51
|
Alijanvand SH, Christensen MH, Christiansen G, Harikandei KB, Salehi P, Schiøtt B, Moosavi-Movahedi AA, Otzen DE. Novel noscapine derivatives stabilize the native state of insulin against fibrillation. Int J Biol Macromol 2020; 147:98-108. [DOI: 10.1016/j.ijbiomac.2020.01.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
|
52
|
Chen S, Liu Y, Zhou Y, He L, Ouyang J. Mechanism study on the abnormal accumulation and deposition of islet amyloid polypeptide by cold-spray ionization mass spectrometry. Analyst 2020; 145:7289-7296. [DOI: 10.1039/d0an01034k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Native cold-spray ionization mass spectrometry (CSI-MS) technology is employed to characterize the IAPP oligomers and to study the mechanism between IAPP and small-molecule inhibitors.
Collapse
Affiliation(s)
- Su Chen
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Yang Liu
- National Institutes for Food and Drug Control
- Beijing
- China
| | - Yanan Zhou
- National Institutes for Food and Drug Control
- Beijing
- China
| | - Lan He
- National Institutes for Food and Drug Control
- Beijing
- China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| |
Collapse
|
53
|
Chen X, Yang D. Functional zwitterionic biomaterials for administration of insulin. Biomater Sci 2020; 8:4906-4919. [DOI: 10.1039/d0bm00986e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes the structures and biomedical applications of zwitterionic biomaterials in the administration of insulin.
Collapse
Affiliation(s)
- Xingyu Chen
- College of Medicine
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Dongqiong Yang
- College of Medicine
- Southwest Jiaotong University
- Chengdu 610031
- China
| |
Collapse
|
54
|
Targeting alpha synuclein and amyloid beta by a multifunctional, brain-penetrant dopamine D2/D3 agonist D-520: Potential therapeutic application in Parkinson's disease with dementia. Sci Rep 2019; 9:19648. [PMID: 31873106 PMCID: PMC6927976 DOI: 10.1038/s41598-019-55830-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 11/28/2019] [Indexed: 01/07/2023] Open
Abstract
A significant number of people with Parkinson’s disease (PD) develop dementia in addition to cognitive dysfunction and are diagnosed as PD with dementia (PDD). This is characterized by cortical and limbic alpha synuclein (α-syn) accumulation, and high levels of diffuse amyloid beta (Aβ) plaques in the striatum and neocortical areas. In this regard, we evaluated the effect of a brain-penetrant, novel multifunctional dopamine D2/D3 agonist, D-520 on the inhibition of Aβ aggregation and disintegration of α-syn and Aβ aggregates in vitro using purified proteins and in a cell culture model that produces intracellular Aβ-induced toxicity. We further evaluated the effect of D-520 in a Drosophila model of Aβ1-42 toxicity. We report that D-520 inhibits the formation of Aβ aggregates in vitro and promotes the disaggregation of both α-syn and Aβ aggregates. Finally, in an in vivo Drosophila model of Aβ1-42 dependent toxicity, D-520 exhibited efficacy by rescuing fly eyes from retinal degeneration caused by Aβ toxicity. Our data indicate the potential therapeutic applicability of D-520 in addressing motor dysfunction and neuroprotection in PD and PDD, as well as attenuating dementia in people with PDD.
Collapse
|
55
|
The Environment Is a Key Factor in Determining the Anti-Amyloid Efficacy of EGCG. Biomolecules 2019; 9:biom9120855. [PMID: 31835741 PMCID: PMC6995563 DOI: 10.3390/biom9120855] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/06/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Millions of people around the world suffer from amyloid-related disorders, including Alzheimer's and Parkinson's diseases. Despite significant and sustained efforts, there are still no disease-modifying drugs available for the majority of amyloid-related disorders, and the overall failure rate in clinical trials is very high, even for compounds that show promising anti-amyloid activity in vitro. In this study, we demonstrate that even small changes in the chemical environment can strongly modulate the inhibitory effects of anti-amyloid compounds. Using one of the best-established amyloid inhibitory compounds, epigallocatechin-3-gallate (EGCG), as an example, and two amyloid-forming proteins, insulin and Parkinson's disease-related α -synuclein, we shed light on the previously unexplored sensitivity to solution conditions of the action of this compound on amyloid fibril formation. In the case of insulin, we show that the classification of EGCG as an amyloid inhibitor depends on the experimental conditions select, on the method used for the evaluation of the efficacy, and on whether or not EGCG is allowed to oxidise before the experiment. For α -synuclein, we show that a small change in pH value, from 7 to 6, transforms EGCG from an efficient inhibitor to completely ineffective, and we were able to explain this behaviour by the increased stability of EGCG against oxidation at pH 6.
Collapse
|
56
|
Developing Trojan horses to induce, diagnose and suppress Alzheimer’s pathology. Pharmacol Res 2019; 149:104471. [DOI: 10.1016/j.phrs.2019.104471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 01/05/2023]
|
57
|
Haghighi-Poodeh S, Navidpour L, Yaghmaei P, Ebrahim-Habibi A. Monocyclic phenolic compounds stabilize human insulin and suppress its amorphous aggregation: In vitro and in vivo study. Biochem Biophys Res Commun 2019; 518:362-367. [PMID: 31431258 DOI: 10.1016/j.bbrc.2019.08.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/11/2019] [Indexed: 01/08/2023]
Abstract
Insulin is a small protein with 51 residues that mediates glucose uptake, and an interesting model for studying protein misfolding and aggregation. The aggregated forms of insulin undergo loss of activity and can provoke unwanted immune responses. Use of small molecules is considered to be an affordable method to counteract this aggregation process and stabilize insulin. In this study, aggregated forms of human recombinant insulin have been produced following exposure to high temperature. Aggregation process was followed over time by checking absorbance with spectrophotometry in presence and absence of various concentrations of small phenolic compounds including eugenol and epinephrine. Effects of these compounds on the structure and function of incubated insulin were evaluated by spectrofluorimetry, melting temperature (Tm) measurement and insulin tolerance test on Wistar rats. Formation of heat-induced insulin aggregation can be effectively inhibited by 1 mM eugenol and epinephrine and both compounds were found to preserve insulin activity to a considerable extent. In conclusion, simple aromatic compounds could be tailored to act as potent anti-aggregation compounds for insulin.
Collapse
Affiliation(s)
- Sepideh Haghighi-Poodeh
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Latifeh Navidpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14174, Iran.
| | - Parichehreh Yaghmaei
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
58
|
Rational Design of Hybrid Peptides: A Novel Drug Design Approach. Curr Med Sci 2019; 39:349-355. [PMID: 31209802 DOI: 10.1007/s11596-019-2042-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/15/2019] [Indexed: 12/16/2022]
Abstract
Peptides play crucial roles in various physiological and pathological processes. Consequently, the investigation of peptide-based drugs is a highlight in the research and development of new drugs. However, natural peptides are not always ideal choices for clinical application due to their limited number and sometimes cytotoxicity to normal cells. Aiming to gain stronger or specific or novel biological effects and overcome the disadvantages of natural peptides, artificial hybrid peptides have been designed by combining the sequence of two or more different peptides with varied biological functions. Compared to natural peptides, hybrid peptides have shown better therapeutic potentials against bacteria, tumors, and metabolic diseases. In this review, design strategies, structure features and recent development of hybrid peptides are summarized; future directions for the research and development of hybrid peptide drugs are also discussed.
Collapse
|
59
|
Nardiello P, Pantano D, Lapucci A, Stefani M, Casamenti F. Diet Supplementation with Hydroxytyrosol Ameliorates Brain Pathology and Restores Cognitive Functions in a Mouse Model of Amyloid-β Deposition. J Alzheimers Dis 2019; 63:1161-1172. [PMID: 29710709 DOI: 10.3233/jad-171124] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is the most common form of dementia affecting a large proportion of aged people. Plant polyphenols have been reported to be potentially useful in the prevention of AD due to their multiple pharmacological activities. The aim of the present study was to assess whether the previously reported neuroprotective and anti-inflammatory effects resulting from oleuropein aglycone administration were reproduced by diet supplementation with similar amounts of its metabolite hydoxytyrosol (HT). Four-month-old TgCRND8 and wild type mice were treated for 8 weeks with a low-fat diet (5%) supplemented with HT (50 mg/kg of diet). We found that HT supplementation significantly improved cognitive functions of TgCRND8 mice and significantly reduced Aβ42 and pE3-Aβ plaque area and number in the cortex; in the hippocampal areas of HT-fed TgCRND8 mice, we found a significant reduction in the pE3-Aβ plaque number together with a tendency toward a reduction in Aβ42 load and pE3-Aβ plaque area, associated with a marked reduction of TNF-α expression and astrocyte reaction. Macroautophagy induction and modulation of MAPKs signaling were found to underlie the beneficial effects of HT. Our findings indicate that HT administration reproduces substantially the beneficial effects on behavioral performance and neuropathology previously reported in TgCRND8 mice fed with oleuropein aglycone, resulting in comparable neuroprotection.
