51
|
Wang X, Yu X, Vaughan W, Liu M, Guan Y. Novel drug-delivery approaches to the blood-brain barrier. Neurosci Bull 2015; 31:257-64. [PMID: 25595370 DOI: 10.1007/s12264-014-1498-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/21/2014] [Indexed: 11/30/2022] Open
Abstract
The blood-brain barrier (BBB) maintains homeostasis by blocking toxic molecules from the circulation, but drugs are blocked at the same time. When the dose is increased to enhance the drug concentration in the central nervous system, there are side-effects on peripheral organs. In recent years, genetic therapeutic agents and small molecules have been used in various strategies to penetrate the BBB while minimizing the damage to systemic organs. In this review, we describe several representative methods to circumvent or cross the BBB, including chemical and physical strategies.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | | | | | | | | |
Collapse
|
52
|
Borralho PM, Rodrigues CMP, Steer CJ. microRNAs in Mitochondria: An Unexplored Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 887:31-51. [PMID: 26662985 DOI: 10.1007/978-3-319-22380-3_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria are pivotal organelles involved in the regulation of a myriad of crucial biological processes, including cell survival and cell death, rendering mitochondrial dysfunction a relevant step in numerous pathophysiological processes. MicroRNAs (miRNAs) are endogenous small noncoding RNAs that add a new layer of complexity to the control of gene expression. miRNAs function as master regulators and fine-tuners of gene expression, primarily via posttranscriptional mechanisms, and are increasingly demonstrated as a paramount class of endogenous molecules with relevant diagnostic, prognostic, and therapeutic applications. miRNAs and other RNA interference have recently been reported to be present in mitochondria from several species, and we are now beginning to unveil mitochondrial miRNA transport mechanisms, biological function and targets to ascertain their role in this unexplored niche. Here, we describe miRNA biogenesis and present key findings regarding miRNA localization to mitochondria, origin, putative biological function, and implications for human disease.
Collapse
Affiliation(s)
- Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Clifford J Steer
- Departments of Medicine, and Genetics, Cell Biology and Development, University of Minnesota Medical School, VFW Cancer Research Center, 406 Harvard Street S.E., Minneapolis, MN, 55455, USA.
| |
Collapse
|
53
|
Sokhi UK, Bacolod MD, Emdad L, Das SK, Dumur CI, Miles MF, Sarkar D, Fisher PB. Analysis of global changes in gene expression induced by human polynucleotide phosphorylase (hPNPase(old-35)). J Cell Physiol 2014; 229:1952-62. [PMID: 24729470 PMCID: PMC4149605 DOI: 10.1002/jcp.24645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/09/2014] [Indexed: 01/19/2023]
Abstract
As a strategy to identify gene expression changes affected by human polynucleotide phosphorylase (hPNPase(old-35)), we performed gene expression analysis of HeLa cells in which hPNPase(old-35) was overexpressed. The observed changes were then compared to those of HO-1 melanoma cells in which hPNPase(old-35) was stably knocked down. Through this analysis, 90 transcripts, which positively or negatively correlated with hPNPase(old-35) expression, were identified. The majority of these genes were associated with cell communication, cell cycle, and chromosomal organization gene ontology categories. For a number of these genes, the positive or negative correlations with hPNPase(old-35) expression were consistent with transcriptional data extracted from the TCGA (The Cancer Genome Atlas) expression datasets for colon adenocarcinoma (COAD), skin cutaneous melanoma (SKCM), ovarian serous cyst adenocarcinoma (OV), and prostate adenocarcinoma (PRAD). Further analysis comparing the gene expression changes between Ad.hPNPase(old-35) infected HO-1 melanoma cells and HeLa cells overexpressing hPNPase(old-35) under the control of a doxycycline-inducible promoter, revealed global changes in genes involved in cell cycle and mitosis. Overall, this study provides further evidence that hPNPase(old-35) is associated with global changes in cell cycle-associated genes and identifies potential gene targets for future investigation.
