51
|
He M, Sun H, Pang J, Guo X, Huo Y, Wu X, Liu Y, Ma J. Propofol alleviates hypoxia-induced nerve injury in PC-12 cells by up-regulation of microRNA-153. BMC Anesthesiol 2018; 18:197. [PMID: 30579328 PMCID: PMC6303956 DOI: 10.1186/s12871-018-0660-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022] Open
Abstract
Background Although the neuroprotective role of propofol has been identified recently, the regulatory mechanism associated with microRNAs (miRNAs/miRs) in neuronal cells remains to be poorly understood. We aimed to explore the regulatory mechanism of propofol in hypoxia-injured rat pheochromocytoma (PC-12) cells. Methods PC-12 cells were exposed to hypoxia, and cell viability and apoptosis were assessed by CCK-8 assay and flow cytometry assay/Western blot analysis, respectively. Effects of propofol on hypoxia-injured cells were measured, and the expression of miR-153 was determined by stem-loop RT-PCR. After that, whether propofol affected PC-12 cells under hypoxia via miR-153 was verified, and the downstream protein of miR-153 as well as the involved signaling cascade was finally explored. Results Hypoxia-induced decrease of cell viability and increase of apoptosis were attenuated by propofol. Then, we found hypoxia exposure up-regulated miR-153 expression, and the level of miR-153 was further elevated by propofol in hypoxia-injured PC-12 cells. Following experiments showed miR-153 inhibition reversed the effects of propofol on hypoxia-treated PC-12 cells. Afterwards, we found BTG3 expression was negatively regulated by miR-153 expression, and BTG3 overexpression inhibited the mTOR pathway and AMPK activation. Besides, hypoxia inhibited the mTOR pathway and AMPK, and these inhibitory effects could be attenuated by propofol. Conclusion Propofol protected hypoxia-injured PC-12 cells through miR-153-mediataed down-regulation of BTG3. BTG3 could inhibit the mTOR pathway and AMPK activation.
Collapse
Affiliation(s)
- Mingwei He
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Haiyan Sun
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Jinlei Pang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xiangfei Guo
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yansong Huo
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xianhong Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yaguang Liu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
52
|
Sun H, Gao D. Propofol suppresses growth, migration and invasion of A549 cells by down-regulation of miR-372. BMC Cancer 2018; 18:1252. [PMID: 30547768 PMCID: PMC6295097 DOI: 10.1186/s12885-018-5175-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/03/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Propofol, a commonly used intravenous anesthetic during cancer resection surgery, has been found to exhibit tumor inhibitory effects in vitro and in vivo. The role of propofol in lung cancer has been previously reported, whereas its action mechanism remains unclear. This study further investigated the effects of propofol on lung cancer A549 cell growth, migration and invasion, as well as the underlying mechanisms. METHODS Cell viability, proliferation, migration, invasion and apoptosis were assessed by CCK-8 assay, BrdU assay, two chamber transwell assay and flow cytometry, respectively. The regulatory effect of propofol on microRNA-372 (miR-372) expression in A549 cells was analyzed by qRT-PCR. Cell transfection was used to change the expression of miR-372. The protein expression of key factors involving in cell proliferation, apoptosis, migration and invasion, as well as Wnt/β-catenin and mTOR pathways were analyzed by western blotting. RESULTS Propofol inhibited lung cancer A549 cell viability, proliferation, migration, and invasion, but promoted cell apoptosis. Moreover, miR-372 was down-regulated in propofol-treated A549 cells. Overexpression of miR-372 abrogated the effects of propofol on proliferation, migration, invasion and apoptosis of A549 cells. Knockdown of miR-372 had opposite effects. Furthermore, propofol suppressed Wnt/β-catenin and mTOR signaling pathways by down-regulating miR-372. CONCLUSION Propofol inhibits growth, migration and invasion of lung cancer A549 cells at least in part by down-regulating miR-372 and then inactivating Wnt/β-catenin and mTOR pathways.