Collapse
Affiliation(s)
- Pamela Nardiello
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Daniela Pantano
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Andrea Lapucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Fiorella Casamenti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
60
|
Kasi PB, Kotormán M. Among Commercially Available Fruit Juices, Pomegranate Is the Most Effective Inhibitor of PMS-Trypsin Amyloid-Like Fibrils Formation. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19859127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The formation of amyloid fibrils is associated with many human illnesses, such as Alzheimer’s, Huntington’s, and Parkinson’s diseases, amyotrophic lateral sclerosis, spongiform encephalitis, type 2 diabetes, and primary and secondary systemic amyloidosis. Nutrition contributes to the prevention of these diseases. The aim of our work was to look for commercially available fruit juices that can inhibit the formation of amyloid fibrils. Of the fruit juices that we examined, that of pomegranate was found to be the most effective inhibitory agent using turbidity measurements and Congo red binding assay. According to our experiments, pomegranate juice reduced the amount of PMS-trypsin amyloid-like fibrils to 3.7% at 5-fold dilution compared with the sample without pomegranate. The inhibitory effect of the pomegranate juice was concentration dependent.
Collapse
Affiliation(s)
- Phanindra Babu Kasi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Hungary
| | - Márta Kotormán
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Hungary
| |
Collapse
|
61
|
Kuo YC, Rajesh R. Challenges in the treatment of Alzheimer’s disease: recent progress and treatment strategies of pharmaceuticals targeting notable pathological factors. Expert Rev Neurother 2019; 19:623-652. [DOI: 10.1080/14737175.2019.1621750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| |
Collapse
|
62
|
Leri M, Natalello A, Bruzzone E, Stefani M, Bucciantini M. Oleuropein aglycone and hydroxytyrosol interfere differently with toxic Aβ 1-42 aggregation. Food Chem Toxicol 2019; 129:1-12. [PMID: 30995514 DOI: 10.1016/j.fct.2019.04.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/18/2022]
Abstract
Oleuropein aglycone (OleA), the most abundant polyphenol in extra virgin olive oil (EVOO), and Hydroxythyrosol (HT), the OleA main metabolite, have attracted our interest due to their multitarget effects, including the interference with amyloid aggregation path. However, the mechanistic details of their anti-amyloid effect are not known yet. We report here a broad biophysical approach and cell biology techniques that enabled us to characterize the different molecular mechanisms by which OleA and HT modulate the Aβ1-42 fibrillation, a main histopathological feature of Alzheimer's disease (AD). In particular, OleA prevents the growth of toxic Aβ1-42 oligomers and blocks their successive growth into mature fibrils following its interaction with the peptide N-terminus, while HT speeds up harmless fibril formation. Our data demonstrate that, by stabilizing oligomers and fibrils, both polyphenols reduce their seeding activity and aggregate/membrane interaction on human neuroblastoma SH-SY5Y cells. These findings highlight the great potential of EVOO polyphenols and offer the possibility to validate and to optimize their use for possible AD prevention and therapy.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50 - 50134, Florence, Italy; Department of Neuroscience, Psychology, Area of Medicine and Health of the Child of the University of Florence, Viale Pieraccini, 6 - 50139 Florence, Italy.
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Elena Bruzzone
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50 - 50134, Florence, Italy.
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50 - 50134, Florence, Italy; Interuniversity Center for the Study of Neurodegenerative Diseases (CIMN), Florence, Italy.
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50 - 50134, Florence, Italy; Interuniversity Center for the Study of Neurodegenerative Diseases (CIMN), Florence, Italy.
| |
Collapse
|
63
|
Ye H, Zhou J, Li H, Gao Z. Heme prevents highly amyloidogenic human calcitonin (hCT) aggregation: A potential new strategy for the clinical reuse of hCT. J Inorg Biochem 2019; 196:110686. [PMID: 31003065 DOI: 10.1016/j.jinorgbio.2019.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/20/2019] [Accepted: 03/31/2019] [Indexed: 11/26/2022]
Abstract
Irreversible aggregation can extremely limit the bioavailability and therapeutic activity of peptide-based drugs. Thus, peptide fibrillation is an excellent challenge for biotechnological drug development. Human calcitonin (hCT) is such a peptide hormone known for its hypocalcaemic effect but has limited pharmaceutical potential due to a high tendency to aggregate. hCT is therefore not widely used preparation in clinical practice. Nonetheless, hCT seems to be still an ideal target for clinical therapy when fibrillation is effectively inhibited, because the alternatives of hCT can stimulate undesirable immune responses in patients and cause side effects. Interestingly, heme is an essential component for many livings and has been shown a strong inhibitory effect on some amyloidogenic peptides aggregation. Here we demonstrate that it may be a most suitable, safe, biocompatible small molecule inhibitor on hCT aggregation, and thereby improving its activity when guiding the drug peptide in clinical therapeutics. In this work, we found that heme was able to reversibly bind with hCT to form a heme-hCT complex with a moderate binding constant (9.17 × 106 M-1) and significantly suppress the aggregation of hCT probably accomplished by heme binding to it, blocking the β-sheet structure assembly which is essential in hCT fibril aggregation. Meanwhile, the heme-hCT complexes showed enhanced bioactivity compared to hCT itself after a 24 h incubation time in reducing blood calcium levels in mice. This study may develop a new strategy to reuse the wild-type hCT in clinical therapeutics.
Collapse
Affiliation(s)
- Huixian Ye
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of chemistry and chemical Engineering, Huazhong university of Science and Technology, Wuhan 430074, People's Republic of China
| | - Jun Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of chemistry and chemical Engineering, Huazhong university of Science and Technology, Wuhan 430074, People's Republic of China
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of chemistry and chemical Engineering, Huazhong university of Science and Technology, Wuhan 430074, People's Republic of China.
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of chemistry and chemical Engineering, Huazhong university of Science and Technology, Wuhan 430074, People's Republic of China.
| |
Collapse
|
64
|
Li Y, Wang Z, Chen Y, Petersen RB, Zheng L, Huang K. Salvation of the fallen angel: Reactivating mutant p53. Br J Pharmacol 2019; 176:817-831. [PMID: 30632144 PMCID: PMC6433646 DOI: 10.1111/bph.14572] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/19/2018] [Accepted: 12/02/2018] [Indexed: 12/15/2022] Open
Abstract
The transcription factor p53 is known as the guardian of the genome for its powerful anti-tumour capacity. However, mutations of p53 that undermine their protein structure, resulting in loss of tumour suppressor function and gain of oncogenic function, have been implicated in more than half of human cancers. The crucial role of mutant forms of p53 in cancer makes it an attractive therapeutic target. A large number of candidates, including low MW compounds, peptides, and nucleic acids, have been identified or designed to rescue p53 mutants and reactivate their anti-tumour capacity through a variety of mechanisms. In this review, we summarize the progress made in the reactivation of mutant forms of p53, focusing on the pharmacological mechanisms of the reactivators of p53 mutants.
Collapse
Affiliation(s)
- Yang Li
- Tongji School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhuoyi Wang
- Tongji School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Robert B. Petersen
- Foundational SciencesCentral Michigan University College of MedicineMt. PleasantMichiganUSA
| | - Ling Zheng
- College of Life SciencesWuhan UniversityWuhanHubeiChina
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
65
|
Ma L, Yang C, Huang L, Chen Y, Li Y, Cheng C, Cheng B, Zheng L, Huang K. Glycated Insulin Exacerbates the Cytotoxicity of Human Islet Amyloid Polypeptides: a Vicious Cycle in Type 2 Diabetes. ACS Chem Biol 2019; 14:486-496. [PMID: 30715843 DOI: 10.1021/acschembio.8b01128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aggregation of human islet amyloid polypeptide (hIAPP) is one of the triggering factors of type 2 diabetes mellitus (T2DM). hIAPP is cosynthesized, costored, and cosecreted with insulin in pancreatic β-cells, and insulin inhibits hIAPP aggregation. In T2DM patients, long-term hyperglycemia causes glycation of near 10% of total insulin. The glycation not only modifies insulin but also cross-links insulin into oligomers. However, the effect of glycated human insulin on hIAPP aggregation is unknown. In this study, four physiologically relevant monosaccharides, methylglyoxal, glucose, fructose, and ribose were used to glycate human insulin and two C-terminus truncated insulin analogues. Glycated insulin monomers or low molecular weight oligomers such as dimers significantly exacerbated the cytotoxicity of hIAPP. Notably, glycation-induced cross-linking of insulin inhibited the aggregation, membrane disruption, and cytotoxicity of hIAPP, which was corroborated by a control study using EGS-induced cross-linking of insulin or lysozyme. Removal of B29Lys on the C terminus of the insulin B chain not only abolished glycation-induced cross-linking but also attenuated the aggravation effect of glycated insulin on hIAPP cytotoxicity. Taken together, this study reveals a vicious cycle in T2DM, that hyperglycemia-driven insulin glycation exacerbates the cytotoxicity of hIAPP, which accelerates β-cells death and further deteriorates T2DM.
