with antiepileptic drugs are not disease-modifying therapies. The neuroinflammation, neuronal death and exacerbated plasticity that occur during the silent period, following the initial precipitating event (IPE), seem to be crucial for epileptogenesis. Damage Associated Molecular Patterns (DAMP) such as HMGB-1, are released early during this period concomitantly with a phenomenon of reactive gliosis and neurodegeneration. Here, using a combination of primary neuronal and glial cell cultures, we show that exposure to HMGB-1 induces dendrite loss and neurodegeneration in a glial-dependent manner. In glial cells, loss of function studies showed that HMGB-1 exposure induces NF-κB activation by engaging a signaling pathway that involves TLR2, TLR4, and RAGE. In the absence of glial cells, HMGB-1 failed to induce neurodegeneration of primary cultured cortical neurons. Moreover, purified astrocytes were unable to fully respond to HMGB-1 with NF-κB activation and required microglial cooperation. In agreement, in vivo HMGB-1 blockage with glycyrrhizin, immediately after pilocarpine-induced status epilepticus (SE), reduced neuronal degeneration, reactive astrogliosis and microgliosis in the long term. We conclude that microglial-astroglial cooperation is required for astrocytes to respond to HMGB-1 and to induce neurodegeneration. Disruption of this HMGB-1 mediated signaling pathway shows beneficial effects by reducing neuroinflammation and neurodegeneration after SE. Thus, early treatment strategies during the latency period aimed at blocking downstream signaling pathways activated by HMGB-1 are likely to have a significant effect in the neuroinflammation and neurodegeneration that are proposed as key factors in epileptogenesis.
Collapse
Affiliation(s)
- Gerardo Rosciszewski
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vanesa Cadena
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jerónimo Auzmendi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Belén Cieri
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jerónimo Lukin
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia R Rossi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Veronica Murta
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Villarreal
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analia Reinés
- Laboratorio de Neurofarmacología, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flávia C A Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Javier Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
62
|
The immunological response to traumatic brain injury. J Neuroimmunol 2019; 332:112-125. [DOI: 10.1016/j.jneuroim.2019.04.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022]
|
63
|
Naomaitai Ameliorated Brain Damage in Rats with Vascular Dementia by PI3K/PDK1/AKT Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2702068. [PMID: 30867669 PMCID: PMC6379870 DOI: 10.1155/2019/2702068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/21/2018] [Accepted: 12/13/2018] [Indexed: 12/30/2022]
Abstract
Background/Aims Naomaitai can improve blood perfusion and ameliorate the damage in the paraventricular white matter. This study was focused on observing the neuroprotective effect of Naomaitai on the vascular dementia of rat and exploring the action mechanism of PI3K/PDK1/AKT signaling pathway. Methods A vascular dementia model of rats was established by permanent, bilateral common carotid artery occlusion. Rats' behavior was tested by Neurological deficit score and the Morris water maze. The pathology and apoptosis were detected through HE staining and TUNEL assay. Myelin sheath loss and nerve fiber damage were detected by LFB staining. Inflammatory factors, oxidative stress, and brain damage markers were detected through ELISA. The expression of apoptosis-related proteins and PI3K/PDK1/AKT signaling pathway related proteins were measured by western blot. The expressions of PI3K, PDK1, AKT, and MBP in paraventricular white matter cells were detected by immunofluorescence. Results Naomaitai treatment decreased neurological function score in rats with vascular dementia, ameliorated paraventricular white matter damage caused by long-term hypoxia, and hypoperfusion reduced the brain injury markers S-100β and NSE contents, suppressed inflammatory reaction and oxidative stress, reduced IL-1β, IL-6, TNF-α, and MDA contents, and remarkably increased IL-10 and SOD contents. TUNEL and western blot assay showed that Naomaitai treatment decreased neuronal cell apoptosis, increased Bcl-2 expression, and reduced caspase-3 and Bax expression. Furthermore, we found Naomaitai inhibited PI3K and PDK1 expression and activated phosphorylated AKT protein in rats with vascular dementia. However, the protective effect of Naomatai in rats with vascular dementia was inhibited, and expression of PI3K signaling pathway-related proteins was blocked after administration of PI3K inhibitor. Conclusion Naomaitai can ameliorate brain damage in rats with vascular dementia, inhibit neuronal apoptosis, and have anti-inflammatory and antioxidative stress effects, which may be regulated by the PI3K/PDK1/AKT signaling pathway.
