51
|
Ammar MR, Kassas N, Chasserot-Golaz S, Bader MF, Vitale N. Lipids in Regulated Exocytosis: What are They Doing? Front Endocrinol (Lausanne) 2013; 4:125. [PMID: 24062727 PMCID: PMC3775428 DOI: 10.3389/fendo.2013.00125] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/31/2013] [Indexed: 12/27/2022] Open
Abstract
The regulated secretory pathway in neuroendocrine cells ends with the release of hormones and neurotransmitters following a rise in cytosolic calcium. This process known as regulated exocytosis involves the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, the synaptic vesicle VAMP (synaptobrevin), and the plasma membrane proteins syntaxin and SNAP-25. Although there is much evidence suggesting that SNARE proteins play a key role in the fusion machinery, other cellular elements regulating the kinetics, the extent of fusion, and the preparation of vesicle for release have received less attention. Among those factors, lipids have also been proposed to play important functions both at the level of secretory vesicle recruitment and late membrane fusion steps. Here, we will review the latest evidence supporting the concept of the fusogenic activity of lipids, and also discuss how this may be achieved. These possibilities include the recruitment and sequestration of the components of the exocytotic machinery, regulation of protein function, and direct effects on membrane topology.
Collapse
Affiliation(s)
- Mohamed Raafet Ammar
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Nawal Kassas
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Marie-France Bader
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
- *Correspondence: Nicolas Vitale, Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique, Université de Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg, France e-mail:
| |
Collapse
|
52
|
Messenger SW, Thomas DDH, Falkowski MA, Byrne JA, Gorelick FS, Groblewski GE. Tumor protein D52 controls trafficking of an apical endolysosomal secretory pathway in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2013; 305:G439-52. [PMID: 23868405 PMCID: PMC3761242 DOI: 10.1152/ajpgi.00143.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/12/2013] [Indexed: 01/31/2023]
Abstract
Zymogen granule (ZG) formation in acinar cells involves zymogen cargo sorting from trans-Golgi into immature secretory granules (ISGs). ISG maturation progresses by removal of lysosomal membrane and select content proteins, which enter endosomal intermediates prior to their apical exocytosis. Constitutive and stimulated secretion through this mechanism is termed the constitutive-like and minor-regulated pathways, respectively. However, the molecular components that control membrane trafficking within these endosomal compartments are largely unknown. We show that tumor protein D52 is highly expressed in endosomal compartments following pancreatic acinar cell stimulation and regulates apical exocytosis of an apically directed endolysosomal compartment. Secretion from the endolysosomal compartment was detected by cell-surface antigen labeling of lysosome-associated membrane protein LAMP1, which is absent from ZGs, and had incomplete overlap with surface labeling of synaptotagmin 1, a marker of ZG exocytosis. Although culturing (16-18 h) of isolated acinar cells is accompanied by a loss of secretory responsiveness, the levels of SNARE proteins necessary for ZG exocytosis were preserved. However, levels of endolysosomal proteins D52, EEA1, Rab5, and LAMP1 markedly decreased with culture. When D52 levels were restored by adenoviral delivery, the levels of these regulatory proteins and secretion of both LAMP1 (endolysosomal) and amylase was strongly enhanced. These secretory effects were absent in alanine and aspartate substitutions of serine 136, the major D52 phosphorylation site, and were inhibited by brefeldin A, which does not directly affect the ZG compartment. Our results indicate that D52 directly regulates apical endolysosomal secretion and are consistent with previous studies, suggesting that this pathway indirectly regulates ZG secretion of digestive enzymes.
Collapse
Affiliation(s)
- Scott W Messenger
- Univ. of Wisconsin, Dept. of Nutritional Sciences, 1415 Linden Dr., Madison, WI 53706.
| | | | | | | | | | | |
Collapse
|
53
|
Peptide-lipid interactions: experiments and applications. Int J Mol Sci 2013; 14:18758-89. [PMID: 24036440 PMCID: PMC3794806 DOI: 10.3390/ijms140918758] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 02/06/2023] Open
Abstract
The interactions between peptides and lipids are of fundamental importance in the functioning of numerous membrane-mediated cellular processes including antimicrobial peptide action, hormone-receptor interactions, drug bioavailability across the blood-brain barrier and viral fusion processes. Moreover, a major goal of modern biotechnology is obtaining new potent pharmaceutical agents whose biological action is dependent on the binding of peptides to lipid-bilayers. Several issues need to be addressed such as secondary structure, orientation, oligomerization and localization inside the membrane. At the same time, the structural effects which the peptides cause on the lipid bilayer are important for the interactions and need to be elucidated. The structural characterization of membrane active peptides in membranes is a harsh experimental challenge. It is in fact accepted that no single experimental technique can give a complete structural picture of the interaction, but rather a combination of different techniques is necessary.