Collapse
Affiliation(s)
- Liang Ma
- Tongji School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China , 430030
| | - Chen Yang
- Tongji School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China , 430030
| | - Lianqi Huang
- Tongji School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China , 430030
| | - Yuchen Chen
- Tongji School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China , 430030
| | - Yang Li
- Tongji School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China , 430030
| | - Cheng Cheng
- Tongji School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China , 430030
| | - Biao Cheng
- Department of Pharmacy, The Central Hospital of Wuhan , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China , 430014
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences , Wuhan University , Wuhan , China , 430072
| | - Kun Huang
- Tongji School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China , 430030
| |
Collapse
|
66
|
Naja mossambica mossambica Cobra Cardiotoxin Targets Mitochondria to Disrupt Mitochondrial Membrane Structure and Function. Toxins (Basel) 2019; 11:toxins11030152. [PMID: 30857180 PMCID: PMC6468758 DOI: 10.3390/toxins11030152] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 01/07/2023] Open
Abstract
Cobra venom cardiotoxins (CVCs) can translocate to mitochondria to promote apoptosis by eliciting mitochondrial dysfunction. However, the molecular mechanism(s) by which CVCs are selectively targeted to the mitochondrion to disrupt mitochondrial function remains to be elucidated. By studying cardiotoxin from Naja mossambica mossambica cobra (cardiotoxin VII4), a basic three-fingered S-type cardiotoxin, we hypothesized that cardiotoxin VII4 binds to cardiolipin (CL) in mitochondria to alter mitochondrial structure/function and promote neurotoxicity. By performing confocal analysis, we observed that red-fluorescently tagged cardiotoxin rapidly translocates to mitochondria in mouse primary cortical neurons and in human SH-SY5Y neuroblastoma cells to promote aberrant mitochondrial fragmentation, a decline in oxidative phosphorylation, and decreased energy production. In addition, by employing electron paramagnetic resonance (EPR) and protein nuclear magnetic resonance (1H-NMR) spectroscopy and phosphorescence quenching of erythrosine in model membranes, our compiled biophysical data show that cardiotoxin VII4 binds to anionic CL, but not to zwitterionic phosphatidylcholine (PC), to increase the permeability and formation of non-bilayer structures in CL-enriched membranes that biochemically mimic the outer and inner mitochondrial membranes. Finally, molecular dynamics simulations and in silico docking studies identified CL binding sites in cardiotoxin VII4 and revealed a molecular mechanism by which cardiotoxin VII4 interacts with CL and PC to bind and penetrate mitochondrial membranes.
Collapse
|
67
|
Pandey G, Morla S, Nemade HB, Kumar S, Ramakrishnan V. Modulation of aggregation with an electric field; scientific roadmap for a potential non-invasive therapy against tauopathies. RSC Adv 2019; 9:4744-4750. [PMID: 35514655 PMCID: PMC9060620 DOI: 10.1039/c8ra09993f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/22/2019] [Indexed: 11/21/2022] Open
Abstract
Toxic aggregation of tau protein to neurofibrillary tangles (NFTS) is a central pathological event involved in tauopathies. Inhibition of tau protein aggregation can serve as a straightforward therapeutic strategy. However, tau-based therapeutic solutions are not very common. Phenothiazine methylene blue (tau protein inhibitor) is currently the only drug under phase III clinical trials. In this work, a non-invasive strategy is presented for modulating the aggregation of core peptide segments of tau protein (VQIVYK and VQIINK) by using electric fields of varying strengths. We use thioflavin T staining, tyrosine fluorescence assay, electron microscopy, IR, dynamic and static light scattering, and neuronal toxicity estimation, for verifying the effect of electric field on the aggregation kinetics, morphology, conformational state and cellular toxicity of peptide systems. Our observations suggest that electric field arrests the self-assembly of VQIVYK and VQIINK fibrils thereby reducing the neurotoxicity instigated by them. Based on our observations, we propose a prospective scheme for a futuristic non-invasive therapeutic device.
Collapse
Affiliation(s)
- Gaurav Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati-781039 India +91 361 258 2249 +91 361 258 2227
| | - Sudhir Morla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati-781039 India +91 361 258 2249 +91 361 258 2227
| | - Harshal B Nemade
- Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati Guwahati-781039 India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati-781039 India +91 361 258 2249 +91 361 258 2227
| | - Vibin Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati-781039 India +91 361 258 2249 +91 361 258 2227
| |
Collapse
|
68
|
Oliveri V. Toward the discovery and development of effective modulators of α-synuclein amyloid aggregation. Eur J Med Chem 2019; 167:10-36. [PMID: 30743095 DOI: 10.1016/j.ejmech.2019.01.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
A host of human diseases, including Parkinson's disease and Dementia with Lewy bodies, are suspected to be directly linked to protein aggregation. Amyloid protein aggregates and oligomeric intermediates of α-synuclein are observed in synucleinopathies and considered to be mediators of cellular toxicity. Hence, α-synuclein has seen as one of the leading and most compelling targets and is receiving a great deal of attention from researchers. Nevertheless, there is no neuroprotective approach directed toward Parkinson's disease or other synucleinopathies so far. In this review, we summarize the available data concerning inhibitors of α-synuclein aggregation and their advancing towards clinical use. The compounds are grouped according to their chemical structures, providing respective insights into their mechanism of action, pharmacology, and pharmacokinetics. Overall, shared structure-activity elements are emerging, as well as specific binding modes related to the ability of the modulators to establish hydrophobic and hydrogen bonds interactions with the protein. Some molecules with encouraging in vivo data support the possibility of translation to the clinic.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
69
|
Kotormán M, Varga A, Kasi PB, Nemcsók J. Inhibition of the formation of amyloid-like fibrils with spices, especially cloves. ACTA BIOLOGICA HUNGARICA 2018; 69:385-394. [PMID: 30587021 DOI: 10.1556/018.69.2018.4.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the study of inhibition of amyloid fibril formation, α-chymotrypsin protein was developed in 55% ethanol at pH 7.0. We investigated the inhibitory effect of different spices on amyloid fibril formation using turbidity measurements and Congo red binding assays. We found that all spices except the black pepper and caraway seed prevented fibril formation. The highest inhibition was measured with the clove, which reduced the amount of aggregates by 90%. We studied the inhibitory effect of the cloves at different concentrations on aggregation, it was found that the inhibitory activity of clove is dependent on concentration. We have measured the total phenolic content of the spice extracts too. Based on all these findings we have come to the following conclusion: Our results indicate that spices can contain other compounds too - not only phenolic compounds - which influence the formation of amyloid fibrils, and the effectiveness of various phenolic compounds are different.