Collapse
|
64
|
Abstract
Neuroinflammation is initiated as a result of traumatic brain injury and can exacerbate evolving tissue pathology. Immune cells respond to acute signals from damaged cells, initiate neuroinflammation, and drive the pathological consequences over time. Importantly, the mechanism(s) of injury, the location of the immune cells within the brain, and the animal species all contribute to immune cell behavior following traumatic brain injury. Understanding the signals that initiate neuroinflammation and the context in which they appear may be critical for understanding immune cell contributions to pathology and regeneration. Within this paper, we review a number of factors that could affect immune cell behavior acutely following traumatic brain injury.
Collapse
Affiliation(s)
- Kathryn L Wofford
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma, and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA; School of Biochemistry and Immunology and Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
65
|
Michetti F, D'Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, Corvino V, Geloso MC. The S100B story: from biomarker to active factor in neural injury. J Neurochem 2018; 148:168-187. [DOI: 10.1111/jnc.14574] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/19/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Fabrizio Michetti
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
- IRCCS San Raffaele Scientific Institute; Università Vita-Salute San Raffaele; Milan Italy
| | - Nadia D'Ambrosi
- Department of Biology; Università degli Studi di Roma Tor Vergata; Rome Italy
| | - Amelia Toesca
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | | | - Alessia Serrano
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| |
Collapse
|
66
|
CSF-S100B Is a Potential Candidate Biomarker for Neuromyelitis Optica Spectrum Disorders. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5381239. [PMID: 30426010 PMCID: PMC6217894 DOI: 10.1155/2018/5381239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/18/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022]
Abstract
Astrocytic impairment is a pathologic feature of neuromyelitis optica spectrum disorder (NMOSD). S100B and glial fibrillary acidic protein (GFAP) are the two most commonly used astrocytic markers. The aim of this study was to evaluate whether CSF-S100B could serve as a marker of NMOSD. We enrolled 49 NMOSD patients [25 aquaporin-4 antibody (AQP4-Ab)–positive, 8 myelin-oligodendrocyte glycoprotein antibody (MOG-Ab)-positive, and 16 seronegative patients], 12 multiple sclerosis (MS) patients, and 15 other noninflammatory neurological diseases (OND) patients. The CSF levels of S100B and GFAP were measured by ELISA. Both CSF-S100B and GFAP levels significantly discriminated NMOSD from MS [area under curve (AUC) = 0.839 and 0.850, respectively] and OND (AUC = 0.839 and 0.850, respectively). The CSF-S100B levels differentiated AQP4-Ab–positive NMOSD from MOG-Ab–positive NMOSD with higher accuracy than the CSF-GFAP levels (AUC=0.865 and 0.772, respectively). The CSF-S100B levels also significantly discriminated MOG-Ab–positive patients from seronegative patients (AUC = 0.848). Both CSF-S100B and GFAP levels were correlated with the Expanded Disability Status Scale (EDSS) during remission. Only the CSF-S100B levels were correlated with the CSF WBC count and the EDSS during attack. The levels of CSF-S100B seemed to have a longer lasting time than the levels of CSF-GFAP, which may benefit patients who present late. As a result, CSF-S100B might be a potential candidate biomarker for NMOSD in discriminating, evaluating severity, and predicting disability.
Collapse
|
67
|
Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T. Bidirectional Microglia-Neuron Communication in Health and Disease. Front Cell Neurosci 2018; 12:323. [PMID: 30319362 PMCID: PMC6170615 DOI: 10.3389/fncel.2018.00323] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Microglia are ramified cells that exhibit highly motile processes, which continuously survey the brain parenchyma and react to any insult to the CNS homeostasis. Although microglia have long been recognized as a crucial player in generating and maintaining inflammatory responses in the CNS, now it has become clear, that their function are much more diverse, particularly in the healthy brain. The innate immune response and phagocytosis represent only a little segment of microglia functional repertoire that also includes maintenance of biochemical homeostasis, neuronal circuit maturation during development and experience-dependent remodeling of neuronal circuits in the adult brain. Being equipped by numerous receptors and cell surface molecules microglia can perform bidirectional interactions with other cell types in the CNS. There is accumulating evidence showing that neurons inform microglia about their status and thus are capable of controlling microglial activation and motility while microglia also modulate neuronal activities. This review addresses the topic: how microglia communicate with other cell types in the brain, including fractalkine signaling, secreted soluble factors and extracellular vesicles. We summarize the current state of knowledge of physiological role and function of microglia during brain development and in the mature brain and further highlight microglial contribution to brain pathologies such as Alzheimer’s and Parkinson’s disease, brain ischemia, traumatic brain injury, brain tumor as well as neuropsychiatric diseases (depression, bipolar disorder, and schizophrenia).