Collapse
Affiliation(s)
- Hai Sun
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, Jilin, 130033, China
| | - Dengyu Gao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, Jilin, 130033, China.
| |
Collapse
|
53
|
Wilks JA. Cancer Biology: a Primer for Perioperative
Clinicians. CURRENT ANESTHESIOLOGY REPORTS 2018. [DOI: 10.1007/s40140-018-0302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
54
|
Zhang Z, Zang M, Wang S, Wang C. Effects of propofol on human cholangiocarcinoma and the associated mechanisms. Exp Ther Med 2018; 17:472-478. [PMID: 30651824 DOI: 10.3892/etm.2018.6908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the most common type of biliary duct malignancy. Propofol is a fast-acting intravenous anesthetic, which also exerts an anti-cancer effect. The aim of the current study was to explore the effects of propofol on human CCA and the associated mechanisms in vitro. The results indicated that as concentration (0, 1, 5 and 10 µg/ml) of propofol and treatment time (24, 48 and 72 h) increased, the cell inhibition rate of human CCA QBC939 cells increased. Furthermore, treatment with various concentrations of propofol for 48 h resulted in a decrease in migration and invasion capacity in QBC939 cells. Propofol also induced the apoptosis of QBC939 cells and cell cycle arrest in G1 phase. Propofol treatment increased the expression level of Bax and decreased that of Bcl-2. In addition, the effects of propofol on gene expression were evaluated, including Wnt3α, β-catenin, Snail1 and c-myc in the Wnt/β-catenin signaling pathway. It was identified that as the concentration of propofol increased, the expression of these genes decreased. In conclusion, the current results indicate that propofol is a promising therapeutic agent for the treatment of CCA.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Hepatobiliary and Pancreas Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mingcui Zang
- Department of Hepatobiliary and Pancreas Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuang Wang
- Department of Hepatobiliary and Pancreas Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chunli Wang
- Department of Hepatobiliary and Pancreas Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
55
|
Liu D, Sun X, Du Y, Kong M. Propofol Promotes Activity and Tumor-Killing Ability of Natural Killer Cells in Peripheral Blood of Patients with Colon Cancer. Med Sci Monit 2018; 24:6119-6128. [PMID: 30174326 PMCID: PMC6131980 DOI: 10.12659/msm.911218] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background We investigated the effect of propofol on activities and tumor-killing ability of natural killer (NK) cells in patients with colon cancer. Material/Methods Twenty colon cancer patients and 20 healthy subjects were included. Peripheral blood (5 ml) was collected from all patients and healthy subjects. NK cells in peripheral blood were separated by negative screening using immunomagnetic beads. Flow cytometry was used to determine expression of activated receptors, inhibitory receptors, killing effector molecules, and proliferation-associated markers on NK cell surfaces. After in vitro treatment with propofol for 24 h, expression of activated receptors, inhibitory receptors, killing effector molecules, and proliferation-associated markers on NK cell surfaces was examined again. In addition, the tumor-killing effect of NK cells was studied by co-culture with K562 cells or colon cancer SW620 cells at a ratio of 1: 1. Results The number of NK cells in peripheral blood from colon cancer patients was increased compared with healthy subjects, but activities and proliferation ability of the NK cells were decreased. The tumor-killing effect of NK cells isolated from colon cancer patients was decreased. Of note, propofol promoted activation of NK cells from colon cancer patients. In addition, propofol increased expression of tumor-killing effector molecules by NK cells and the proliferation ability of NK cells. Propofol also enhanced the killing effect of NK cells on colon cancer cells. Conclusions The present study demonstrates that propofol promotes the activity and tumor-killing ability of NK cells in peripheral blood of patients with colon cancer.