Collapse
Affiliation(s)
- Upneet K. Sokhi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Manny D. Bacolod
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Catherine I. Dumur
- Department of Pathology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Michael F. Miles
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| |
Collapse
|
54
|
Rosenkranz AA, Ulasov AV, Slastnikova TA, Khramtsov YV, Sobolev AS. Use of intracellular transport processes for targeted drug delivery into a specified cellular compartment. BIOCHEMISTRY (MOSCOW) 2014; 79:928-46. [DOI: 10.1134/s0006297914090090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
55
|
Mitochondrial MicroRNAs and Their Potential Role in Cell Function. CURRENT PATHOBIOLOGY REPORTS 2014. [DOI: 10.1007/s40139-014-0047-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
56
|
Import of desired nucleic acid sequences using addressing motif of mitochondrial ribosomal 5S-rRNA for fluorescent in vivo hybridization of mitochondrial DNA and RNA. J Bioenerg Biomembr 2014; 46:147-56. [PMID: 24562889 DOI: 10.1007/s10863-014-9543-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/29/2014] [Indexed: 12/28/2022]
Abstract
Based on the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mitochondria, we have constructed an import system for in vivo targeting of mitochondrial DNA (mtDNA) or mt-mRNA, in order to provide fluorescence hybridization of the desired sequences. Thus DNA oligonucleotides were constructed, containing the 5'-flanked T7 RNA polymerase promoter. After in vitro transcription and fluorescent labeling with Alexa Fluor(®) 488 or 647 dye, we obtained the fluorescent "L-ND5 probe" containing MAM and exemplar cargo, i.e., annealing sequence to a short portion of ND5 mRNA and to the light-strand mtDNA complementary to the heavy strand nd5 mt gene (5'-end 21 base pair sequence). For mitochondrial in vivo fluorescent hybridization, HepG2 cells were treated with dequalinium micelles, containing the fluorescent probes, bringing the probes proximally to the mitochondrial outer membrane and to the natural import system. A verification of import into the mitochondrial matrix of cultured HepG2 cells was provided by confocal microscopy colocalizations. Transfections using lipofectamine or probes without 5S-rRNA addressing MAM sequence or with MAM only were ineffective. Alternatively, the same DNA oligonucleotides with 5'-CACC overhang (substituting T7 promoter) were transcribed from the tetracycline-inducible pENTRH1/TO vector in human embryonic kidney T-REx®-293 cells, while mitochondrial matrix localization after import of the resulting unlabeled RNA was detected by PCR. The MAM-containing probe was then enriched by three-order of magnitude over the natural ND5 mRNA in the mitochondrial matrix. In conclusion, we present a proof-of-principle for mitochondrial in vivo hybridization and mitochondrial nucleic acid import.
Collapse
|
57
|
Turk EM, Das V, Seibert RD, Andrulis ED. The mitochondrial RNA landscape of Saccharomyces cerevisiae. PLoS One 2013; 8:e78105. [PMID: 24143261 PMCID: PMC3797045 DOI: 10.1371/journal.pone.0078105] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 09/09/2013] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are essential organelles that harbor a reduced genome, and expression of that genome requires regulated metabolism of its transcriptome by nuclear-encoded proteins. Despite extensive investigation, a comprehensive map of the yeast mitochondrial transcriptome has not been developed and all of the RNA-metabolizing proteins have not been identified, both of which are prerequisites to elucidating the basic RNA biology of mitochondria. Here, we present a mitochondrial transcriptome map of the yeast S288C reference strain. Using RNAseq and bioinformatics, we show the expression level of all transcripts, revise all promoter, origin of replication, and tRNA annotations, and demonstrate for the first time the existence of alternative splicing, mirror RNAs, and a novel RNA processing site in yeast mitochondria. The transcriptome map has revealed new aspects of mitochondrial RNA biology and we expect it will serve as a valuable resource. As a complement to the map, we present our compilation of all known yeast nuclear-encoded ribonucleases (RNases), and a screen of this dataset for those that are imported into mitochondria. We sought to identify RNases that are refractory to recovery in traditional mitochondrial screens due to an essential function or eclipsed accumulation in another cellular compartment. Using this in silico approach, the essential RNase of the nuclear and cytoplasmic exosome, Dis3p, emerges as a strong candidate. Bioinformatics and in vivo analyses show that Dis3p has a conserved and functional mitochondrial-targeting signal (MTS). A clean and marker-less chromosomal deletion of the Dis3p MTS results in a defect in the decay of intron and mirror RNAs, thus revealing a role for Dis3p in mitochondrial RNA decay.
