51
|
Bieback K, Fernandez-Muñoz B, Pati S, Schäfer R. Gaps in the knowledge of human platelet lysate as a cell culture supplement for cell therapy: a joint publication from the AABB and the International Society for Cell & Gene Therapy. Cytotherapy 2019; 21:911-924. [PMID: 31307904 DOI: 10.1016/j.jcyt.2019.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
Abstract
Fetal bovine serum (FBS) is used as a growth supplement in a wide range of cell culture applications for cell-based research and therapy. However, as a xenogenic product, FBS can potentially transmit prions and adventitious viruses as well as induce undesirable immunologic reactions. In addition, the use of bovine fetuses for FBS production raises concerns as society looks for ways to replace animal testing and reduce the use of animal products for scientific purposes, in particular for the manufacture of clinical products intended for human use. Until chemically defined media are available for these purposes, human platelet lysate (hPL) has been introduced as an attractive alternative for replacing FBS as a cell culture supplement. hPL is a human product that can be produced from outdated platelets avoiding ethical, medical and animal welfare concerns. An increasing number of studies demonstrate that hPL can promote cell growth similarly or even better than FBS in specific cell types. Due to increasing interest in hPL, the AABB and the International Society of Cell Therapy (ISCT) established a joint working group to address its potential. With this article, we aim to present an overview of hPL, identifying the gaps in information on how hPL is produced and tested and the barriers to its translational use in the production of clinical-grade cell therapy products.
Collapse
Affiliation(s)
- Karen Bieback
- Institute for Transfusion Medicine and Immunology, Flowcore Mannheim, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen gGmbH, Mannheim, Germany.
| | - Beatriz Fernandez-Muñoz
- Unidad de Producción y Reprogramación Celular (UPRC)/Laboratorio Andaluz de Reprogramación Celular (LARCEL), Sevilla, Spain; Iniciativa Andaluza de Terapias Avanzadas, Sevilla, Spain; IBiS, Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Shibani Pati
- Blood Systems Research Institute (BSRI), Blood Systems Inc. (BSI) and University of California San Francisco, San Francisco, California, USA
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
52
|
Manufacturing mesenchymal stromal cells for clinical applications: A survey of Good Manufacturing Practices at U.S. academic centers. Cytotherapy 2019; 21:782-792. [DOI: 10.1016/j.jcyt.2019.04.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 12/28/2022]
|
53
|
Viau S, Lagrange A, Chabrand L, Lorant J, Charrier M, Rouger K, Alvarez I, Eap S, Delorme B. A highly standardized and characterized human platelet lysate for efficient and reproducible expansion of human bone marrow mesenchymal stromal cells. Cytotherapy 2019; 21:738-754. [PMID: 31133491 DOI: 10.1016/j.jcyt.2019.04.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Human platelet lysate (hPL) represents a powerful alternative to fetal bovine serum (FBS) for human mesenchymal stromal cell (hMSC) expansion. However, the large variability in hPL sources and production protocols gives rise to discrepancies in product quality, characterization and poor batch-to-batch standardization. METHODS hPL prepared with more than 200 donors (200+DhPL) or with five donors (5DhPL) were compared in terms of growth factor (GF) contents and biochemical analysis. A multiple protein assay and proteomic analysis were performed to further characterize 200+DhPL batches. We also compared the phenotypic and functional characteristics of bone marrow (BM)-hMSCs grown in 200+DhPL versus FBS+basic fibroblast growth factor (bFGF). RESULTS By contrast to 5DhPL, industrial 200+DhPL displayed a strong standardization of GF contents and biochemical characteristics. We identified specific plasmatic components and platelet-released factors as the most relevant markers for the evaluation of the standardization of hPL batches. We used a multiplex assay and proteomic analysis of 200+DhPL to establish a proteomic signature and demonstrated the robust standardization of batches. 200+DhPL was shown to improve and standardize BM-hMSC expansion compared with FBS+bFGF. The levels of expression of BM-hMSC membrane markers were found to be much more homogeneous between batches when cells were cultured in 200+DhPL. BM-hMSCs cultured in parallel under both conditions displayed similar adipogenic and osteogenic differentiation potential and immunosuppressive properties. CONCLUSIONS We report a standardization of hPL and the importance of such standardization for the efficient amplification of more homogeneous and reproducible cell therapy products.