Collapse
Affiliation(s)
- Márta Kotormán
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
| | - Alexandra Varga
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
| | - Phanindra Babu Kasi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - János Nemcsók
- Department of Biology, Pedagogical Faculty, Selye János University, Bratislavská cesta 3322, SK-94501 Komarno, Slovak Republic
| |
Collapse
|
70
|
Inhibition of amyloid fibril formation in the variable domain of λ6 light chain mutant Wil caused by the interaction between its unfolded state and epigallocatechin-3-O-gallate. Biochim Biophys Acta Gen Subj 2018; 1862:2570-2578. [DOI: 10.1016/j.bbagen.2018.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/27/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022]
|
71
|
Mo Y, Brahmachari S, Lei J, Gilead S, Tang Y, Gazit E, Wei G. The Inhibitory Effect of Hydroxylated Carbon Nanotubes on the Aggregation of Human Islet Amyloid Polypeptide Revealed by a Combined Computational and Experimental Study. ACS Chem Neurosci 2018; 9:2741-2752. [PMID: 29986579 DOI: 10.1021/acschemneuro.8b00166] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fibrillar deposits formed by the aggregation of the human islet amyloid polypeptide (hIAPP) are the major pathological hallmark of type 2 diabetes mellitus (T2DM). Inhibiting the aggregation of hIAPP is considered the primary therapeutic strategy for the treatment of T2DM. Hydroxylated carbon nanoparticles have received great attention in impeding amyloid protein fibrillation owing to their reduced cytotoxicity compared to the pristine ones. In this study, we investigated the influence of hydroxylated single-walled carbon nanotubes (SWCNT-OHs) on the first step of hIAPP aggregation: dimerization by performing explicit solvent replica exchange molecular dynamics (REMD) simulations. Extensive REMD simulations demonstrate that SWCNT-OHs can dramatically inhibit interpeptide β-sheet formation and completely suppress the previously reported β-hairpin amyloidogenic precursor of hIAPP. On the basis of our simulation results, we proposed that SWCNT-OH can hinder hIAPP fibrillation. This was further confirmed by our systematic turbidity measurements, thioflavin T fluorescence, circular dichroism (CD), transmission electron microscope (TEM), and atomic force microscopy (AFM) experiments. Detailed analyses of hIAPP-SWCNT-OH interactions reveal that hydrogen bonding, van der Waals, and π-stacking interactions between hIAPP and SWCNT-OH significantly weaken the inter- and intrapeptide interactions that are crucial for β-sheet formation. Our collective computational and experimental data reveal not only the inhibitory effect but also the inhibitory mechanism of SWCNT-OH against hIAPP aggregation, thus providing new clues for the development of future drug candidates against T2DM.
Collapse
Affiliation(s)
- Yuxiang Mo
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Science (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures, and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
- College of Physical Science and Technology, Guangxi Normal University, 15 Yucai Road, Guilin 541004, People’s Republic of China
| | - Sayanti Brahmachari
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jiangtao Lei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Science (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures, and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
| | - Sharon Gilead
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yiming Tang
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Science (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures, and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Science (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures, and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
| |
Collapse
|
72
|
Srinivasan E, Rajasekaran R. Quantum chemical and molecular mechanics studies on the assessment of interactions between resveratrol and mutant SOD1 (G93A) protein. J Comput Aided Mol Des 2018; 32:1347-1361. [PMID: 30368622 DOI: 10.1007/s10822-018-0175-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/24/2018] [Indexed: 12/29/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that has been associated with mutations in metalloenzyme superoxide dismutase (SOD1) causing protein structural destabilization and aggregation. However, the mechanistic action and the cure for the disease still remain obscure. Herein, we initially studied the conformational preferences of SOD1 protein structures upon substitution of Ala at Gly93 in comparison with that of wild type. Our results corroborated with the previous experimental studies on the aggregation and the destabilizing activity of mutant SOD1 protein G93A. On the therapeutic point of view, we computationally analyzed the influence of resveratrol, a natural polyphenol widely found in red wine on mutant SOD1 relative to wild type, using molecular docking studies. Further, FMO calculations were performed, using GAMESS to study the pair residual interaction on the wild type and mutant complex systems. Consequently, the resveratrol showed greater interaction with mutant than the wild type. Subsequently, we evaluated the conformational preferences of wild type and mutant complex systems, where the protein conformational structures of mutant that were earlier found to lose their conformational stability was regained, upon binding with resveratrol. Similar trend of results were found on the 2-D free energy landscapes of both the wild type and mutant systems. Hence, the combined biophysical and quantum chemical studies in our study supported the results of previous experimental studies, thereby stipulating an action of resveratrol on mutant SOD1 and paving a way for the design of highly potent effective inhibitors against fALS affecting the mankind.
Collapse
Affiliation(s)
- E Srinivasan
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to be University), Vellore, Tamil Nadu, 632014, India
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to be University), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
73
|
Menadione sodium bisulfite inhibits the toxic aggregation of amyloid-β(1–42). Biochim Biophys Acta Gen Subj 2018; 1862:2226-2235. [DOI: 10.1016/j.bbagen.2018.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/22/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
|
74
|
Srinivasan E, Rajasekaran R. Comparative binding of kaempferol and kaempferide on inhibiting the aggregate formation of mutant (G85R) SOD1 protein in familial amyotrophic lateral sclerosis: A quantum chemical and molecular mechanics study. Biofactors 2018; 44:431-442. [PMID: 30260512 DOI: 10.1002/biof.1441] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/21/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022]
Abstract
Mutation in Cu/Zn superoxide dismutase (SOD1) at position 85 from glycine to arginine was found to be a prominent cause of aggregation characterized by an increased content of β-sheets in familial amyotrophic lateral sclerosis (fALS). Various literatures reported that natural polyphenols could act as a β-sheet breaker and therefore, treated as a potential therapeutics against various aggregated proteins involved in neurodegenerative disorders. Through computational perspective, molecular docking, quantum chemical studies, and discrete molecular dynamics were implemented to study the binding and structural effect of natural polyphenols, kaempferol, and kaempferide on mutant SOD1. Kaempferol exhibited significant binding and greater residual energy contribution with mutant SOD1 than kaempferide. More interestingly, kaempferol was found to reduce the β-sheet content augmenting the mutant conformational stability and flexibility relative to that of kaempferide. Hence, the inhibition of mutant SOD1 aggregation by kaempferol was explored, thereby suggesting kaempferol could act as a drug candidate for the design of the natural therapeutics against fALS. © 2018 BioFactors, 44(5):431-442, 2018.
Collapse
Affiliation(s)
- E Srinivasan
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
75
|
Malishev R, Arad E, Bhunia SK, Shaham-Niv S, Kolusheva S, Gazit E, Jelinek R. Chiral modulation of amyloid beta fibrillation and cytotoxicity by enantiomeric carbon dots. Chem Commun (Camb) 2018; 54:7762-7765. [PMID: 29947369 DOI: 10.1039/c8cc03235a] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enantiomeric carbon dots (C-dots) synthesized from l-lysine or d-lysine, modulate aggregation and cytotoxicity of amyloid beta-42 (Aβ42), the primary constituent of the amyloid plaques associated with Alzheimer's disease. In particular, l-Lys-C-dots dramatically remodeled Aβ42 secondary structure and fibril morphologies, as well as inhibited Aβ42 cytotoxicity and membrane interactions.
Collapse
Affiliation(s)
- Ravit Malishev
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| | | | | | | | | | | | | |
Collapse
|
76
|
Patel P, Parmar K, Patel D, Kumar S, Trivedi M, Das M. Inhibition of amyloid fibril formation of lysozyme by ascorbic acid and a probable mechanism of action. Int J Biol Macromol 2018; 114:666-678. [DOI: 10.1016/j.ijbiomac.2018.03.152] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/20/2022]
|
77
|
Arad E, Bhunia SK, Jopp J, Kolusheva S, Rapaport H, Jelinek R. Lysine-Derived Carbon Dots for Chiral Inhibition of Prion Peptide Fibril Assembly. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Elad Arad
- Department of Chemistry; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Susanta Kumar Bhunia
- Department of Chemistry; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Jürgen Jopp
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Sofiya Kolusheva
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Hanna Rapaport
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and Ilse Katz Institute (IKI) for Nanoscale Science and Technology; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Raz Jelinek
- Department of Chemistry; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| |
Collapse
|
78
|
Amyloid growth and membrane damage: Current themes and emerging perspectives from theory and experiments on Aβ and hIAPP. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1625-1638. [PMID: 29501606 DOI: 10.1016/j.bbamem.2018.02.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022]
Abstract
Alzheimer's Disease (AD) and Type 2 diabetes mellitus (T2DM) are two incurable diseases both hallmarked by an abnormal deposition of the amyloidogenic peptides Aβ and Islet Amyloid Polypeptide (IAPP) in affected tissues. Epidemiological data demonstrate that patients suffering from diabetes are at high risk of developing AD, thus making the search for factors common to the two pathologies of special interest for the design of new therapies. Accumulating evidence suggests that the toxic properties of both Aβ or IAPP are ascribable to their ability to damage the cell membrane. However, the molecular details describing Aβ or IAPP interaction with membranes are poorly understood. This review focuses on biophysical and in silico studies addressing these topics. Effects of calcium, cholesterol and membrane lipid composition in driving aberrant Aβ or IAPP interaction with the membrane will be specifically considered. The cross correlation of all these factors appears to be a key issue not only to shed light in the countless and often controversial reports relative to this area but also to gain valuable insights into the central events leading to membrane damage caused by amyloidogenic peptides. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
|
79
|
Saithong T, Thilavech T, Adisakwattana S. Cyanidin-3-rutinoside reduces insulin fibrillation and attenuates insulin fibrils-induced oxidative hemolysis of human erythrocytes. Int J Biol Macromol 2018; 113:259-268. [PMID: 29476851 DOI: 10.1016/j.ijbiomac.2018.02.127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/29/2018] [Accepted: 02/20/2018] [Indexed: 10/18/2022]
Abstract
Insulin is able to form amyloid-like fibrils, a misfolding process by which insulin molecules interact with each other to form aggregates and pathological amyloid deposition. Inhibition of amyloid aggregation using natural products is proposed as a new strategy to prohibit the development of amyloid diseases. Herein, we demonstrated the inhibitory effect of cyanidin-3-rutinoside (C3R), a natural anthocyanin with multiple biological activities, against insulin amyloid fibrillation. The results showed that increased insulin concentration resulted in faster growth and higher amounts of insulin fibrils. C3R (10.6-170μM) concentration dependently decreased insulin fibril growth and increased the duration of lag time of insulin fibril formation. Moreover, C3R directly decreased the secondary structure transition from α-helix to β-sheet structure. C3R (0.31-5μM) attenuated insulin fibrils-induced oxidative hemolysis of human erythrocytes in a concentration-dependent manner. Moreover, C3R reduced insulin fibrils-induced erythrocyte membrane disruption through the inhibition of reactive oxygen species (ROS) generation. The findings also suggest that C3R reduced fibrils-induced membrane lipid peroxidation by maintaining the catalase activity and oxidized/reduced glutathione content (GSH/GSSH) in erythrocytes. These findings suggest that C3R may serve as a potential inhibitory agent against amyloid fibril formation and insulin fibrils-induced oxidative hemolysis.