Collapse
Affiliation(s)
- Zsuzsanna Szepesi
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oscar Manouchehrian
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sara Bachiller
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
68
|
Kumar MA, Cao W, Pham HP, Raju D, Nawalinski K, Maloney-Wilensky E, Schuster J, Zheng XL. Relative Deficiency of Plasma A Disintegrin and Metalloprotease with Thrombospondin Type 1 Repeats 13 Activity and Elevation of Human Neutrophil Peptides in Patients with Traumatic Brain Injury. J Neurotrauma 2018; 36:222-229. [PMID: 29848170 DOI: 10.1089/neu.2018.5696] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic microvascular injury (tMVI) is a universal endophenotype of traumatic brain injury (TBI) that is responsible for significant neurological morbidity and mortality. The mechanism underlying tMVI is not fully understood. The present study aims to determine plasma levels of von Willebrand factor (VWF), a disintegrin and metalloprotease with thrombospondin type 1 repeats (ADAMTS) 13 activity, and human neutrophil peptides (HNP) 1-3 and to correlate these biomarkers with functional outcomes after moderate-severe TBI. Thirty-one consecutive TBI patients (Glasgow Coma Scale [GCS] range, 3-12) were enrolled into the study between February 2010 and November 2014. Blood samples were collected on 0, 1, 2, 3, and 5 days after admission and analyzed for plasma levels of VWF antigen (VWFAg), collagen-binding activity (VWFAc), ADAMTS13 activity, and HNP1-3 proteins. Mean values of plasma VWFAg, VWFAc, and HNP1-3 were significantly increased in TBI patients compared to those in healthy controls (n = 30). Conversely, mean plasma values of ADAMTS13 activity in TBI patients were significantly decreased during the first 2 days after admission. This resulted in a dramatic reduction in the ratio of ADAMTS13 activity to VWFAg or ADAMTS13 to VWFAc in all 5 post-TBI days. Cluster analysis demonstrated that high median plasma levels of VWFAg and HNP1-3 were observed in the cluster with a high mortality rate. These results demonstrate that a relative deficiency of plasma ADAMTS13 activity, resulting from activation of neutrophils and endothelium, may contribute to the formation of microvascular thrombosis and mortality after moderate-severe TBI.
