51
|
Michalik M, Orwick-Rydmark M, Habeck M, Alva V, Arnold T, Linke D. An evolutionarily conserved glycine-tyrosine motif forms a folding core in outer membrane proteins. PLoS One 2017; 12:e0182016. [PMID: 28771529 PMCID: PMC5542473 DOI: 10.1371/journal.pone.0182016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/11/2017] [Indexed: 12/02/2022] Open
Abstract
An intimate interaction between a pair of amino acids, a tyrosine and glycine on neighboring β-strands, has been previously reported to be important for the structural stability of autotransporters. Here, we show that the conservation of this interacting pair extends to nearly all major families of outer membrane β-barrel proteins, which are thought to have originated through duplication events involving an ancestral ββ hairpin. We analyzed the function of this motif using the prototypical outer membrane protein OmpX. Stopped-flow fluorescence shows that two folding processes occur in the millisecond time regime, the rates of which are reduced in the tyrosine mutant. Folding assays further demonstrate a reduction in the yield of folded protein for the mutant compared to the wild-type, as well as a reduction in thermal stability. Taken together, our data support the idea of an evolutionarily conserved ‘folding core’ that affects the folding, membrane insertion, and thermal stability of outer membrane protein β-barrels.
Collapse
Affiliation(s)
- Marcin Michalik
- Department of Biosciences, University of Oslo, Oslo, Norway
- Previous affiliation: Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Michael Habeck
- Statistical inverse problems in Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen, Göttingen, Germany
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Thomas Arnold
- Previous affiliation: Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Boehringer Ingelheim Veterinary Research Center, Hannover, Germany
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
- Previous affiliation: Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail:
| |
Collapse
|
52
|
Andersen KK, Vad B, Omer S, Otzen DE. Concatemers of Outer Membrane Protein A Take Detours in the Folding Landscape. Biochemistry 2016; 55:7123-7140. [PMID: 27973779 DOI: 10.1021/acs.biochem.6b01153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Outer membrane protein A (OmpA) is the most abundant protein in the outer membrane of Escherichia coli. The N-terminal domain forms an eight-stranded membrane-embedded β-barrel that is widely used as a model protein for in vitro folding into the membrane and into surfactant micelles. Under conditions that include a low surfactant concentration, OmpA can form stable higher-order structures by intermolecular association. Other β-barrel membrane proteins also associate to form noncovalently linked trimers in vivo. This inspired us to test how topological constraints imposed by intramolecular links between individual OmpA molecules affect this process. Here we report on the properties of concatemers consisting of two and three copies of the transmembrane part of OmpA. Both concatemers could be folded to a native state in surfactant micelles according to spectroscopy and electrophoretic band shifts. This native state had the same thermodynamic stability against chemical denaturation as the original OmpA. Above 1.5 M GdmCl, concatemerization increased both refolding and unfolding rates, which we attribute to entropic effects. However, below 1.5 M GdmCl, folding kinetics were 2-3 orders of magnitude slower and more complex, involving a greater degree of parallel folding steps and species that could be classified as off-pathway. Only OmpA2 could quantitatively be folded into vesicles (though to an extent lower than that of OmpA), while OmpA3 formed three species with different levels of folding. Thus, close spatial and sequential proximity of OmpA domains on the same polypeptide chain have a strong tendency to trap the protein in different misfolded states.
Collapse
Affiliation(s)
- Kell K Andersen
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Brian Vad
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Sahar Omer
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Daniel E Otzen
- iNANO and Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
53
|
van 't Hag L, Shen HH, Lin TW, Gras SL, Drummond CJ, Conn CE. Effect of Lipid-Based Nanostructure on Protein Encapsulation within the Membrane Bilayer Mimetic Lipidic Cubic Phase Using Transmembrane and Lipo-proteins from the Beta-Barrel Assembly Machinery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12442-12452. [PMID: 27326898 DOI: 10.1021/acs.langmuir.6b01800] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A fundamental understanding of the effect of amphiphilic protein encapsulation on the nanostructure of the bicontinuous cubic phase is crucial to progressing biomedical and biological applications of these hybrid protein-lipid materials, including as drug delivery vehicles, as biosensors, biofuel cells and for in meso crystallization. The relationship between the lipid nanomaterial and the encapsulated protein, however, remains poorly understood. In this study, we investigated the effect of incorporating the five transmembrane and lipo-proteins which make up the β-barrel assembly machinery from Gram-negative bacteria within a series of bicontinuous cubic phases. The transmembrane β-barrel BamA caused an increase in lattice parameter of the cubic phase upon encapsulation. By contrast, the mainly hydrophilic lipo-proteins BamB-E caused the cubic phase lattice parameters to decrease, despite their large size relative to the diameter of the cubic phase water channels. Analysis of the primary amino acid sequence was used to rationalize this effect, based on specific interactions between aromatic amino acids within the proteins and the polar-apolar interface. Other factors that were found to have an effect were lateral bilayer pressure and rigidity within the lipid bilayer, water channel diameter, and size and structure of the lipo-proteins. The data presented suggest that hydrophilic bioactive molecules can be selectively encapsulated within the cubic phase by using a lipid anchor or aromatic amino acids, for drug delivery or biosensing applications.