Collapse
Affiliation(s)
- Thanyaporn Saithong
- Program in Food and Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thavaree Thilavech
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirichai Adisakwattana
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
80
|
Cheng B, Li Y, Ma L, Wang Z, Petersen RB, Zheng L, Chen Y, Huang K. Interaction between amyloidogenic proteins and biomembranes in protein misfolding diseases: Mechanisms, contributors, and therapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1876-1888. [PMID: 29466701 DOI: 10.1016/j.bbamem.2018.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
The toxic deposition of misfolded amyloidogenic proteins is associated with more than fifty protein misfolding diseases (PMDs), including Alzheimer's disease, Parkinson's disease and type 2 diabetes mellitus. Protein deposition is a multi-step process modulated by a variety of factors, in particular by membrane-protein interaction. The interaction results in permeabilization of biomembranes contributing to the cytotoxicity that leads to PMDs. Different biological and physiochemical factors, such as protein sequence, lipid composition, and chaperones, are known to affect the membrane-protein interaction. Here, we provide a comprehensive review of the mechanisms and contributing factors of the interaction between biomembranes and amyloidogenic proteins, and a summary of the therapeutic approaches to PMDs that target this interaction. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Biao Cheng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China; Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Yang Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Ma
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuoyi Wang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI 48858, USA
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan 430072, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
81
|
Yang J, Dear AJ, Michaels TCT, Dobson CM, Knowles TPJ, Wu S, Perrett S. Direct Observation of Oligomerization by Single Molecule Fluorescence Reveals a Multistep Aggregation Mechanism for the Yeast Prion Protein Ure2. J Am Chem Soc 2018; 140:2493-2503. [PMID: 29357227 PMCID: PMC5880511 DOI: 10.1021/jacs.7b10439] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
The self-assembly of polypeptides
into amyloid structures is associated
with a range of increasingly prevalent neurodegenerative diseases
as well as with a select set of functional processes in biology. The
phenomenon of self-assembly results in species with dramatically different
sizes, from small oligomers to large fibrils; however, the kinetic
relationship between these species is challenging to characterize.
In the case of prion aggregates, these structures can self-replicate
and act as infectious agents. Here we use single molecule spectroscopy
to obtain quantitative information on the oligomer populations formed
during aggregation of the yeast prion protein Ure2. Global analysis
of the aggregation kinetics reveals the molecular mechanism underlying
oligomer formation and depletion. Quantitative characterization indicates
that the majority of Ure2 oligomers are relatively short-lived, and
their rate of dissociation is much higher than their rate of conversion
into growing fibrils. We identify an initial metastable oligomer,
which can subsequently convert into a structurally distinct oligomer,
which in turn converts into growing fibrils. We also show that fragmentation
is responsible for the autocatalytic self-replication of Ure2 fibrils,
but that preformed fibrils do not promote oligomer formation, indicating
that secondary nucleation of the type observed for peptides and proteins
associated with neurodegenerative disease does not occur at a significant
rate for Ure2. These results establish a framework for elucidating
the temporal and causal relationship between oligomers and larger
fibrillar species in amyloid forming systems, and provide insights
into why functional amyloid systems are not toxic to their host organisms.
Collapse
Affiliation(s)
- Jie Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of the Chinese Academy of Sciences , 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Alexander J Dear
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Thomas C T Michaels
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom.,Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom.,Cavendish Laboratory , J J Thomson Avenue, Cambridge CB3 1HE, United Kingdom
| | - Si Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of the Chinese Academy of Sciences , 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Chaoyang District, Beijing 100101, China.,University of the Chinese Academy of Sciences , 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
82
|
Zaman M, Khan MV, Zakariya SM, Nusrat S, Meeran SM, Alam P, Ajmal MR, Wahiduzzaman W, Shahein YE, Abouelella AM, Khan RH. Amino group of salicylic acid exhibits enhanced inhibitory potential against insulin amyloid fibrillation with protective aptitude toward amyloid induced cytotoxicity. J Cell Biochem 2018; 119:3945-3956. [DOI: 10.1002/jcb.26538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/01/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Masihuz Zaman
- Molecular Biophysics and Biophysical Chemistry GroupInterdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
| | - Mohsin Vahid Khan
- Molecular Biophysics and Biophysical Chemistry GroupInterdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
| | - Syed Mohammad Zakariya
- Molecular Biophysics and Biophysical Chemistry GroupInterdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
| | - Saima Nusrat
- Molecular Biophysics and Biophysical Chemistry GroupInterdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
| | - Syed Mustapha Meeran
- Laboratory of Cancer Epigenetics, Division of EndocrinologyCSIR‐Central Drug Research InstituteLucknowIndia
| | - Parvez Alam
- Molecular Biophysics and Biophysical Chemistry GroupInterdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
| | - Mohammad Rehan Ajmal
- Molecular Biophysics and Biophysical Chemistry GroupInterdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
| | | | - Yasser E. Shahein
- Genetic Engineering and Biotechnology Division, Molecular Biology DepartmentNational Research CentreDokkiCairoEgypt
- Biology Department, College of ScienceHail UniversityHailSaudi Arabia
| | - Amira M. Abouelella
- Radiation Biology DepartmentNational Centre for Radiation Research and Technology (NCRRT)CairoEgypt
| | - Rizwan Hasan Khan
- Molecular Biophysics and Biophysical Chemistry GroupInterdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
| |
Collapse
|
83
|
Maity S, Pal S, Sardar S, Sepay N, Parvej H, Begum S, Dalui R, Das N, Pradhan A, Halder UC. Inhibition of amyloid fibril formation of β-lactoglobulin by natural and synthetic curcuminoids. NEW J CHEM 2018. [DOI: 10.1039/c8nj03194k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The aggregation of proteins has been associated with several aspects of daily life, including food processing, blood coagulation and many neurodegenerative infections.
Collapse
|
84
|
Malik R, Di J, Nair G, Attar A, Taylor K, Teng E, Klärner FG, Schrader T, Bitan G. Using Molecular Tweezers to Remodel Abnormal Protein Self-Assembly and Inhibit the Toxicity of Amyloidogenic Proteins. Methods Mol Biol 2018; 1777:369-386. [PMID: 29744849 DOI: 10.1007/978-1-4939-7811-3_24] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Molecular tweezers (MTs) are broad-spectrum inhibitors of abnormal protein self-assembly, which act by binding selectively to lysine and arginine residues. Through this unique mechanism of action, MTs inhibit formation of toxic oligomers and aggregates. Their efficacy and safety have been demonstrated in vitro, in cell culture, and in animal models. Here, we discuss the application of MTs in diverse in vitro and in vivo systems, the experimental details, the scope of their use, and the limitations of the approach. We also consider methods for administration of MTs in animal models to measure efficacy, pharmacokinetic, and pharmacodynamic parameters in proteinopathies.