Collapse
Affiliation(s)
- Sabrina Viau
- Biotherapy Division, Macopharma, Mouvaux, France.
| | | | | | | | - Marine Charrier
- PAnTher, Institut National de la Recherche Agronomique (INRA), Ecole Nationale Vétérinaire, Agro-alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire, Nantes, France; Université de Nantes, Université Bretagne Loire, Nantes, France
| | - Karl Rouger
- PAnTher, Institut National de la Recherche Agronomique (INRA), Ecole Nationale Vétérinaire, Agro-alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire, Nantes, France
| | | | - Sandy Eap
- Biotherapy Division, Macopharma, Mouvaux, France
| | | |
Collapse
|
54
|
Boland LK, Burand AJ, Boyt DT, Dobroski H, Di L, Liszewski JN, Schrodt MV, Frazer MK, Santillan DA, Ankrum JA. Nature vs. Nurture: Defining the Effects of Mesenchymal Stromal Cell Isolation and Culture Conditions on Resiliency to Palmitate Challenge. Front Immunol 2019; 10:1080. [PMID: 31134100 PMCID: PMC6523025 DOI: 10.3389/fimmu.2019.01080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
As MSC products move from early development to clinical translation, culture conditions shift from xeno- to xeno-free systems. However, the impact of isolation and culture-expansion methods on the long-term resiliency of MSCs within challenging transplant environments is not fully understood. Recent work in our lab has shown that palmitate, a saturated fatty acid elevated in the serum of patients with obesity, causes MSCs to convert from an immunosuppressive to an immunostimulatory state at moderate to high physiological levels. This demonstrated that metabolically-diseased environments, like obesity, alter the immunomodulatory efficacy of healthy donor MSCs. In addition, it highlighted the need to test MSC efficacy not only in ideal conditions, but within challenging metabolic environments. To determine how the choice of xeno- vs. xeno-free media during isolation and expansion would affect future immunosuppressive function, umbilical cord explants from seven donors were subdivided and cultured within xeno- (fetal bovine serum, FBS) or xeno-free (human platelet lysate, PLT) medias, creating 14 distinct MSC preparations. After isolation and primary expansion, umbilical cord MSCs (ucMSC) were evaluated according to the ISCT minimal criteria for MSCs. Following baseline characterization, ucMSC were exposed to physiological doses of palmitate and analyzed for metabolic health, apoptotic induction, and immunomodulatory potency in co-cultures with stimulated human peripheral blood mononuclear cells. The paired experimental design (each ucMSC donor grown in two distinct culture environments) allowed us to delineate the contribution of inherent (nature) vs. environmentally-driven (nurture) donor characteristics to the phenotypic response of ucMSC during palmitate exposure. Culturing MSCs in PLT-media led to more consistent growth characteristics during the isolation and expansion for all donors, resulting in faster doubling times and higher cell yields compared to FBS. Upon palmitate challenge, PLT-ucMSCs showed a higher susceptibility to palmitate-induced metabolic disturbance, but less susceptibility to palmitate-induced apoptosis. Most striking however, was that the PLT-ucMSCs resisted the conversion to an immunostimulatory phenotype better than their FBS counterparts. Interestingly, examining MSC suppression of PBMC proliferation at physiologic doses of palmitate magnified the differences between donors, highlighting the utility of evaluating MSC products in stress-based assays that reflect the challenges MSCs may encounter post-transplantation.