Collapse
|
54
|
A local, periactive zone endocytic machinery at photoreceptor synapses in close vicinity to synaptic ribbons. J Neurosci 2013; 33:10278-300. [PMID: 23785143 DOI: 10.1523/jneurosci.5048-12.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Photoreceptor ribbon synapses are continuously active synapses with large active zones that contain synaptic ribbons. Synaptic ribbons are anchored to the active zones and are associated with large numbers of synaptic vesicles. The base of the ribbon that is located close to L-type voltage-gated Ca(2+) channels is a hotspot of exocytosis. The continuous exocytosis at the ribbon synapse needs to be balanced by compensatory endocytosis. Recent analyses indicated that vesicle recycling at the synaptic ribbon is also an important determinant of synaptic signaling at the photoreceptor synapse. To get insights into mechanisms of vesicle recycling at the photoreceptor ribbon synapse, we performed super-resolution structured illumination microscopy and immunogold electron microscopy to localize major components of the endocytotic membrane retrieval machinery in the photoreceptor synapse of the mouse retina. We found dynamin, syndapin, amphiphysin, and calcineurin, a regulator of activity-dependent endocytosis, to be highly enriched around the active zone and the synaptic ribbon. We present evidence for two clathrin heavy chain variants in the photoreceptor terminal; one is enriched around the synaptic ribbon, whereas the other is localized in the entry region of the terminal. The focal enrichment of endocytic proteins around the synaptic ribbon is consistent with a focal uptake of endocytic markers at that site. This endocytic activity functionally depends on dynamin. These data propose that the presynaptic periactive zone surrounding the synaptic ribbon complex is a hotspot of endocytosis in photoreceptor ribbon synapses.
Collapse
|
55
|
Abstract
Local recycling of synaptic vesicles (SVs) allows neurons to sustain transmitter release. Extreme activity (e.g., during seizure) may exhaust synaptic transmission and, in vitro, induces bulk endocytosis to recover SV membrane and proteins; how this occurs in animals is unknown. Following optogenetic hyperstimulation of Caenorhabditis elegans motoneurons, we analyzed synaptic recovery by time-resolved behavioral, electrophysiological, and ultrastructural assays. Recovery of docked SVs and of evoked-release amplitudes (indicating readily-releasable pool refilling) occurred within ∼8-20 s (τ = 9.2 s and τ = 11.9 s), whereas locomotion recovered only after ∼60 s (τ = 20 s). During ∼11-s stimulation, 50- to 200-nm noncoated vesicles ("100nm vesicles") formed, which disappeared ∼8 s poststimulation, likely representing endocytic intermediates from which SVs may regenerate. In endophilin, synaptojanin, and dynamin mutants, affecting endocytosis and vesicle scission, resolving 100nm vesicles was delayed (>20 s). In dynamin mutants, 100nm vesicles were abundant and persistent, sometimes continuous with the plasma membrane; incomplete budding of smaller vesicles from 100nm vesicles further implicates dynamin in regenerating SVs from bulk-endocytosed vesicles. Synaptic recovery after exhaustive activity is slow, and different time scales of recovery at ultrastructural, physiological, and behavioral levels indicate multiple contributing processes. Similar processes may jointly account for slow recovery from acute seizures also in higher animals.
Collapse
|
56
|
Gregory FD, Pangrsic T, Calin-Jageman IE, Moser T, Lee A. Harmonin enhances voltage-dependent facilitation of Cav1.3 channels and synchronous exocytosis in mouse inner hair cells. J Physiol 2013; 591:3253-69. [PMID: 23613530 DOI: 10.1113/jphysiol.2013.254367] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cav1.3 channels mediate Ca(2+) influx that triggers exocytosis of glutamate at cochlear inner hair cell (IHC) synapses. Harmonin is a PDZ-domain-containing protein that interacts with the C-terminus of the Cav1.3 α1 subunit (α11.3) and controls cell surface Cav1.3 levels by promoting ubiquitin-dependent proteosomal degradation. However, PDZ-domain-containing proteins have diverse functions and regulate other Cav1.3 properties, which could collectively influence presynaptic transmitter release. Here, we report that harmonin binding to the α11.3 distal C-terminus (dCT) enhances voltage-dependent facilitation (VDF) of Cav1.3 currents both in transfected HEK293T cells and in mouse inner hair cells. In HEK293T cells, this effect of harmonin was greater for Cav1.3 channels containing the auxiliary Cav β1 than with the β2 auxiliary subunit. Cav1.3 channels lacking the α11.3 dCT were insensitive to harmonin modulation. Moreover, the 'deaf-circler' dfcr mutant form of harmonin, which does not interact with the α11.3 dCT, did not promote VDF. In mature IHCs from mice expressing the dfcr harmonin mutant, Cav1.3 VDF was less than in control IHCs. This difference was not observed between control and dfcr IHCs prior to hearing onset. Membrane capacitance recordings from dfcr IHCs revealed a role for harmonin in synchronous exocytosis and in increasing the efficiency of Ca(2+) influx for triggering exocytosis. Collectively, our results indicate a multifaceted presynaptic role of harmonin in IHCs in regulating Cav1.3 Ca(2+) channels and exocytosis.