Collapse
Affiliation(s)
- Dongshui Liu
- Department of Anesthesiology, Affiliated Hospital of Taishan Medical University, Taian, China (mainland)
| | - Xiaoshan Sun
- Department of Anesthesiology, Affiliated Hospital of Taishan Medical University, Taian, China (mainland)
| | - Yue Du
- Department of Anesthesiology, Affiliated Hospital of Taishan Medical University, Taian, China (mainland)
| | - Minmin Kong
- Department of Anesthesiology, Affiliated Hospital of Taishan Medical University, Taian, China (mainland)
| |
Collapse
|
56
|
Yu B, Gao W, Zhou H, Miao X, Chang Y, Wang L, Xu M, Ni G. Propofol induces apoptosis of breast cancer cells by downregulation of miR-24 signal pathway. Cancer Biomark 2018; 21:513-519. [PMID: 29103019 DOI: 10.3233/cbm-170234] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Propofol, an intravenous anesthetic agent, has been found to inhibit growth of breast cancer cells. However, the mechanisms underlying the antitumor are not known. A recent report has found that propofol could significantly downregulate miR-24 expression in the human malignant cancers. In breast cancer cells, overexpression of miR-24 promotes cell proliferation and inhibits cell apoptosis by downregulation of p27. The miR-24 has been reported to be overexpressed in breast cancer and breast cancer cell lines. In the present study, we hypothesized that propofol induces apoptosis of breast cancer cells by miR-24/p27 signal pathway. METHODS Breast cancer MDA-MB-435 cells were exposed to propofol (10 μM) for 6 hr and cell death was assessed using TUNEL staining, Flow cytometry and cleaved caspase-3 expression. microRNA-24 (miR-24) expression was assessed using quantitative reverse transcription polymerase chain reaction (qRT-PCR). miR-24 was overexpressed using a miR-24 mimic. P27 was knocked down using a small interfering RNA. p27 and cleaved caspase-3 expression was assessed by Western blot. RESULTS MDA-MB-435 exposed to propofol showed a significant increase in apoptotic cells, followed by the downregulation of miR-24, upregulation of p27 expression and cleaved caspase-3 expression. Targeting p27 inhibits propofol-induced cell apoptosis; miR-24 overexpression decreased propofol-induced cell apoptosis, cleaved caspase-3 and p27 expression. CONCLUSIONS Propofol inducescell death in MDA-MB-435 cells via inactivation of miR-24/p27 signal pathway.
Collapse
Affiliation(s)
- Benxia Yu
- Department of Imaging, Yantai Yuhuangding Hospital, Yantai, Shandong, China.,Department of Imaging, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Wei Gao
- Department of Imaging, Yantai Yuhuangding Hospital, Yantai, Shandong, China.,Department of Imaging, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Hui Zhou
- Department of Anesthesiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Xia Miao
- Department of Clinical Laboratory, The Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Yuan Chang
- Department of Anesthesiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Liping Wang
- Department of Imaging, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Miao Xu
- Department of Clinical Laboratory, The Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Guangzhen Ni
- Department of Clinical Laboratory, The Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| |
Collapse
|
57
|
Jiang S, Liu Y, Huang L, Zhang F, Kang R. Effects of propofol on cancer development and chemotherapy: Potential mechanisms. Eur J Pharmacol 2018; 831:46-51. [DOI: 10.1016/j.ejphar.2018.04.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/30/2022]
|
58
|
Xu W, Zheng J, Bie S, Kang L, Mao Q, Liu W, Guo J, Lu J, Xia R. Propofol inhibits Wnt signaling and exerts anticancer activity in glioma cells. Oncol Lett 2018; 16:402-408. [PMID: 29928428 DOI: 10.3892/ol.2018.8606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 12/11/2017] [Indexed: 11/06/2022] Open
Abstract
Aberrant activation of Wnt signaling is implicated in gliomagenesis. Propofol, the most commonly used intravenous anesthetic agent in clinics, exhibits potent antitumor activity in a variety of cancer cells through different mechanisms. However, the role of propofol on Wnt signaling and glioma cell growth remains to be fully elucidated. In the present study, propofol was identified as a potent inhibitor of Wnt signaling. In 293T cells transfected with Wnt1 or Wnt3 expression plasmids or treated with Wnt3A-conditioned medium, propofol significantly inhibited the transcriptional activity of the SuperTopFlash reporter and the expression of Wnt target genes. The inhibitory effect of propofol on Wnt signaling was also observed in glioma cells. Further experiments demonstrated that propofol suppressed glioma cell growth by decreasing cell proliferation and enhancing cell apoptosis. Finally, the potential antitumor efficiency of propofol was confirmed using xenograft experiments in vivo. Taken together, the results indicated a novel mechanism for the anticancer activity of propofol and provide supporting evidence for its use as a prospective anticancer drug to treat glioma in patients with deregulated Wnt signaling.