Collapse
Affiliation(s)
| | | | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University , Taichung City 40704, Taiwan
| | | | - Calum J Drummond
- CSIRO Manufacturing , Clayton, Victoria 3168, Australia
- School of Science, College of Science, Engineering and Health, RMIT University , Melbourne, Victoria 3001, Australia
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University , Melbourne, Victoria 3001, Australia
| |
Collapse
|
54
|
Maurya SR, Mahalakshmi R. Control of human VDAC-2 scaffold dynamics by interfacial tryptophans is position specific. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2993-3004. [PMID: 27641490 PMCID: PMC5091009 DOI: 10.1016/j.bbamem.2016.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/05/2022]
Abstract
Membrane proteins employ specific distribution patterns of amino acids in their tertiary structure for adaptation to their unique bilayer environment. The solvent-bilayer interface, in particular, displays the characteristic ‘aromatic belt’ that defines the transmembrane region of the protein, and satisfies the amphipathic interfacial environment. Tryptophan—the key residue of this aromatic belt—is known to influence the folding efficiency and stability of a large number of well-studied α-helical and β-barrel membrane proteins. Here, we have used functional and biophysical techniques coupled with simulations, to decipher the contribution of strategically placed four intrinsic tryptophans of the human outer mitochondrial membrane protein, voltage-dependent anion channel isoform-2 (VDAC-2). We show that tryptophans help in maintaining the structural and functional integrity of folded hVDAC-2 barrel in micellar environments. The voltage gating characteristics of hVDAC-2 are affected upon mutation of tryptophans at positions 75, 86 and 221. We observe that Trp-160 and Trp-221 play a crucial role in the folding pathway of the barrel, and once folded, Trp-221 helps stabilize the folded protein in concert with Trp-75 and Trp-160. We further demonstrate that substituting Trp-86 with phenylalanine leads to the formation of stable barrel. We find that the region comprising strand β4 (Trp-86) and β10-14 (Trp-160 and Trp-221) display slower and faster folding kinetics, respectively, providing insight into a possible directional folding of hVDAC-2 from the C-terminus to N-terminus. Our results show that residue selection in a protein during evolution is a balancing compromise between optimum stability, function, and regulating protein turnover inside the cell. Aromatic belt of membrane proteins has key stabilization role. Human voltage-dependent anion channel isoform-2 (hVDAC-2) has four interfacial indoles. Tryptophans act in concert to drive folding and stabilization of the barrel. The 86th position shows preference for phenylalanine due to its buried environment. Strands β10–14 promote barrel folding and stabilize hVDAC-2.
Collapse
Affiliation(s)
- Svetlana Rajkumar Maurya
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India.
| |
Collapse
|
55
|
Iyer BR, Mahalakshmi R. Distinct Structural Elements Govern the Folding, Stability, and Catalysis in the Outer Membrane Enzyme PagP. Biochemistry 2016; 55:4960-70. [PMID: 27525547 DOI: 10.1021/acs.biochem.6b00678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The outer membrane enzyme PagP is indispensable for lipid A palmitoylation in Gram-negative bacteria and has been implicated in resistance to host immune defenses. PagP possesses an unusual structure for an integral membrane protein, with a highly dynamic barrel domain that is tilted with respect to the membrane normal. In addition, it contains an N-terminal amphipathic helix. Recent functional and structural studies have shown that these molecular factors are critical for PagP to carry out its function in the challenging environment of the bacterial outer membrane. However, the precise contributions of the N-helix to folding and stability and residues that can influence catalytic rates remain to be addressed. Here, we identify a sequence-dependent stabilizing role for the N-terminal helix of PagP in the measured thermodynamic stability of the barrel. Using chimeric barrel sequences, we show that the Escherichia coli PagP N-terminal helix confers 2-fold greater stability to the Salmonella typhimurium barrel. Further, we find that the W78F substitution in S. typhimurium causes a nearly 20-fold increase in the specific activity in vitro for the phospholipase reaction, compared to that of E. coli PagP. Here, phenylalanine serves as a key regulator of catalysis, possibly by increasing the reaction rate. Through coevolution analysis, we detect an interaction network between seemingly unrelated segments of this membrane protein. Exchanging the structural and functional features between homologous PagP enzymes from E. coli and S. typhimurium has provided us with an understanding of the molecular factors governing PagP stability and function.