Collapse
Affiliation(s)
- Frederick D Gregory
- Department of Molecular Physiology and Biophysics, University of Iowa, 5-610 Bowen Science Building, 51 Newton Rd, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
57
|
Onelli E, Moscatelli A. Endocytic Pathways and Recycling in Growing Pollen Tubes. PLANTS (BASEL, SWITZERLAND) 2013; 2:211-29. [PMID: 27137373 PMCID: PMC4844360 DOI: 10.3390/plants2020211] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/21/2013] [Accepted: 03/26/2013] [Indexed: 12/31/2022]
Abstract
Pollen tube growth is based on transport of secretory vesicles into the apical region where they fuse with a small area of the plasma membrane. The amount of secretion greatly exceeds the quantity of membrane required for growth. Mechanisms of membrane retrieval have recently been demonstrated and partially characterized using FM (Fei Mao) dyes or charged nanogold. Both these probes reveal that clathrin-dependent and -independent endocytosis occur in pollen tubes and are involved in distinct degradation pathways and membrane recycling. Exocytosis, internalization and sorting of PM proteins/lipids depend on the integrity of the actin cytoskeleton and are involved in actin filament organization. However, some kinds of endocytic and exocytic processes occurring in the central area of the tip still need to be characterized. Analysis of secretion dynamics and data derived from endocytosis highlight the complexity of events occurring in the tip region and suggest a new model of pollen tube growth.
Collapse
Affiliation(s)
- Elisabetta Onelli
- Dipartimento di Bioscienze, Universita' degli Studi di Milano Via Celoria 26, 20133 Milano, Italy.
| | - Alessandra Moscatelli
- Dipartimento di Bioscienze, Universita' degli Studi di Milano Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
58
|
Kim MH, Li GL, von Gersdorff H. Single Ca2+ channels and exocytosis at sensory synapses. J Physiol 2013; 591:3167-78. [PMID: 23459757 DOI: 10.1113/jphysiol.2012.249482] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hair cell synapses in the ear and photoreceptor synapses in the eye are the first synapses in the auditory and visual system. These specialized synapses transmit a large amount of sensory information in a fast and efficient manner. Moreover, both small and large signals with widely variable kinetics must be quickly encoded and reliably transmitted to allow an animal to rapidly monitor and react to its environment. Here we briefly review some aspects of these primary synapses, which are characterized by a synaptic ribbon in their active zones of transmitter release. We propose that these synapses are themselves highly specialized for the task at hand. Photoreceptor and bipolar cell ribbon synapses in the retina appear to have versatile properties that permit both tonic and phasic transmitter release. This allows them to transmit changes of both luminance and contrast within a visual field at different ambient light levels. By contrast, hair cell ribbon synapses are specialized for a highly synchronous form of multivesicular release that may be critical for phase locking to low-frequency sound-evoked signals at both low and high sound intensities. The microarchitecture of a hair cell synapse may be such that the opening of a single Ca(2+) channel evokes the simultaneous exocytosis of multiple synaptic vesicles. Thus, the differing demands of sensory encoding in the eye and ear generate diverse designs and capabilities for their ribbon synapses.
Collapse
Affiliation(s)
- Mean-Hwan Kim
- Oregon Health Sciences University, Vollum Institute L-474, 3181 SW Sam Jackson Park Rd, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
59
|
Trovò L, Ahmed T, Callaerts-Vegh Z, Buzzi A, Bagni C, Chuah M, Vandendriessche T, D'Hooge R, Balschun D, Dotti CG. Low hippocampal PI(4,5)P₂ contributes to reduced cognition in old mice as a result of loss of MARCKS. Nat Neurosci 2013; 16:449-55. [PMID: 23434911 DOI: 10.1038/nn.3342] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/18/2013] [Indexed: 02/03/2023]
Abstract
Cognitive and motor performances decline during aging. Although it is clear that such signs reflect synaptic compromise, the underlying mechanisms have not been defined. We found that the levels and activity of the synaptic plasticity modulators phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P₂) and phospholipase Cγ (PLCγ) were substantially reduced in hippocampal synaptic membranes from old mice. In addition, these membranes contained reduced levels of the PI(4,5)P₂-clustering molecule myristoylated alanine-rich C kinase substrate (MARCKS). Consistent with a cause-effect relationship, raising MARCKS levels in the brain of old mice led to increased synaptic membrane clustering of PI(4,5)P₂ and to PLCγ activation. MARCKS overexpression in the hippocampus of old mice or intraventricular perfusion of MARCKS peptide resulted in enhanced long-term potentiation and improved memory. These results reveal one of the mechanisms involved in brain dysfunction during aging.
Collapse
Affiliation(s)
- Laura Trovò
- VIB Center for the Biology of Disease, Leuven and Center for Human Genetics, University of Leuven (Katholieke University of Leuven), Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
|