Collapse
Affiliation(s)
- Lauren K Boland
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Anthony J Burand
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Devlin T Boyt
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Hannah Dobroski
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Lin Di
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Jesse N Liszewski
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Michael V Schrodt
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Maria K Frazer
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Donna A Santillan
- Department of Obstetrics and Gynecology, Center for Immunology and Immune Based Diseases, Center for Hypertension Research, University of Iowa, Iowa City, IA, United States
| | - James A Ankrum
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
55
|
Barro L, Su YT, Nebie O, Wu YW, Huang YH, Koh MB, Knutson F, Burnouf T. A double-virally-inactivated (Intercept-solvent/detergent) human platelet lysate for in vitro expansion of human mesenchymal stromal cells. Transfusion 2019; 59:2061-2073. [PMID: 30912158 DOI: 10.1111/trf.15251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pooled human platelet lysate (HPL) can replace fetal bovine serum (FBS) as xeno-free supplement for ex vivo expansion of mesenchymal stromal cells (MSCs). We evaluate here whether a double-virally-inactivated HPL (DVI-HPL) prepared from expired Intercept-treated platelet concentrates (PCs) and treated by solvent/detergent (S/D) can be used for MSC expansion. STUDY DESIGN AND METHODS Expired Intercept-treated PCs in 65% platelet (PLT) additive solution were pooled and subjected to a 1% tri-n-butyl phosphate/1% Triton X-45 treatment followed by soybean oil, hydrophobic interaction chromatography purification, and sterile filtration. Bone marrow-derived MSCs (BM-MSCs) were expanded for four passages in growth medium containing 10% DVI-HPL, I-HPL (from Intercept-PC only), untreated HPL, and FBS. MSC morphology, doubling time, immunophenotype, immunosuppressive activity, and differentiation capacity were compared. RESULTS Expanded cells had typical spindle morphology and showed higher viability in all HPL conditions than in FBS. The DVI-HPL and FBS-expanded cells were morphologically larger than in I-HPL and HPL supplements. The cumulative population doubling was lower using DVI-HPL than with HPL and I-HPL, but significantly higher than using FBS. Immunophenotype was not affected by the supplements used. Immunosuppressive activity was maintained with all supplements. Differentiation capacity into chondrocytes and osteocytes was more effective in DVI-HPL but less toward adipocytes compared to other supplements. CONCLUSIONS Human PLT lysate made from Intercept-PCs subjected to S/D treatment may be an alternative to untreated HPL and to I-HPL for BM-MSC expansion. This finding reinforces the potential of HPL as a virally safe alternative to FBS for clinical grade MSC expansion protocols.
Collapse
Affiliation(s)
- Lassina Barro
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ting Su
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mickey Bc Koh
- Stem Cell Transplantation Programme, St. George's University Hospitals NHS Foundation Trust, Tooting, London, SW17 0QT, United Kingdom.,Cell Therapy Programme, Blood Services Group, Health Sciences Authority, Singapore
| | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | - Thierry Burnouf
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
56
|
Devito L, Klontzas ME, Cvoro A, Galleu A, Simon M, Hobbs C, Dazzi F, Mantalaris A, Khalaf Y, Ilic D. Comparison of human isogeneic Wharton's jelly MSCs and iPSC-derived MSCs reveals differentiation-dependent metabolic responses to IFNG stimulation. Cell Death Dis 2019; 10:277. [PMID: 30894508 PMCID: PMC6426992 DOI: 10.1038/s41419-019-1498-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/25/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
Abstract
Variability among donors, non-standardized methods for isolation, and characterization contribute to mesenchymal stem/stromal cell (MSC) heterogeneity. Induced pluripotent stem cell (iPSCs)-derived MSCs would circumvent many of current issues and enable large-scale production of standardized cellular therapy. To explore differences between native MSCs (nMSCs) and iPSC-derived MSCs (iMSCs), we developed isogeneic lines from Wharton’s jelly (WJ) from the umbilical cords of two donors (#12 and #13) under xeno-free conditions. Next, we reprogrammed them into iPSCs (iPSC12 and iPSC13) and subsequently differentiated them back into iMSCs (iMSC12 and iMSC13) using two different protocols, which we named ARG and TEX. We assessed their differentiation capability, transcriptome, immunomodulatory potential, and interferon-γ (IFNG)-induced changes in metabolome. Our data demonstrated that although both differentiation protocols yield iMSCs similar to their parental nMSCs, there are substantial differences. The ARG protocol resulted in iMSCs with a strong immunomodulatory potential and lower plasticity and proliferation rate, whereas the TEX protocol raised iMSCs with a higher proliferation rate, better differentiation potential, though weak immunomodulatory response. Our data suggest that, following a careful selection and screening of donors, nMSCs from umbilical’s cord WJ can be easily reprogrammed into iPSCs, providing an unlimited source of material for differentiation into iMSCs. However, the differentiation protocol should be chosen depending on their clinical use.