Collapse
Affiliation(s)
- Ravinder Malik
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jing Di
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Gayatri Nair
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Aida Attar
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Karen Taylor
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Edmond Teng
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Greater Los Angeles Healthcare System, Veterans Hospital, West Los Angeles, CA, USA
| | | | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA. .,Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
85
|
Ren B, Liu Y, Zhang Y, Zhang M, Sun Y, Liang G, Xu J, Zheng J. Tanshinones inhibit hIAPP aggregation, disaggregate preformed hIAPP fibrils, and protect cultured cells. J Mater Chem B 2018; 6:56-67. [DOI: 10.1039/c7tb02538f] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tanshinones act as common inhibitors to inhibit the aggregation of both hIAPP and Aβ, disaggregate preformed hIAPP and Aβ amyloid fibrils, and protect cells from hIAPP- and Aβ-induced toxicity.
Collapse
Affiliation(s)
- Baiping Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Science and Chemistry
- Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| | - Yonglan Liu
- Department of Chemical & Biomolecular Engineering
- The University of Akron
- Ohio 44325
- USA
| | - Yanxian Zhang
- Department of Chemical & Biomolecular Engineering
- The University of Akron
- Ohio 44325
- USA
| | - Mingzhen Zhang
- Department of Chemical & Biomolecular Engineering
- The University of Akron
- Ohio 44325
- USA
| | - Yan Sun
- Department of Biochemical Engineering
- Key Laboratory of Systems Bioengineering of the Ministry of Education School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education College
- Chongqing University
- Chongqing 400044
- China
| | - Jianxiong Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Science and Chemistry
- Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering
- The University of Akron
- Ohio 44325
- USA
| |
Collapse
|
86
|
Ha HJ, Kang DW, Kim HM, Kang JM, Ann J, Hyun HJ, Lee JH, Kim SH, Kim H, Choi K, Hong HS, Kim Y, Jo DG, Lee J, Lee J. Discovery of an Orally Bioavailable Benzofuran Analogue That Serves as a β-Amyloid Aggregation Inhibitor for the Potential Treatment of Alzheimer's Disease. J Med Chem 2017; 61:396-402. [PMID: 29161514 DOI: 10.1021/acs.jmedchem.7b00844] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We developed an orally active and blood-brain-barrier-permeable benzofuran analogue (8, MDR-1339) with potent antiaggregation activity. Compound 8 restored cellular viability from Aβ-induced cytotoxicity but also improved the learning and memory function of AD model mice by reducing the Aβ aggregates in the brains. Given the high bioavailability and brain permeability demonstrated in our pharmacokinetic studies, 8 will provide a novel scaffold for an Aβ-aggregation inhibitor that may offer an alternative treatment for AD.
Collapse
Affiliation(s)
- Hee-Jin Ha
- Medifron DBT , Sandanro 349, Danwon-gu, Ansan-si, Gyeonggi-do 15426, Republic of Korea.,School of Pharmacy, Sungkyunkwan University , 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Dong Wook Kang
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyuk-Min Kim
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jin-Mi Kang
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyae Jung Hyun
- Daewoong Pharmaceutical , 72 Dugye-ro, Pogok-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 17028, Republic of Korea
| | - Joon Hwan Lee
- Daewoong Pharmaceutical , 72 Dugye-ro, Pogok-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 17028, Republic of Korea
| | - Sae Hee Kim
- Daewoong Pharmaceutical , 72 Dugye-ro, Pogok-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 17028, Republic of Korea
| | - Hee Kim
- Medifron DBT , Sandanro 349, Danwon-gu, Ansan-si, Gyeonggi-do 15426, Republic of Korea
| | - Kwanghyun Choi
- Medifron DBT , Sandanro 349, Danwon-gu, Ansan-si, Gyeonggi-do 15426, Republic of Korea
| | - Hyun-Seok Hong
- Medifron DBT , Sandanro 349, Danwon-gu, Ansan-si, Gyeonggi-do 15426, Republic of Korea
| | - YoungHo Kim
- Medifron DBT , Sandanro 349, Danwon-gu, Ansan-si, Gyeonggi-do 15426, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University , 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University , 76 Dobong-ro, Gangbuk-gu, Seoul 01133, Republic of Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
87
|
Ma L, Zhao Y, Chen Y, Cheng B, Peng A, Huang K. Caenorhabditis elegans as a model system for target identification and drug screening against neurodegenerative diseases. Eur J Pharmacol 2017; 819:169-180. [PMID: 29208474 DOI: 10.1016/j.ejphar.2017.11.051] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022]
Abstract
Over the past decades, Caenorhabditis elegans (C. elegans) has been widely used as a model system because of its small size, transparent body, short generation time and lifespan (~3 days and 3 weeks, respectively), completely sequenced genome and tractability to genetic manipulation. Protein misfolding and aggregation are key pathological features in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Animal models, including C. elegans, have been extensively used to discover and validate new drugs against neurodegenerative diseases. The well-defined and genetically tractable nervous system of C. elegans offers an effective model to explore basic mechanistic pathways of neurodegenerative diseases. Recent progress in high-throughput drug screening also provides a powerful approach for identifying chemical modulators of biological processes. Here, we summarize the latest progress of using C. elegans as a model system for target identification and drug screening in neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Ma
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yudan Zhao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Biao Cheng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Wuhan 430060, China
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; Center for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan 430075, China.
| |
Collapse
|
88
|
van der Wel PCA. Insights into protein misfolding and aggregation enabled by solid-state NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 88:1-14. [PMID: 29035839 PMCID: PMC5705391 DOI: 10.1016/j.ssnmr.2017.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 05/17/2023]
Abstract
The aggregation of proteins and peptides into a variety of insoluble, and often non-native, aggregated states plays a central role in many devastating diseases. Analogous processes undermine the efficacy of polypeptide-based biological pharmaceuticals, but are also being leveraged in the design of biologically inspired self-assembling materials. This Trends article surveys the essential contributions made by recent solid-state NMR (ssNMR) studies to our understanding of the structural features of polypeptide aggregates, and how such findings are informing our thinking about the molecular mechanisms of misfolding and aggregation. A central focus is on disease-related amyloid fibrils and oligomers involved in neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's disease. SSNMR-enabled structural and dynamics-based findings are surveyed, along with a number of resulting emerging themes that appear common to different amyloidogenic proteins, such as their compact alternating short-β-strand/β-arc amyloid core architecture. Concepts, methods, future prospects and challenges are discussed.
Collapse
Affiliation(s)
- Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
89
|
Rezaeian N, Shirvanizadeh N, Mohammadi S, Nikkhah M, Arab SS. The inhibitory effects of biomimetically designed peptides on α-synuclein aggregation. Arch Biochem Biophys 2017; 634:96-106. [PMID: 28965745 DOI: 10.1016/j.abb.2017.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/05/2017] [Accepted: 09/20/2017] [Indexed: 01/10/2023]
Abstract
Parkinson's disease is characterized by accumulation of inclusion bodies in dopaminergic neurons, where insoluble and fibrillar α-synuclein makes up the major component of these inclusion bodies. So far, several strategies have been applied in order to suppress α-synuclein aggregation and toxicity in Parkinson's disease. In the present study, a new database has been established by segmentation of all the proteins deposited in protein Data Bank. The database data base was searched for the sequences which adopt β structure and are identical or very similar to the regions of α-synuclein which are involved in aggregation. The adjacent β strands of the found sequences were chosen as the peptide inhibitors of α-synuclein aggregation. Two of the predicted peptides, namely KISVRV and GQTYVLPG, were experimentally proved to be efficient in suppressing aggregation of α-synuclein in vitro. Moreover, KISVRV exhibited the ability to disrupt oligomers of α-syn which are assumed to be the pathogenic species in Parkinson's disease.
Collapse
Affiliation(s)
- Niloofar Rezaeian
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Niloofar Shirvanizadeh
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Soheila Mohammadi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
90
|
Kim T, Son WS, Morshed MN, Londhe AM, Jung SY, Park JH, Park WK, Lim SM, Park KD, Cho SJ, Jeong KS, Lee J, Pae AN. Discovery of thienopyrrolotriazine derivatives to protect mitochondrial function against Aβ-induced neurotoxicity. Eur J Med Chem 2017; 141:240-256. [PMID: 29031071 DOI: 10.1016/j.ejmech.2017.09.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 01/13/2023]
Abstract
Recovery of mitochondrial dysfunction has gained increasing attention as an alternative therapeutic strategy for Alzheimer's disease (AD). Recent studies suggested that the 18 kDa mitochondrial translocator protein (TSPO) has the potential to serve as a drug target for the treatment of AD. In this study, we generated a structure-based pharmacophore model and virtually screened a commercial library, identifying SVH07 as a virtual hit, which contained a tricyclic core structure, thieno[2',3':4,5]pyrrolo[1,2-d][1,2,4]triazine group. A series of SVH07 analogues were synthesized and their effects on the mitochondrial membrane potential and ATP production were determined by using neuronal cells under Aβ-induced toxicity. Among these analogues, compound 26 significantly recovered mitochondrial membrane depolarization and ATP production. In vitro binding assays indicated that SVH07 and 26 showed high affinities to TSPO with the IC50 values in a nanomolar range. We believe that compound 26 is a promising lead compound for the development of TSPO-targeted mitochondrial functional modulators with therapeutic potential in AD.