Collapse
Affiliation(s)
- Wei Xu
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jiwei Zheng
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Shijie Bie
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Liuyu Kang
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Qingjun Mao
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Weiwei Liu
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jinxin Guo
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Juan Lu
- Operating Room, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Rui Xia
- Department of Anesthesiology, The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
59
|
Ji F, Wuerkenbieke D, He Y, Ding Y, Du R. Long Noncoding RNA HOTAIR: An Oncogene in Human Cervical Cancer Interacting With MicroRNA-17-5p. Oncol Res 2018; 26:353-361. [PMID: 28745272 PMCID: PMC7844841 DOI: 10.3727/096504017x15002869385155] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Increasing evidence has indicated that long noncoding RNAs (lncRNAs) are a class of significant regulators in various tumorigenesis processes. The lncRNA homeobox transcript antisense RNA (HOTAIR) has been reported to act as a functional lncRNA in cervical cancer development. The present study investigated the underlying mechanism of HOTAIR and miR-17-5p in cervical cancer tumorigenesis. The results showed that HOTAIR expression was significantly upregulated in both cervical cancer tissues and cell lines. Loss-of-function experiments showed that HOTAIR knockdown inhibited the proliferation, migration, and invasion of cervical cells. In addition, miR-17-5p expression was downregulated in cervical cancer tissues and cell lines. Pearson's correlation analysis indicated that miR-17-5p expression was negatively correlated to that of HOTAIR. Luciferase reporter assay revealed that miR-17-5p directly targeted HOTAIR 3'-UTR. Rescue experiments showed that miR-17-5p knockdown could reverse the tumor-suppressing effect caused by si-HOTAIR transfection. In summary, our results reveal the tumor-promoting role of HOTAIR in cervical cancer via sponging miR-17-5p, providing a novel therapeutic target for future treatment of cervical cancer.
Collapse
Affiliation(s)
- Fei Ji
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumchi, P.R. China
| | - Delinaer Wuerkenbieke
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumchi, P.R. China
| | - Yan He
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumchi, P.R. China
| | - Yan Ding
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumchi, P.R. China
| | - Rong Du
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumchi, P.R. China
| |
Collapse
|
60
|
Fan J, Zhou Q, Li Y, Song X, Hu J, Qin Z, Tang J, Tao T. Profiling of Long Non-coding RNAs and mRNAs by RNA-Sequencing in the Hippocampi of Adult Mice Following Propofol Sedation. Front Mol Neurosci 2018; 11:91. [PMID: 29628875 PMCID: PMC5876304 DOI: 10.3389/fnmol.2018.00091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/08/2018] [Indexed: 12/20/2022] Open
Abstract
Propofol is a frequently used intravenous anesthetic agent. The impairment caused by propofol on the neural system, especially the hippocampus, has been widely reported. However, the molecular mechanism underlying the effects of propofol on learning and memory functions in the hippocampus is still unclear. In the present study we performed lncRNA and mRNA analysis in the hippocampi of adult mice, after propofol sedation, through RNA-Sequencing (RNA-Seq). A total of 146 differentially expressed lncRNAs and 1103 mRNAs were identified. Bioinformatics analysis, including gene ontology (GO) analysis, pathway analysis and network analysis, were done for the identified dysregulated genes. Pathway analysis indicated that the FoxO signaling pathway played an important role in the effects of propofol on the hippocampus. Finally, four lncRNAs and three proteins were selected from the FoxO-related network for further validation. The up-regulation of lncE230001N04Rik and the down-regulation of lncRP23-430H21.1 and lncB230206L02Rik showed the same fold change tendencies but changes in Gm26532 were not statistically significant in the RNA-Seq results, following propofol sedation. The FoxO pathway-related proteins, PI3K and AKT, are up-regulated in propofol-exposed group. FoxO3a is down-regulated at both mRNA and protein levels. Our study reveals that propofol sedation can influence the expression of lncRNAs and mRNAs in the hippocampus, and bioinformatics analysis have identified key biological processes and pathways associated with propofol sedation. Cumulatively, our results provide a framework for further study on the role of lncRNAs in propofol-induced or -related neurotoxicity, particularly with regards to hippocampus-related dysfunction.