Collapse
Affiliation(s)
- Liani Devito
- Department of Women and Children's Health, King's College London, Guy's Hospital, London, UK
| | | | - Aleksandra Cvoro
- Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Antonio Galleu
- Department of Haemato-oncology, Rayne Institute, King's College London, London, UK
| | - Marisa Simon
- Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Carl Hobbs
- Histology Laboratory, Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Francesco Dazzi
- Department of Haemato-oncology, Rayne Institute, King's College London, London, UK
| | - Athanasios Mantalaris
- Department of Chemical Engineering, Imperial College London, London, UK.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 950 Atlantic Drive, Engineering Biosciences Building, Rm 3016, Atlanta, GA, 30332, USA
| | - Yacoub Khalaf
- Department of Women and Children's Health, King's College London, Guy's Hospital, London, UK
| | - Dusko Ilic
- Department of Women and Children's Health, King's College London, Guy's Hospital, London, UK.
| |
Collapse
|
57
|
Bieback K, Kuçi S, Schäfer R. Production and quality testing of multipotent mesenchymal stromal cell therapeutics for clinical use. Transfusion 2019; 59:2164-2173. [DOI: 10.1111/trf.15252] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty MannheimGerman Red Cross Blood Donor Service Baden‐Württemberg‐Hessen gGmbH, Heidelberg University Mannheim Germany
- FlowCore Mannheim, Medical Faculty MannheimHeidelberg University Germany
| | - Selim Kuçi
- Department for Children and Adolescents, Division for Stem Cell Transplantation and ImmunologyUniversity Hospital Frankfurt Frankfurt am Main Germany
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden‐Württemberg‐Hessen gGmbHGoethe University Hospital Frankfurt am Main Germany
| |
Collapse
|
58
|
Long-Lasting Anti-Inflammatory Activity of Human Microfragmented Adipose Tissue. Stem Cells Int 2019; 2019:5901479. [PMID: 30915125 PMCID: PMC6399530 DOI: 10.1155/2019/5901479] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
Over the last few years, human microfragmented adipose tissue (MFAT), containing significant levels of mesenchymal stromal cells (MSCs) and obtained from fat lipoaspirate (LP) through a minimal manipulation in a closed system device, has been successfully used in aesthetic medicine as well as in orthopedic and general surgery. Interestingly, in orthopedic diseases, this ready-to-use adipose tissue cell derivative seems to have a prolonged time efficacy even upon a single shot injection into osteoarthritic tissues. Here, we investigated the long-term survival and content of MSCs as well the anti-inflammatory activity of LP and its derived MFAT in vitro, with the aim to better understand a possible in vivo mechanism of action. MFAT and LP specimens from 17 human donors were investigated side by side. During a long-term culture in serum-free medium, we found that the total cell number as well the MSC content in MFAT decreased more slowly if compared to those from LP specimens. The analysis of cytokines and growth factors secreted into the conditioned medium (CM) was similar in MFAT and LP during the first week of culture, but the total amount of cytokines secreted by LP decreased much more rapidly than those produced by MFAT during prolonged culture (up to 28 days). Similarly, the addition of MFAT-CM recovered at early (3-7 days) and late stage (14-28 days) of culture strongly inhibited inflammatory function of U937 monocyte cell line, whereas the anti-inflammatory activity of LP-CM was drastically reduced after only 7 days of culture. We conclude that MFAT is an effective preparation with a long-lasting anti-inflammatory activity probably mediated by a long-term survival of their MSC content that releases a combination of cytokines that affect several mechanisms involved in inflammation processes.