Collapse
Affiliation(s)
- TaeHun Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea
| | - Woo Seung Son
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Mohammad Neaz Morshed
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Center for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Ashwini M Londhe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea
| | - Seo Yun Jung
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Woo-Kyu Park
- Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, Gajeong-ro 141, Yuseong-gu, Daejon 34114, Republic of Korea
| | - Sang Min Lim
- Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea; Center for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Hwarangno 14- gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul 01133, Republic of Korea.
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea.
| |
Collapse
|
91
|
Protective effects of a G. lucidum proteoglycan on INS-1 cells against IAPP-induced apoptosis via attenuating endoplasmic reticulum stress and modulating CHOP/JNK pathways. Int J Biol Macromol 2017; 106:893-900. [PMID: 28893685 DOI: 10.1016/j.ijbiomac.2017.08.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 01/09/2023]
Abstract
Fudan-Yueyang-G. lucidum (FYGL) is a water-soluble macromolecular proteoglycan extracted from Ganoderma lucidum which has been used for health promotion for a long time in China. The aim of this study was to investigate the protective effects of FYGL on INS-1 rat insulinoma beta cells against IAPP-induced cell apoptosis, as well as the underlying mechanisms. The results showed that apoptotic cells were significantly increased when incubated with islet amyloid polypeptide (IAPP). However, cytotoxicity of IAPP was significantly attenuated by co-incubation of the cells with FYGL. The results of RT-PCR showed that mRNA expression of caspase-3, caspase-12 and C/EBP homologous protein (CHOP) in IAPP-treated cells were inhibited by FYGL. Moreover, FYGL significantly prevented the IAPP-induced abnormal expression of inositol-requiring protein-1α (IRE1α), protein kinase RNA (PKR)-like ER kinase (PERK), activating transcription factor 6 (ATF6), as well as suppressed the activation of CHOP and c-Jun N-terminal kinase (JNK). Taken together, our results suggest that FYGL protects INS-1 pancreatic beta cells against IAPP-induced apoptosis through attenuating endoplasmic reticulum stress (ERS) and modulating CHOP/JNK pathways.
Collapse
|
92
|
Patel P, Parmar K, Vyas VK, Patel D, Das M. Combined in silico approaches for the identification of novel inhibitors of human islet amyloid polypeptide (hIAPP) fibrillation. J Mol Graph Model 2017; 77:295-310. [PMID: 28917147 DOI: 10.1016/j.jmgm.2017.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 12/31/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) is a natively unfolded polypeptide hormone of glucose metabolism, which is co-secreted with insulin by the β-cells of the pancreas. In patients with type 2 diabetes, IAPP forms amyloid fibrils because of diabetes-associated β-cells dysfunction and increasing fibrillation, in turn, lead to failure of secretory function of β-cells. This provides a target for the discovery of small organic molecules against protein aggregation diseases. However, the binding mechanism of these molecules with monomers, oligomers and fibrils to inhibit fibrillation is still an open question. In this work, ligand and structure-based in silico approaches were used to identify novel fibrillation inhibitors and/or fibril binding compounds. The best pharmacophore model was used as a 3D search query for virtual screening of a compound database to identify novel molecules having the potential to be therapeutic agents against protein aggregation diseases. Docking and molecular dynamics simulation studies were used to explore the interaction pattern and mechanism of the identified novel small molecules with predicted hIAPP structure, its aggregation prone conformation and fibril forming segments. We show that catechins with galloyl group and molecules having two to three planar apolar rings bind to hIAPP structures and fibril forming segments with greater affinity. The differences in binding affinities of different compounds against several fibril forming segments of the peptide suggest that a mixture of active compounds may be required for treatment of aggregation diseases.
Collapse
Affiliation(s)
- Palak Patel
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India
| | - Krupali Parmar
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India
| | - Dhaval Patel
- Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382007, India
| | - Mili Das
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
93
|
Sciacca MFM, Romanucci V, Zarrelli A, Monaco I, Lolicato F, Spinella N, Galati C, Grasso G, D’Urso L, Romeo M, Diomede L, Salmona M, Bongiorno C, Di Fabio G, La Rosa C, Milardi D. Inhibition of Aβ Amyloid Growth and Toxicity by Silybins: The Crucial Role of Stereochemistry. ACS Chem Neurosci 2017; 8:1767-1778. [PMID: 28562008 DOI: 10.1021/acschemneuro.7b00110] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The self-assembling of the amyloid β (Aβ) peptide into neurotoxic aggregates is considered a central event in the pathogenesis of Alzheimer's disease (AD). Based on the "amyloid hypothesis", many efforts have been devoted to designing molecules able to halt disease progression by inhibiting Aβ self-assembly. Here, we combine biophysical (ThT assays, TEM and AFM imaging), biochemical (WB and ESI-MS), and computational (all-atom molecular dynamics) techniques to investigate the capacity of four optically pure components of the natural product silymarin (silybin A, silybin B, 2,3-dehydrosilybin A, 2,3-dehydrosilybin B) to inhibit Aβ aggregation. Despite TEM analysis demonstrated that all the four investigated flavonoids prevent the formation of mature fibrils, ThT assays, WB and AFM investigations showed that only silybin B was able to halt the growth of small-sized protofibrils thus promoting the formation of large, amorphous aggregates. Molecular dynamics (MD) simulations indicated that silybin B interacts mainly with the C-terminal hydrophobic segment 35MVGGVV40 of Aβ40. Consequently to silybin B binding, the peptide conformation remains predominantly unstructured along all the simulations. By contrast, silybin A interacts preferentially with the segments 17LVFF20 and 27NKGAII32 of Aβ40 which shows a high tendency to form bend, turn, and β-sheet conformation in and around these two domains. Both 2,3-dehydrosilybin enantiomers bind preferentially the segment 17LVFF20 but lead to the formation of different small-sized, ThT-positive Aβ aggregates. Finally, in vivo studies in a transgenic Caenorhabditis elegans strain expressing human Aβ indicated that silybin B is the most effective of the four compounds in counteracting Aβ proteotoxicity. This study underscores the pivotal role of stereochemistry in determining the neuroprotective potential of silybins and points to silybin B as a promising lead compound for further development in anti-AD therapeutics.
Collapse
Affiliation(s)
- Michele. F. M. Sciacca
- Institute of Biostructures and
Bioimages—Catania, National Research Council, Via Paolo Gaifami 8, 95126 Catania, Italy
| | - Valeria Romanucci
- Department of Chemical Sciences, University of Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy
| | - Irene Monaco
- Institute of Biostructures and
Bioimages—Catania, National Research Council, Via Paolo Gaifami 8, 95126 Catania, Italy
| | - Fabio Lolicato
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Department of Physics, Tampere University of Technology, P.O.