Collapse
Affiliation(s)
- Bharat Ramasubramanian Iyer
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462066, India
| |
Collapse
|
56
|
Abstract
The assembly of β-barrel proteins into membranes is mediated by an evolutionarily conserved machine. This process is poorly understood because no stable partially folded barrel substrates have been characterized. Here, we slowed the folding of the Escherichia coli β-barrel protein, LptD, with its lipoprotein plug, LptE. We identified a late-stage intermediate in which LptD is folded around LptE, and both components interact with the two essential β-barrel assembly machine (Bam) components, BamA and BamD. We propose a model in which BamA and BamD act in concert to catalyze folding, with the final step in the process involving closure of the ends of the barrel with release from the Bam components. Because BamD and LptE are both soluble proteins, the simplest model consistent with these findings is that barrel folding by the Bam complex begins in the periplasm at the membrane interface.
Collapse
|
57
|
Horne JE, Radford SE. A growing toolbox of techniques for studying β-barrel outer membrane protein folding and biogenesis. Biochem Soc Trans 2016; 44:802-9. [PMID: 27284045 PMCID: PMC4900752 DOI: 10.1042/bst20160020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 01/21/2023]
Abstract
Great strides into understanding protein folding have been made since the seminal work of Anfinsen over 40 years ago, but progress in the study of membrane protein folding has lagged behind that of their water soluble counterparts. Researchers in these fields continue to turn to more advanced techniques such as NMR, mass spectrometry, molecular dynamics (MD) and single molecule methods to interrogate how proteins fold. Our understanding of β-barrel outer membrane protein (OMP) folding has benefited from these advances in the last decade. This class of proteins must traverse the periplasm and then insert into an asymmetric lipid membrane in the absence of a chemical energy source. In this review we discuss old, new and emerging techniques used to examine the process of OMP folding and biogenesis in vitro and describe some of the insights and new questions these techniques have revealed.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, The University of Leeds, Leeds LS2 9JT, U.K
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, The University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
58
|
Pavlenok M, Niederweis M. Hetero-oligomeric MspA pores in Mycobacterium smegmatis. FEMS Microbiol Lett 2016; 363:fnw046. [PMID: 26912121 DOI: 10.1093/femsle/fnw046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2016] [Indexed: 12/22/2022] Open
Abstract
The porin MspA of Mycobacterium smegmatis is a biological nanopore used for DNA sequencing. The octameric MspA pore can be isolated from M. smegmatis in milligram quantities, is extremely stable against denaturation and rapidly inserts into lipid membranes. Here, we show that MspA pores composed of different Msp subunits are formed in M. smegmatis and that hetero-oligomers of different Msp monomers increase the heterogeneity of MspA pores designed for DNA sequencing. To improve the quality of preparations of mutant MspA proteins, all four msp genes were deleted from the M. smegmatis genome after insertion of an inducible porin gene from M. tuberculosis. In the msp quadruple mutant M. smegmatis ML712 no Msp porins were detected and mutant MspA proteins were produced at wild-type levels. Lipid bilayer experiments demonstrated that MspA pores isolated from ML712 formed functional channels and had a narrower conductance distribution than pores purified from M. smegmatis with background msp expression. Thus, the M. smegmatis msp quadruple mutant improves the homogeneity of MspA pores designed for DNA sequencing and might also facilitate the identification and functional characterization of other mycobacterial pore proteins.