Collapse
Affiliation(s)
- Edward M. Turk
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Science Department, Gilmour Academy, Gates Mills, Ohio, United States of America
| | - Vaijayanti Das
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Ryan D. Seibert
- Science Department, Gilmour Academy, Gates Mills, Ohio, United States of America
| | - Erik D. Andrulis
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
58
|
Sokhi UK, Bacolod MD, Dasgupta S, Emdad L, Das SK, Dumur CI, Miles MF, Sarkar D, Fisher PB. Identification of genes potentially regulated by human polynucleotide phosphorylase (hPNPase old-35) using melanoma as a model. PLoS One 2013; 8:e76284. [PMID: 24143183 PMCID: PMC3797080 DOI: 10.1371/journal.pone.0076284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
Human Polynucleotide Phosphorylase (hPNPaseold-35 or PNPT1) is an evolutionarily conserved 3′→5′ exoribonuclease implicated in the regulation of numerous physiological processes including maintenance of mitochondrial homeostasis, mtRNA import and aging-associated inflammation. From an RNase perspective, little is known about the RNA or miRNA species it targets for degradation or whose expression it regulates; except for c-myc and miR-221. To further elucidate the functional implications of hPNPaseold-35 in cellular physiology, we knocked-down and overexpressed hPNPaseold-35 in human melanoma cells and performed gene expression analyses to identify differentially expressed transcripts. Ingenuity Pathway Analysis indicated that knockdown of hPNPaseold-35 resulted in significant gene expression changes associated with mitochondrial dysfunction and cholesterol biosynthesis; whereas overexpression of hPNPaseold-35 caused global changes in cell-cycle related functions. Additionally, comparative gene expression analyses between our hPNPaseold-35 knockdown and overexpression datasets allowed us to identify 77 potential “direct” and 61 potential “indirect” targets of hPNPaseold-35 which formed correlated networks enriched for cell-cycle and wound healing functional association, respectively. These results provide a comprehensive database of genes responsive to hPNPaseold-35 expression levels; along with the identification new potential candidate genes offering fresh insight into cellular pathways regulated by PNPT1 and which may be used in the future for possible therapeutic intervention in mitochondrial- or inflammation-associated disease phenotypes.
Collapse
Affiliation(s)
- Upneet K. Sokhi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Manny D. Bacolod
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Santanu Dasgupta
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Catherine I. Dumur
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michael F. Miles
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
59
|
Sokhi UK, Das SK, Dasgupta S, Emdad L, Shiang R, DeSalle R, Sarkar D, Fisher PB. Human polynucleotide phosphorylase (hPNPaseold-35): should I eat you or not--that is the question? Adv Cancer Res 2013; 119:161-90. [PMID: 23870512 DOI: 10.1016/b978-0-12-407190-2.00005-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RNA degradation plays a fundamental role in maintaining cellular homeostasis whether it occurs as a surveillance mechanism eliminating aberrant mRNAs or during RNA processing to generate mature transcripts. 3'-5' exoribonucleases are essential mediators of RNA decay pathways, and one such evolutionarily conserved enzyme is polynucleotide phosphorylase (PNPase). The human homologue of this fascinating enzymatic protein (hPNPaseold-35) was cloned a decade ago in the context of terminal differentiation and senescence through a novel "overlapping pathway screening" approach. Since then, significant insights have been garnered about this exoribonuclease and its repertoire of expanding functions. The objective of this review is to provide an up-to-date perspective of the recent discoveries made relating to hPNPaseold-35 and the impact they continue to have on our comprehension of its expanding and diverse array of functions.