Collapse
|
59
|
Elgaz S, Kuçi Z, Kuçi S, Bönig H, Bader P. Clinical Use of Mesenchymal Stromal Cells in the Treatment of Acute Graft-versus-Host Disease. Transfus Med Hemother 2019; 46:27-34. [PMID: 31244579 DOI: 10.1159/000496809] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/10/2019] [Indexed: 12/12/2022] Open
Abstract
Acute graft-versus-host disease (aGvHD) continues to impact morbidity and mortality after allogeneic stem cell transplantation (allo-SCT). First-line therapy for aGvHD still remains the use of high-dose corticosteroids. Unfortunately, 40-60% of patients with aGvHD exhibit steroid resistance, which is associated with a very poor prognosis. As no effective second-line therapy existed, in recent decades various treatment options were considered for the treatment of therapy-refractory GvHD. Based on their in vitro immunomodulatory properties, the use of mesenchymal stromal cells (MSCs) in the treatment of aGvHD has been introduced. However, most of the clinical data are generated from uncontrolled trials and case series, showing clinical responses to MSCs. Clinical results are more consistent in children despite the use of MSC preparations of various provenance and manufacturing protocols. While these data support the therapeutic principle, the great variability of outcomes strongly suggests that not all MSC preparations are equal and that the specific manufacturing protocols influence therapeutic success in vivo.
Collapse
Affiliation(s)
- Sümeyye Elgaz
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Zyrafete Kuçi
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Selim Kuçi
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Halvard Bönig
- German Red Cross Blood Center Frankfurt and Institute of Transfusion Medicine and Immunohematology, Goethe University Medical Center, Frankfurt am Main, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
60
|
Galleu A, Milojkovic D, Deplano S, Szydlo R, Loaiza S, Wynn R, Marks DI, Richardson D, Orchard K, Kanfer E, Tholouli E, Saif M, Sivaprakasam P, Lawson S, Bloor A, Pagliuca A, Potter V, Mehra V, Snowden JA, Vora A, Kishore B, Hunter H, Apperley JF, Dazzi F. Mesenchymal stromal cells for acute graft-versus-host disease: response at 1 week predicts probability of survival. Br J Haematol 2019; 185:89-92. [PMID: 30637732 PMCID: PMC6916615 DOI: 10.1111/bjh.15749] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/11/2018] [Indexed: 11/27/2022]
Abstract
Mesenchymal stromal cells (MSCs) have been successfully used for the treatment of steroid-resistant graft-versus-host-disease (GvHD). However, the lack of early predictors of clinical responses impacts on the time at which to add further treatment and consequently the design of informative clinical trials. Here, we present the UK experience of one of the largest cohorts of GvHD patients undergoing MSC infusions so far reported. We show that clinical responses assessed as early as 1 week after MSC infusion predict patients' overall survival. In our cohort, cell dose, patients' age and type of organ involvement are crucial factors associated with clinical responses.