Collapse
Affiliation(s)
- Mikhail Pavlenok
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
59
|
Iyer BR, Mahalakshmi R. Residue-Dependent Thermodynamic Cost and Barrel Plasticity Balances Activity in the PhoPQ-Activated Enzyme PagP of Salmonella typhimurium. Biochemistry 2015; 54:5712-22. [PMID: 26334694 DOI: 10.1021/acs.biochem.5b00543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PagP is an eight-stranded transmembrane β-barrel enzyme indispensable for lipid A palmitoylation in Gram-negative bacteria. The severity of infection by pathogens, including Salmonella, Legionella, and Bordetella, and resistance to antimicrobial peptides, relies on lipid A remodeling by PagP, rendering PagP a sought-after drug target. Despite a conserved sequence, more robust palmitoylation of lipid A is observed in Salmonella typhimurium compared to Escherichia coli, a possible consequence of the differential regulation of PagP expression and/or specific activity. Work here identifies molecular signatures that demarcate thermodynamic stability and variances in catalytic efficiency between S. typhimurium (PagP-St) and E. coli (PagP-Ec) transmembrane PagP barrel variants. We demonstrate that Salmonella PagP displays a 2-fold destabilization of the barrel, while achieving 15-20 magnitude higher lipase efficiency, through subtle alterations of lipid-facing residues distal from the active site. We find that catalytic properties of these homologues are retained across different lipid environments such as micelles, vesicles, and natural extracts. By comparing thermodynamic stability with activity of selectively designed mutants, we conclude that activity-stability trade-offs can be influenced by factors secluded from the catalytic region. Our results provide a compelling correlation of the primary protein structure with enzymatic activity, barrel thermodynamic stability, and scaffold plasticity. Our analysis can open avenues for the development of potent pharmaceuticals against salmonellosis.
Collapse
Affiliation(s)
- Bharat Ramasubramanian Iyer
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462023, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462023, India
| |
Collapse
|
60
|
Marassi FM, Ding Y, Schwieters CD, Tian Y, Yao Y. Backbone structure of Yersinia pestis Ail determined in micelles by NMR-restrained simulated annealing with implicit membrane solvation. JOURNAL OF BIOMOLECULAR NMR 2015; 63:59-65. [PMID: 26143069 PMCID: PMC4577439 DOI: 10.1007/s10858-015-9963-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/30/2015] [Indexed: 06/04/2023]
Abstract
The outer membrane protein Ail (attachment invasion locus) is a virulence factor of Yersinia pestis that mediates cell invasion, cell attachment and complement resistance. Here we describe its three-dimensional backbone structure determined in decyl-phosphocholine (DePC) micelles by NMR spectroscopy. The NMR structure was calculated using the membrane function of the implicit solvation potential, eefxPot, which we have developed to facilitate NMR structure calculations in a physically realistic environment. We show that the eefxPot force field guides the protein towards its native fold. The resulting structures provide information about the membrane-embedded global position of Ail, and have higher accuracy, higher precision and improved conformational properties, compared to the structures calculated with the standard repulsive potential.
Collapse
Affiliation(s)
- Francesca M Marassi
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Yi Ding
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Charles D Schwieters
- Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Building 12A, Bethesda, MD, 20892-5624, USA
| | - Ye Tian
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yong Yao
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
61
|
Tian Y, Schwieters CD, Opella SJ, Marassi FM. A Practical Implicit Membrane Potential for NMR Structure Calculations of Membrane Proteins. Biophys J 2015; 109:574-85. [PMID: 26244739 PMCID: PMC4572468 DOI: 10.1016/j.bpj.2015.06.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 01/22/2023] Open
Abstract
The highly anisotropic environment of the lipid bilayer membrane imposes significant constraints on the structures and functions of membrane proteins. However, NMR structure calculations typically use a simple repulsive potential that neglects the effects of solvation and electrostatics, because explicit atomic representation of the solvent and lipid molecules is computationally expensive and impractical for routine NMR-restrained calculations that start from completely extended polypeptide templates. Here, we describe the extension of a previously described implicit solvation potential, eefxPot, to include a membrane model for NMR-restrained calculations of membrane protein structures in XPLOR-NIH. The key components of eefxPot are an energy term for solvation free energy that works together with other nonbonded energy functions, a dedicated force field for conformational and nonbonded protein interaction parameters, and a membrane function that modulates the solvation free energy and dielectric screening as a function of the atomic distance from the membrane center, relative to the membrane thickness. Initial results obtained for membrane proteins with structures determined experimentally in lipid bilayer membranes show that eefxPot affords significant improvements in structural quality, accuracy, and precision. Calculations with eefxPot are straightforward to implement and can be used to both fold and refine structures, as well as to run unrestrained molecular-dynamics simulations. The potential is entirely compatible with the full range of experimental restraints measured by various techniques. Overall, it provides a useful and practical way to calculate membrane protein structures in a physically realistic environment.
Collapse
Affiliation(s)
- Ye Tian
- Sanford-Burnham Medical Research Institute, La Jolla, California; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Charles D Schwieters
- Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | | |
Collapse
|
62
|
|