Collapse
|
60
|
von Ameln S, Wang G, Boulouiz R, Rutherford M, Smith G, Li Y, Pogoda HM, Nürnberg G, Stiller B, Volk A, Borck G, Hong J, Goodyear R, Abidi O, Nürnberg P, Hofmann K, Richardson G, Hammerschmidt M, Moser T, Wollnik B, Koehler C, Teitell M, Barakat A, Kubisch C. A mutation in PNPT1, encoding mitochondrial-RNA-import protein PNPase, causes hereditary hearing loss. Am J Hum Genet 2012; 91:919-27. [PMID: 23084290 PMCID: PMC3487123 DOI: 10.1016/j.ajhg.2012.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/22/2012] [Accepted: 09/04/2012] [Indexed: 11/24/2022] Open
Abstract
A subset of nuclear-encoded RNAs has to be imported into mitochondria for the proper replication and transcription of the mitochondrial genome and, hence, for proper mitochondrial function. Polynucleotide phosphorylase (PNPase or PNPT1) is one of the very few components known to be involved in this poorly characterized process in mammals. At the organismal level, however, the effect of PNPase dysfunction and impaired mitochondrial RNA import are unknown. By positional cloning, we identified a homozygous PNPT1 missense mutation (c.1424A>G predicting the protein substitution p.Glu475Gly) of a highly conserved PNPase residue within the second RNase-PH domain in a family affected by autosomal-recessive nonsyndromic hearing impairment. In vitro analyses in bacteria, yeast, and mammalian cells showed that the identified mutation results in a hypofunctional protein leading to disturbed PNPase trimerization and impaired mitochondrial RNA import. Immunohistochemistry revealed strong PNPase staining in the murine cochlea, including the sensory hair cells and the auditory ganglion neurons. In summary, we show that a component of the mitochondrial RNA-import machinery is specifically required for auditory function.
Collapse
Affiliation(s)
- Simon von Ameln
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Geng Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Redouane Boulouiz
- Department of Genetics, Institut Pasteur du Maroc, 20100 Casablanca, Morocco
| | - Mark A. Rutherford
- InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Geoffrey M. Smith
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yun Li
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany
| | - Hans-Martin Pogoda
- Institute for Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | - Gudrun Nürnberg
- Cologne Center for Genomics, University of Cologne, 50674 Cologne, Germany
| | - Barbara Stiller
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Alexander E. Volk
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Jason S. Hong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Omar Abidi
- Department of Genetics, Institut Pasteur du Maroc, 20100 Casablanca, Morocco
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany
- Cologne Center for Genomics, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50674 Cologne, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Guy P. Richardson
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Matthias Hammerschmidt
- Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany
- Institute for Developmental Biology, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50674 Cologne, Germany
| | - Tobias Moser
- InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Center for Molecular Physiology of the Brain, University of Göttingen, 37073 Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50674 Cologne, Germany
| | - Carla M. Koehler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael A. Teitell
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, Broad Stem Cell Research Center, California NanoSystems Institute and Center for Cell Control, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Abdelhamid Barakat
- Department of Genetics, Institut Pasteur du Maroc, 20100 Casablanca, Morocco
| | - Christian Kubisch
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
61
|
Sripada L, Tomar D, Singh R. Mitochondria: One of the destinations of miRNAs. Mitochondrion 2012; 12:593-9. [DOI: 10.1016/j.mito.2012.10.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 08/22/2012] [Accepted: 10/09/2012] [Indexed: 01/15/2023]
|
62
|
Abstract
Mutations in the human mitochondrial genome are implicated in neuromuscular diseases, metabolic defects, and aging. An efficient and simple mechanism for neutralizing deleterious mitochondrial DNA (mtDNA) alterations has unfortunately remained elusive. Here, we report that a 20-ribonucleotide stem-loop sequence from the H1 RNA, the RNA component of the human RNase P enzyme, appended to a nonimported RNA directs the import of the resultant RNA fusion transcript into human mitochondria. The methodology is effective for both noncoding RNAs, such as tRNAs, and mRNAs. The RNA import component, polynucleotide phosphorylase (PNPASE), facilitates transfer of this hybrid RNA into the mitochondrial matrix. In addition, nucleus-encoded mRNAs for mitochondrial proteins, such as the mRNA of human mitochondrial ribosomal protein S12 (MRPS12), contain regulatory sequences in their 3'-untranslated region (UTR) that confers localization to the mitochondrial outer membrane, which is postulated to aid in protein translocation after translation. We show that for some mitochondrial-encoded transcripts, such as COX2, a 3'-UTR localization sequence is not required for mRNA import, whereas for corrective mitochondrial-encoded tRNAs, appending the 3'-UTR localization sequence was essential for efficient fusion-transcript translocation into mitochondria. In vivo, functional defects in mitochondrial RNA (mtRNA) translation and cell respiration were reversed in two human disease lines. Thus, this study indicates that a wide range of RNAs can be targeted to mitochondria by appending a targeting sequence that interacts with PNPASE, with or without a mitochondrial localization sequence, providing an exciting, general approach for overcoming mitochondrial genetic disorders.
Collapse
|