Collapse
Affiliation(s)
- Jun Fan
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Quan Zhou
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Li
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuling Song
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jijie Hu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zaisheng Qin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Tang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Tao Tao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
61
|
Guo H, Hu G, Yang Q, Zhang P, Kuang W, Zhu X, Wu L. Knockdown of long non-coding RNA CCAT2 suppressed proliferation and migration of glioma cells. Oncotarget 2018; 7:81806-81814. [PMID: 27833083 PMCID: PMC5348431 DOI: 10.18632/oncotarget.13242] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/14/2016] [Indexed: 01/02/2023] Open
Abstract
Long non-coding RNA colon cancer-associated transcript 2 (CCAT2) is commonly investigated in a number of cancers. However, little is known of its expression and biological function in glioma biology. In the current study, we used quantitative real-time PCR (qRT-PCR) to determine the expression of CCAT2 in glioma tissues. We found that expression of CCAT2 was up-regulated in glioma tissues and significantly correlated with the advanced tumor stage (III/IV). Functional assays in vitro and in vivo demonstrated that knockdown of CCAT2 could inhibit proliferation, cell cycle progression and migration of glioma cells. Further analysis indicated the effect of CCAT2 knockdown on glioma cell phenotype through inhibiting Wnt/β-catenin signal pathway activity. Thus, our study provides evidence that CCAT2 may function as a potential biomarker for glioma.
Collapse
Affiliation(s)
- Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Guowen Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qing Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Pei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wei Kuang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
62
|
Deng F, Ouyang M, Wang X, Yao X, Chen Y, Tao T, Sun X, Xu L, Tang J, Zhao L. Differential role of intravenous anesthetics in colorectal cancer progression: implications for clinical application. Oncotarget 2018; 7:77087-77095. [PMID: 27780923 PMCID: PMC5363570 DOI: 10.18632/oncotarget.12800] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/17/2016] [Indexed: 01/05/2023] Open
Abstract
Anesthetics are unavoidable to colorectal cancer (CRC) patients who underwent surgical treatment. Thus, the molecular mechanisms underlying the role of the intravenous anesthetics in CRC metastasis are still unclear. In this study, the effects of intravenous anesthetics, such as propofol, etomidate and dexmedetomidine, on cell migration were determined. The migration of CRC cells was inhibited by propofol in vitro, but not in vivo. Etomidate, however, promoted the migration of CRC cells both in vitro and in vivo. Epithelial-mesenchymal transition (EMT) mediated the promotive effect of propofol and etomidate on the migration of CRC cells through PI3K/AKT signaling pathway. Dexmedetomidine alone or in combination with propofol or etomidate had minor effect on the migration of CRC cells. These findings indicate that propofol inhibites CRC cell migration in vitro. Etomidate playes a role for prompting CRC metastasis progression by activating (PI3K)/AKT signaling and inducing EMT. It provides an important hint for the clinical application of these anesthetics.
Collapse
Affiliation(s)
- Fengliu Deng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingwen Ouyang
- Department of anesthesia, Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaofei Wang
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xueqing Yao
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong, China
| | - Yeming Chen
- Department of Anesthesia, Huarui Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Tao
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuegang Sun
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Lijun Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Tang
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
63
|
HOTAIR contributes to cell proliferation and metastasis of cervical cancer via targetting miR-23b/MAPK1 axis. Biosci Rep 2018; 38:BSR20171563. [PMID: 29335299 PMCID: PMC5803494 DOI: 10.1042/bsr20171563] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022] Open
Abstract
The long non-coding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR) has been found to be overexpressed in many human malignancies and involved in tumor progression and metastasis. Although the downstream target through which HOTAIR modulates tumor metastasis is not well-known, evidence suggests that miR-23b might be involved in this event. In the present study, the expressions of HOTAIR and miR-23b were detected by real-time PCR in 33 paired cervical cancer tissue samples and cervical cell lines. The effects of HOTAIR on the expressions of miR-23b and mitogen-activated protein kinase 1 (MAPK1) were studied by overexpression and RNAi approaches. We found that HOTAIR expression was significantly increased in cervical cancer cells and tissues. In contrast, the expression of miR-23b was obviously decreased. We further demonstrated that HOTAIR knockdown promoted apoptosis and inhibited cell proliferation and invasion in vitro and in vivo. Moreover, our data indicated that HOTAIR may competitively bind miR-23b and modulate the expression of MAPK1 indirectly in cervical cancer cells. Taken together, our study has identified a novel pathway through which HOTAIR exerts its oncogenic role, and provided a molecular basis for potential applications of HOTAIR in the prognosis and treatment of cervical cancer.