Box 692, FI-33101 Tampere, Finland
| | | | - Clelia Galati
- STMicroelectronics, Stradale Primosole 50, 95121 Catania, Italy
| | - Giuseppe Grasso
- Dipartimento di Scienze
Chimiche, Università degli Studi di Catania, Viale Andrea
Doria 6, 95125 Catania, Italy
| | - Luisa D’Urso
- Dipartimento di Scienze
Chimiche, Università degli Studi di Catania, Viale Andrea
Doria 6, 95125 Catania, Italy
| | - Margherita Romeo
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via Giuseppe La Masa 19, 20156, Milano, Italy
| | - Luisa Diomede
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via Giuseppe La Masa 19, 20156, Milano, Italy
| | - Mario Salmona
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via Giuseppe La Masa 19, 20156, Milano, Italy
| | - Corrado Bongiorno
- Institute for Microelectronics
and Microsystems, National Research Council, Stradale Primosole 50, 95121 Catania, Italy
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy
| | - Carmelo La Rosa
- Dipartimento di Scienze
Chimiche, Università degli Studi di Catania, Viale Andrea
Doria 6, 95125 Catania, Italy
| | - Danilo Milardi
- Institute of Biostructures and
Bioimages—Catania, National Research Council, Via Paolo Gaifami 8, 95126 Catania, Italy
| |
Collapse
|
94
|
Kuo YC, Rajesh R. A critical overview of therapeutic strategy and advancement for Alzheimer's disease treatment. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
95
|
|
96
|
Yang A, Wang C, Song B, Zhang W, Guo Y, Yang R, Nie G, Yang Y, Wang C. Attenuation of β-Amyloid Toxicity In Vitro and In Vivo by Accelerated Aggregation. Neurosci Bull 2017; 33:405-412. [PMID: 28555357 PMCID: PMC5567563 DOI: 10.1007/s12264-017-0144-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/08/2017] [Indexed: 01/08/2023] Open
Abstract
Accumulation and aggregation of β-amyloid (Aβ) peptides result in neuronal death, leading to cognitive dysfunction in Alzheimer's disease. The self-assembled Aβ molecules form various intermediate aggregates including oligomers that are more toxic to neurons than the mature aggregates, including fibrils. Thus, one strategy to alleviate Aβ toxicity is to facilitate the conversion of Aβ intermediates to larger aggregates such as fibrils. In this study, we designed a peptide named A3 that significantly enhanced the formation of amorphous aggregates of Aβ by accelerating the aggregation kinetics. Thioflavin T fluorescence experiments revealed an accelerated aggregation of Aβ monomers, accompanying reduced Aβ cytotoxicity. Transgenic Caenorhabditis elegans over-expressing amyloid precursor protein exhibited paralysis due to the accumulation of Aβ oligomers, and this phenotype was attenuated by feeding the animals with A3 peptide. These findings suggest that the Aβ aggregation-promotion effect can potentially be useful for developing strategies to reduce Aβ toxicity.
Collapse
Affiliation(s)
- Aihua Yang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chenxuan Wang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Baomin Song
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wendi Zhang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuanyuan Guo
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Rong Yang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guangjun Nie
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yanlian Yang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chen Wang
- National Center for Nanoscience and Technology, Beijing, 100190, China.
| |
Collapse
|
97
|
Sequeira IR, Poppitt SD. Unfolding Novel Mechanisms of Polyphenol Flavonoids for Better Glycaemic Control: Targeting Pancreatic Islet Amyloid Polypeptide (IAPP). Nutrients 2017; 9:E788. [PMID: 28754022 PMCID: PMC5537902 DOI: 10.3390/nu9070788] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes (T2D) is characterised by hyperglycaemia resulting from defective insulin secretion, insulin resistance, or both. The impact of over-nutrition and reduced physical activity, evidenced by the exponential rise in obesity and the prevalence of T2D, strongly supports the implementation of lifestyle modification programs. Accordingly, an increased consumption of fruits and plant-derived foods has been advocated, as their intake is inversely correlated with T2D prevalence; this has been attributed, in part, to their contained polyphenolic compounds. Over the last decade, a body of work has focussed on establishing the mechanisms by which polyphenolic compounds exert beneficial effects to limit carbohydrate digestion, enhance insulin-mediated glucose uptake, down-regulate hepatic gluconeogenesis and decrease oxidative stress; the latter anti-oxidative property being the most documented. Novel effects on the inhibition of glucocorticoid action and the suppression of amylin misfolding and aggregation have been identified more recently. Amyloid fibrils form from spontaneously misfolded amylin, depositing in islet cells to elicit apoptosis, beta cell degeneration and decrease insulin secretion, with amyloidosis affecting up to 80% of pancreatic islet cells in T2D. Therefore, intervening with polyphenolic compounds offers a novel approach to suppressing risk or progression to T2D. This review gives an update on the emerging mechanisms related to dietary polyphenol intake for the maintenance of glycaemic control and the prevention of T2D.
Collapse
Affiliation(s)
- Ivana R Sequeira
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
- High-Value Nutrition National Science Challenge, Auckland 1142, New Zealand.
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
- High-Value Nutrition National Science Challenge, Auckland 1142, New Zealand.
- Department of Medicine, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
98
|
Anand BG, Shekhawat DS, Dubey K, Kar K. Uniform, Polycrystalline, and Thermostable Piperine-Coated Gold Nanoparticles to Target Insulin Fibril Assembly. ACS Biomater Sci Eng 2017; 3:1136-1145. [DOI: 10.1021/acsbiomaterials.7b00030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bibin G. Anand
- Department
of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Dolat S. Shekhawat
- Department
of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Kriti Dubey
- Department
of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Karunakar Kar
- School
of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
99
|
Marcinko TM, Dong J, LeBlanc R, Daborowski KV, Vachet RW. Small molecule-mediated inhibition of β-2-microglobulin-based amyloid fibril formation. J Biol Chem 2017; 292:10630-10638. [PMID: 28468825 DOI: 10.1074/jbc.m116.774083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/02/2017] [Indexed: 12/26/2022] Open
Abstract
In dialysis patients, β-2 microglobulin (β2m) can aggregate and eventually form amyloid fibrils in a condition known as dialysis-related amyloidosis, which deleteriously affects joint and bone function. Recently, several small molecules have been identified as potential inhibitors of β2m amyloid formation in vitro Here we investigated whether these molecules are more broadly applicable inhibitors of β2m amyloid formation by studying their effect on Cu(II)-induced β2m amyloid formation. Using a variety of biophysical techniques, we also examined their inhibitory mechanisms. We found that two molecules, doxycycline and rifamycin SV, can inhibit β2m amyloid formation in vitro by causing the formation of amorphous, redissolvable aggregates. Rather than interfering with β2m amyloid formation at the monomer stage, we found that doxycycline and rifamycin SV exert their effect by binding to oligomeric species both in solution and in gas phase. Their binding results in a diversion of the expected Cu(II)-induced progression of oligomers toward a heterogeneous collection of oligomers, including trimers and pentamers, that ultimately matures into amorphous aggregates. Using ion mobility mass spectrometry, we show that both inhibitors promote the compaction of the initially formed β2m dimer, which causes the formation of other off-pathway and amyloid-incompetent oligomers that are isomeric with amyloid-competent oligomers in some cases. Overall, our results suggest that doxycycline and rifamycin are general inhibitors of Cu(II)-induced β2m amyloid formation. Interestingly, the putative mechanism of their activity is different depending on how amyloid formation is initiated with β2m, which underscores the complexity of how these structures assemble in vitro.
Collapse
Affiliation(s)
- Tyler M Marcinko
- From the Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Jia Dong
- From the Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Raquel LeBlanc
- From the Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Kate V Daborowski
- From the Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Richard W Vachet
- From the Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
100
|
Velander P, Wu L, Henderson F, Zhang S, Bevan DR, Xu B. Natural product-based amyloid inhibitors. Biochem Pharmacol 2017; 139:40-55. [PMID: 28390938 DOI: 10.1016/j.bcp.2017.04.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/03/2017] [Indexed: 11/26/2022]
Abstract
Many chronic human diseases, including multiple neurodegenerative diseases, are associated with deleterious protein aggregates, also called protein amyloids. One common therapeutic strategy is to develop protein aggregation inhibitors that can slow down, prevent, or remodel toxic amyloids. Natural products are a major class of amyloid inhibitors, and several dozens of natural product-based amyloid inhibitors have been identified and characterized in recent years. These plant- or microorganism-extracted compounds have shown significant therapeutic potential from in vitro studies as well as in vivo animal tests. Despite the technical challenges of intrinsic disordered or partially unfolded amyloid proteins that are less amenable to characterizations by structural biology, a significant amount of research has been performed, yielding biochemical and pharmacological insights into how inhibitors function. This review aims to summarize recent progress in natural product-based amyloid inhibitors and to analyze their mechanisms of inhibition in vitro. Major classes of natural product inhibitors and how they were identified are described. Our analyses comprehensively address the molecular interactions between the inhibitors and relevant amyloidogenic proteins. These interactions are delineated at molecular and atomic levels, which include covalent, non-covalent, and metal-mediated mechanisms. In vivo animal studies and clinical trials have been summarized as an extension. To enhance natural product bioavailability in vivo, emerging work using nanocarriers for delivery has also been described. Finally, issues and challenges as well as future development of such inhibitors are envisioned.
Collapse
Affiliation(s)
- Paul Velander
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Ling Wu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Frances Henderson
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - David R Bevan
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; Center for Drug Discovery, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; School of Neuroscience, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Bin Xu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; Center for Drug Discovery, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; School of Neuroscience, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; Translational Obesity Research Center, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA.
| |
Collapse
|