Collapse
Affiliation(s)
- Antonio Galleu
- King's College London, London, UK.,King's Health Partners Cancer Research UK Centre, London, UK
| | | | | | | | | | - Robert Wynn
- Central Manchester University Hospital, Manchester, UK
| | | | | | - Kim Orchard
- University Hospital Southampton, Southampton, UK
| | | | | | - Muhammad Saif
- Central Manchester University Hospital, Manchester, UK
| | | | - Sarah Lawson
- Birmingham Women's and Children's Hospitals, Birmingham, UK
| | - Adrian Bloor
- The Christie NHS Foundation Trust, Manchester, UK
| | | | | | - Varun Mehra
- King's College Hospital NHS Trust, London, UK
| | - John A Snowden
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Ajay Vora
- Sheffield Children's Hospital, Sheffield, UK
| | | | | | - Jane F Apperley
- Imperial College Healthcare NHS Trust, London, UK.,Imperial College London, London, UK
| | - Francesco Dazzi
- King's College London, London, UK.,King's Health Partners Cancer Research UK Centre, London, UK.,Imperial College Healthcare NHS Trust, London, UK.,Imperial College London, London, UK
| |
Collapse
|
61
|
Huang H, Sharma HS, Chen L, Saberi H, Mao G. 2018 Yearbook of Neurorestoratology. JOURNAL OF NEURORESTORATOLOGY 2019. [DOI: 10.26599/jnr.2019.9040003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Neurorestoratology discipline is getting worldwide attention from the clinicians, basic scientists, students and policy makers alike. Accordingly, this year too, the discipline has made profound advances and great achievements for the benefit of the mankind. In this report, of the 2018 Neurorestoratology Yearbook, salient features of new developments are summarized. This Yearbook consists 3 key themes namely (i) the new findings on pathogenesis of neurological diseases or degeneration; (ii) the new mechanisms of neurorestorative aspects; and (iii) the achievements and progresses made in the clinical field of neurorestorative therapies. The new trend has emerged in clinical studies that are based on greater levels of evidence-based medical practices both in clinical therapies and clinical trials based on standard designs.
Collapse
|
62
|
[What is established in cell therapies? : Possibilities and limits in immuno-oncology]. Internist (Berl) 2018; 59:1230-1238. [PMID: 30367191 DOI: 10.1007/s00108-018-0516-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cell and gene therapy as part of immuno-oncology has reached an important milestone in medicine. After decades of experience stem cell transplantation is well established with worldwide >1 million transplantations to date. Due to the improved success of the last years using chimeric antigen receptor (CAR) T cells for CD19 positive leukemia and lymphomas, the interest in cellular therapies is continuously increasing. The current review also gives a short overview about donor lymphocytes, antigen-specific T cells, regulatory T cells, natural killer (NK) cells, mesenchymal stromal cells and induced pluripotent stem (iPS) cells in immuno-oncology.
Collapse
|
63
|
Ren K. Exosomes in perspective: a potential surrogate for stem cell therapy. Odontology 2018; 107:271-284. [PMID: 30324571 DOI: 10.1007/s10266-018-0395-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022]
Abstract
Exosomes as a unique subtype of small extracellular vesicles (sEVs) have attracted increasing interest in recent years in the fields of mesenchymal stromal cell (MSC) research. Studies have confirmed that exosomes derived from MSCs preserve immunosuppressive phenotype and can mimic therapeutic benefits of their parent cells. This review briefly summarizes most recent findings on the potential of exosomes as an alternative of therapeutic MSCs, focusing on the role of MSCs and their secreted exosomes in regulation of immune cells, preclinical and clinical evidence of therapeutic outcomes of MSC exosomes, and the biodistribution and pharmacokinetic profile of systemically administered exosomes. It is appreciated that exosomes from MSCs of different sources have variable contents including inflammatory mediators, tropic factors, signaling molecules, and nucleic acids (DNA, mRNA, microRNA and long non-coding RNA). Diverse functions of exosomes derived from different sources are expected. More importantly, exosomes isolated in vitro may not mirror that from in vivo, where donor MSCs are exposed to specific disease or injury-related conditions. Simulating in vivo microenvironment by pretreatment of MSCs with relevant chemical mediators may lead to their secretion of therapeutically more efficient exosomes/sEVs. However, we know very little about the key molecules involved and the differences between exosomes released under different conditions. These issues would be of tremendous interest to preclinical research that pursues exosome biology-underlain therapeutic mechanisms of MSCs. Further studies are expected to demonstrate the superiority of MSC-derived exsomes/sEVs as a pharmaceutical entity with regard to efficacy, safety, and practicability.
Collapse
Affiliation(s)
- Ke Ren
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, 650 W. Baltimore St, Dental-8 South, Baltimore, MD, 21201, USA.
| |
Collapse
|