Collapse
|
64
|
Wang X, Ding G, Lai W, Liu S, Shuai J. MicroRNA-383 upregulation protects against propofol-induced hippocampal neuron apoptosis and cognitive impairment. Exp Ther Med 2018; 15:3181-3188. [PMID: 29545833 PMCID: PMC5840935 DOI: 10.3892/etm.2018.5838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 05/11/2017] [Indexed: 11/20/2022] Open
Abstract
Anesthesia-induced cognitive impairment is a recognized clinical phenomenon. The present study aimed to investigate the effect of microRNA-383 (miR-383) expression on propofol-induced learning and memory impairment. In total, 48 male Sprague-Dawley rats (weight, 250±10 g) were randomly divided into four groups (n=12 each): Control group, and three groups of rats that were anesthetized with propofol for 6 h and untreated (propofol model group), treated with a constructed lentivirus vector expressing miR-383 mimics (mimic + propofol group), or treated with miR-383 scramble (scramble + propofol group). The learning memory ability, hippocampal neuron apoptosis and expression of apoptosis-associated factors were detected using reverse transcription-quantitiative polymerase chain reaction and western blot analysis. Propofol treatment significantly reduced the relative mRNA and protein expression of miR-383, induced neuron apoptosis, upregulated the Bax/Bcl-2 ratio, downregulated the relative mRNA and protein expression levels of postsynaptic density protein 95 and cAMP-response element binding protein, and inactivated the phosphoinositide 3-kinase/protein kinase B signaling pathway. By contrast, miR-383 mimics significantly altered the propofol-induced dysregulation of the aforementioned factors. In conclusion, miR-383 mimic was able to repair propofol-induced cognitive impairment via protecting against hippocampal neuron apoptosis and dysregulation of related factors. The present study suggested that miR-383 may be used as a potential therapeutic target for the clinical treatment of cognitive impairment induced by propofol anesthesia.
Collapse
Affiliation(s)
- Xinlei Wang
- Department of Anesthesia, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guoyou Ding
- Department of Anesthesia, Chinese People's Liberation Army No. 94 Hospital, Nanchang, Jiangxi 330002, P.R. China
| | - Wei Lai
- Department of Anesthesia, Chinese People's Liberation Army No. 94 Hospital, Nanchang, Jiangxi 330002, P.R. China
| | - Shiwen Liu
- Department of Anesthesia, Ganzhou People's Hospital, Ganzhou, Jiangxi 310000, P.R. China
| | - Jun Shuai
- Department of Anesthesia, Chinese People's Liberation Army No. 94 Hospital, Nanchang, Jiangxi 330002, P.R. China
| |
Collapse
|
65
|
Hsu SS, Jan CR, Liang WZ. Evaluation of cytotoxicity of propofol and its related mechanism in glioblastoma cells and astrocytes. ENVIRONMENTAL TOXICOLOGY 2017; 32:2440-2454. [PMID: 28804952 DOI: 10.1002/tox.22458] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Propofol (2,6-diisopropylphenol), one of the extensively and commonly used anesthetic agents, has been shown to affect the biological behavior of various models. Previous researches have shown that propofol-induced cytotoxicity might cause anticancer effect in different cells. However, the mechanisms underlying the effect of propofol on cytotoxicity is still elusive in human glioblastoma cells. The aims of this study were to evaluate effects of propofol on cytotoxicity, cell cycle distribution and ROS production, and establish the relationship between oxidative stress and cytotoxicity in GBM 8401 human glioblastoma cells and DI TNC1 rat astrocytes. Propofol (20-30 μM) concentration-dependently induced cytotoxicity, cell cycle arrest, and increased ROS production in GBM 8401 cells but not in DI TNC1 cells. In GBM 8401 cells, propofol induced G2/M phase cell arrest, which affected the CDK1, cyclin B1, p53, and p21 protein expression levels. Furthermore, propofol induced oxygen stresses by increasing O2- and H2 O2 levels but treatment with the antioxidant N-acetylcysteine (NAC) partially reversed propofol-regulated antioxidative enzyme levels (superoxide dismutase, catalase, and glutathione peroxidase). Most significantly, propofol induced apoptotic effects by decreasing Bcl-2 but increasing Bax, cleaved caspase-9/caspase-3 levels, which were partially reversed by NAC. Moreover, the pancaspase inhibitor Z-VAD-FMK also partially prevented propofol-induced apoptosis. Together, in GBM 8401 cells but not in DI TNC1 cells, propofol activated ROS-associated apoptosis that involved cell cycle arrest and caspase activation. These findings indicate that propofol not only can be an anesthetic agent which reduces pain but also has the potential to be used for the treatment of human glioblastoma.