Collapse
Affiliation(s)
- Monisha A Kumar
- 1 Department of Neurology, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,2 Department of Neurosurgery, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,3 Department of Anesthesiology and Critical Care, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Wenjing Cao
- 4 Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Huy P Pham
- 5 Department of Pathology, Keck School of Medicine of USC, Los Angeles, California
| | - Dheeraj Raju
- 6 Department of Acute, Chronic, and Continuing Care, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Kelsey Nawalinski
- 2 Department of Neurosurgery, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Eileen Maloney-Wilensky
- 2 Department of Neurosurgery, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - James Schuster
- 2 Department of Neurosurgery, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - X Long Zheng
- 4 Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
69
|
de Paula Fonseca Arrifano G, Del Carmen Rodriguez Martin-Doimeadios R, Jiménez-Moreno M, Augusto-Oliveira M, Rogério Souza-Monteiro J, Paraense R, Rodrigues Machado C, Farina M, Macchi B, do Nascimento JLM, Crespo-Lopez ME. Assessing mercury intoxication in isolated/remote populations: Increased S100B mRNA in blood in exposed riverine inhabitants of the Amazon. Neurotoxicology 2018; 68:151-158. [PMID: 30076900 DOI: 10.1016/j.neuro.2018.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 07/03/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022]
Abstract
Mercury is a heavy metal responsible for human intoxication worldwide and especially in the Amazon, where both natural and anthropogenic sources are responsible for exposure in riverine populations. Methylmercury is the most toxic specie of mercury with recognized neurotoxicity due to its affinity for the central nervous system. S100B protein is a well-established biomarker of brain damage and it was recently associated with mercury-related neurotoxicity. Accurate measurement is especially challenging in isolated/remote populations due to the difficulty of adequate sample conservation, therefore here we use S100B mRNA levels in blood as a way to assay mercury neurotoxicity. We hypothesized that individuals from chronically exposed populations showing mercury levels above the limit of 10 μg/g in hair would present increased levels of S100B mRNA, likely due to early brain damage. A total of 224 riverine individuals were evaluated for anthropometric data (age, body mass index), self-reported symptoms of mercury intoxication, c-reactive protein in blood, and mercury speciation in hair. Approximately 20% of participants showed mercury levels above the limit, and prevalence for most symptoms was not different between individuals exposed to high or low mercury levels. Rigorous exclusion criteria were applied to avoid confounding factors and S100B mRNA in blood was tested by RT-qPCR. Participants with ≥10 μg/g of mercury had S100B mRNA levels over two times higher than that of individuals with lower exposure. A significant correlation was also detected between mercury content in hair and S100B mRNA levels in blood, supporting the use of the latter as a possible candidate to predict mercury-induced neurotoxicity. This is the first report of an association between S100B mRNA and mercury exposure in humans. The combination of both exposure and intoxication biomarkers could provide additional support for the screening and early identification of high-risk individuals in isolated populations and subsequent referral to specialized centers.
Collapse
Affiliation(s)
| | | | - María Jiménez-Moreno
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Marcus Augusto-Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará; Belém, PA, Brazil
| | - José Rogério Souza-Monteiro
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará; Belém, PA, Brazil
| | - Ricardo Paraense
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará; Belém, PA, Brazil
| | - Camila Rodrigues Machado
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará; Belém, PA, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Barbarella Macchi
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências Biologicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - José Luiz Martins do Nascimento
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências Biologicas, Universidade Federal do Pará, Belém, PA, Brazil; Universidade CEUMA, Pesquisa em Neurociências, São Luís, MA, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará; Belém, PA, Brazil.
| |
Collapse
|
70
|
Putatunda R, Bethea JR, Hu WH. Potential immunotherapies for traumatic brain and spinal cord injury. Chin J Traumatol 2018; 21:125-136. [PMID: 29759918 PMCID: PMC6033730 DOI: 10.1016/j.cjtee.2018.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 02/08/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic injury of the central nervous system (CNS) including brain and spinal cord remains a leading cause of morbidity and disability in the world. Delineating the mechanisms underlying the secondary and persistent injury versus the primary and transient injury has been drawing extensive attention for study during the past few decades. The sterile neuroinflammation during the secondary phase of injury has been frequently identified substrate underlying CNS injury, but as of now, no conclusive studies have determined whether this is a beneficial or detrimental role in the context of repair. Recent pioneering studies have demonstrated the key roles for the innate and adaptive immune responses in regulating sterile neuroinflammation and CNS repair. Some promising immunotherapeutic strategies have been recently developed for the treatment of CNS injury. This review updates the recent progress on elucidating the roles of the innate and adaptive immune responses in the context of CNS injury, the development and characterization of potential immunotherapeutics, as well as outstanding questions in this field.
Collapse
Affiliation(s)
- Raj Putatunda
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA
| | - John R. Bethea
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Wen-Hui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA,Corresponding author.