Collapse
Affiliation(s)
- Shu-Shong Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, 813, Republic of China
- Department of Surgery, National Defense Medical Center, Taipei, Taiwan, 114, Republic of China
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, 813, Republic of China
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, 813, Republic of China
| |
Collapse
|
66
|
Shang Z, Feng H, Cui L, Wang W, Fu H. Propofol promotes apoptosis and suppresses the HOTAIR-mediated mTOR/p70S6K signaling pathway in melanoma cells. Oncol Lett 2017; 15:630-634. [PMID: 29375720 DOI: 10.3892/ol.2017.7297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/29/2017] [Indexed: 01/29/2023] Open
Abstract
Propofol is an intravenous anesthetic, which is widely used in clinical anesthesia induction and maintenance and is critical in the sedation of patients. However, the functions and mechanisms of propofol on apoptosis of melanoma cells remain unclear. The present study investigated whether propofol promotes cell apoptosis and suppresses the HOX transcript antisense RNA (HOTAIR)-mediated mechanistic target of rapamycin (mTOR) pathway in melanoma cells. B16F10 cells were cultured with different concentrations (0-10 µM) of propofol for 24 or 48 h. Proliferation and apoptosis of B16F10 cells were detected using MTT assay and flow cytometry. The pcDNA 3.1(-)-HOTAIR and pcDNA 3.1(-)-control plasmids were transfected into B16F10 cells using Lipofectamine 2000. In the present study, treatment with propofol significantly reduced viability, and induced apoptosis and caspase-3 activity in melanoma cells. Propofol treatment significantly inhibited HOTAIR expression and the expression of phosphorylated (p)-mTOR and p- p70S6K protein in melanoma cells. Overexpression of HOTAIR significantly increased viability of melanoma cells, and increased HOTAIR, p-mTOR and p-p70S6K protein expression in melanoma cells. These results indicated that propofol promotes apoptosis and suppresses the HOTAIR-mediated mTOR signaling pathway in melanoma cells.
Collapse
Affiliation(s)
- Zhiwei Shang
- Department of Dermatology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Haixia Feng
- Department of Dermatology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Lisha Cui
- Department of Dermatology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Weiping Wang
- Department of Dermatology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Hongwei Fu
- Department of Dermatology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
67
|
Tan Z, Peng A, Xu J, Ouyang M. Propofol enhances BCR-ABL TKIs' inhibitory effects in chronic myeloid leukemia through Akt/mTOR suppression. BMC Anesthesiol 2017; 17:132. [PMID: 28962554 PMCID: PMC5622516 DOI: 10.1186/s12871-017-0423-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022] Open
Abstract
Background The anti-cancer activities of intravenous anesthetic drug propofol have been demonstrated in various types of cancers but not in chronic myeloid leukemia (CML). Methods We systematically examined the effect of propofol and its combination with BCR-ABL tyrosine kinase inhibitors (TKIs) in CML cell lines, patient progenitor cells and mouse xenograft model. We analyzed propofol’s underlying mechanism focusing on survival pathway in CML cells. Results We show that propofol alone is active in inhibiting proliferation and inducing apoptosis in KBM-7, KU812 and K562 cells, and acts synergistically with imatinib or dasatinib, in in vitro cell culture system and in vivo xenograft model. In addition, propofol is more effective in inducing apoptosis and inhibiting colony formation in CML CD34 progenitor cells than normal bone marrow (NBM) counterparts. Combination of propofol and dasatinib significantly eliminates CML CD34 without affecting NBM CD34 cells. We further demonstrate that propofol suppresses phosphorylation of Akt, mTOR, S6 and 4EBP1 in K562. Overexpression of constitutively active Akt significantly reverses the inhibitory effects of propofol in K562, confirm that propofol acts on CML cells via inhibition of Akt/mTOR. Interestingly, the levels of p-Akt, p-mTOR and p-S6 are lower in cells treated with combination of propofol and imatinib than cells treated with propofol or imatinib alone, suggesting that propofol augments BCR-ABL TKI’s inhibitory effect via suppressing Akt/mTOR pathway. Conclusion Our work shows that propofol can be repurposed to for CML treatment. Our findings highlight the therapeutic value of Akt/mTOR in overcoming resistance to BCR-ABL TKI treatment in CML. Electronic supplementary material The online version of this article (10.1186/s12871-017-0423-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhimin Tan