| |
Collapse
|
71
|
Chen X, Chen C, Fan S, Wu S, Yang F, Fang Z, Fu H, Li Y. Omega-3 polyunsaturated fatty acid attenuates the inflammatory response by modulating microglia polarization through SIRT1-mediated deacetylation of the HMGB1/NF-κB pathway following experimental traumatic brain injury. J Neuroinflammation 2018; 15:116. [PMID: 29678169 PMCID: PMC5909267 DOI: 10.1186/s12974-018-1151-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/06/2018] [Indexed: 01/17/2023] Open
Abstract
Background Microglial polarization and the subsequent neuroinflammatory response are contributing factors for traumatic brain injury (TBI)-induced secondary injury. High mobile group box 1 (HMGB1) mediates the activation of the NF-κB pathway, and it is considered to be pivotal in the late neuroinflammatory response. Activation of the HMGB1/NF-κB pathway is closely related to HMGB1 acetylation, which is regulated by the sirtuin (SIRT) family of proteins. Omega-3 polyunsaturated fatty acids (ω-3 PUFA) are known to have antioxidative and anti-inflammatory effects. We previously demonstrated that ω-3 PUFA inhibited TBI-induced microglial activation and the subsequent neuroinflammatory response by regulating the HMGB1/NF-κB signaling pathway. However, no studies have elucidated if ω-3 PUFA affects the HMGB1/NF-κB pathway in a HMGB1 deacetylation of dependent SIRT1 manner, thus regulating microglial polarization and the subsequent neuroinflammatory response. Methods The Feeney DM TBI model was adopted to induce brain injury in rats. Modified neurological severity scores, rotarod test, brain water content, and Nissl staining were employed to determine the neuroprotective effects of ω-3 PUFA supplementation. Assessment of microglia polarization and pro-inflammatory markers, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and HMGB1, were used to evaluate the neuroinflammatory responses and the anti-inflammatory effects of ω-3 PUFA supplementation. Immunofluorescent staining and western blot analysis were used to detect HMGB1 nuclear translocation, secretion, and HMGB1/NF-κB signaling pathway activation to evaluate the effects of ω-3 PUFA supplementation. The impact of SIRT1 deacetylase activity on HMGB1 acetylation and the interaction between HMGB1 and SIRT1 were assessed to evaluate anti-inflammation effects of ω-3 PUFAs, and also, whether these effects were dependent on a SIRT1-HMGB1/NF-κB axis to gain further insight into the mechanisms underlying the development of the neuroinflammatory response after TBI. Results The results of our study showed that ω-3 PUFA supplementation promoted a shift from the M1 microglial phenotype to the M2 microglial phenotype and inhibited microglial activation, thus reducing TBI-induced inflammatory factors. In addition, ω-3 PUFA-mediated downregulation of HMGB1 acetylation and its extracellular secretion was found to be likely due to increased SIRT1 activity. We also found that treatment with ω-3 PUFA inhibited HMGB1 acetylation and induced direct interactions between SIRT1 and HMGB1 by elevating SIRT1 activity following TBI. These events lead to inhibition of HMGB1 nucleocytoplasmic translocation/extracellular secretion and alleviated HMGB1-mediated activation of the NF-κB pathway following TBI-induced microglial activation, thus inhibiting the subsequent inflammatory response. Conclusions The results of this study suggest that ω-3 PUFA supplementation attenuates the inflammatory response by modulating microglial polarization through SIRT1-mediated deacetylation of the HMGB1/NF-κB pathway, leading to neuroprotective effects following experimental traumatic brain injury.
Collapse
Affiliation(s)
- Xiangrong Chen
- The Second clinical medical college, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Chunnuan Chen
- The Second clinical medical college, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Sining Fan
- The Second clinical medical college, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Shukai Wu
- The Second clinical medical college, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Fuxing Yang
- The Second clinical medical college, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Zhongning Fang
- The Second clinical medical college, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Huangde Fu
- Department of Neurosurgery, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, 533000, Guangxi Province, China.
| | - Yasong Li
- The Second clinical medical college, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| |
Collapse
|
72
|
Abstract
Trauma can affect any individual at any location and at any time over a lifespan. The disruption of macrobarriers and microbarriers induces instant activation of innate immunity. The subsequent complex response, designed to limit further damage and induce healing, also represents a major driver of complications and fatal outcome after injury. This Review aims to provide basic concepts about the posttraumatic response and is focused on the interactive events of innate immunity at frequent sites of injury: the endothelium at large, and sites within the lungs, inside and outside the brain and at the gut barrier.
Collapse
|
73
|
Raju R. Immune and metabolic alterations following trauma and sepsis - An overview. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2523-2525. [PMID: 28842148 DOI: 10.1016/j.bbadis.2017.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Raghavan Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|