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Xinhu Road No.1333, Bao'an district, Shenzhen, 518100, Guangdong province, China
| | - Aixia Peng
- Department of Oncology, Shenzhen Hospital, Southern Medical University, Xinhu Road No.1333, Bao'an district, Shenzhen, 518100, Guangdong province, China
| | - Jingwen Xu
- Department of Anesthesiology, Fifth Affiliated Hospital, Southern Medical University, Congcheng Road No. 566, Conghua district, Guangzhou, Guangdong province, 510900, China
| | - Mingwen Ouyang
- Department of Anesthesiology, Fifth Affiliated Hospital, Southern Medical University, Congcheng Road No. 566, Conghua district, Guangzhou, Guangdong province, 510900, China.
| |
Collapse
|
68
|
Implicating anaesthesia and the perioperative period in cancer recurrence and metastasis. Clin Exp Metastasis 2017; 35:347-358. [DOI: 10.1007/s10585-017-9862-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022]
|
69
|
Dong J, Su M, Chang W, Zhang K, Wu S, Xu T. Long non-coding RNAs on the stage of cervical cancer (Review). Oncol Rep 2017; 38:1923-1931. [PMID: 28849103 DOI: 10.3892/or.2017.5905] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 07/17/2017] [Indexed: 11/05/2022] Open
Abstract
Cervical cancer is one of most malignant gynecological tumors. However, effective means for diagnosing and treating cervical cancer have yet to be identified. A few decades ago, long non-coding RNAs (lncRNAs) were regarded as useless parts of the genome, however, increasing data have demonstrated the importance of lncRNAs in the diagnosis and treatment of cervical cancers. The aim of the present study is to summarize the role(s) of HOTAIR, MALAT1, CCAT2, SPRY4-IT1, RSU1P2, CCHE1, lncRNA-EBIC and PVT1. Approximately 14 lncRNAs are involved in cervical cancer and several important proteins, miRNAs and other molecules and play crucial roles in a few traditional signaling pathways that have been proven to be related to those lncRNAs. In conclusion, lncRNAs may be useful as exact treatment targets and diagnostic biomarkers for improving therapies in cervical cancer patients and lncRNAs may contribute to effective diagnosis and treatment methods for cervical cancer.
Collapse
Affiliation(s)
- Junxue Dong
- Second Affiliated Hospital, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Manman Su
- College of Pharmacy, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Weiqin Chang
- Second Affiliated Hospital, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Kun Zhang
- Second Affiliated Hospital, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Shuying Wu
- Second Affiliated Hospital, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Tianmin Xu
- Second Affiliated Hospital, Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
70
|
Gudaitytė J, Dvylys D, Šimeliūnaitė I. Anaesthetic challenges in cancer patients: current therapies and pain management. Acta Med Litu 2017; 24:121-127. [PMID: 28845130 PMCID: PMC5566951 DOI: 10.6001/actamedica.v24i2.3493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
THE OBJECTIVE The aim is to present the major effects of cancer treatment (chemotherapy, radiotherapy, surgery) that the anaesthesiologist should consider preoperatively, and to review techniques of the analgesic management of the disease. MATERIALS AND METHODS To summarize the major challenges that cancer patients present for the anaesthesiologists, a literature review was conducted. Articles presenting evidence or reviewing the possible effects of anaesthetics on cancer cells were also included. Online databases of Science Direct, PubMed, and ELSEVIER, as well as reference lists of included studies were searched. Articles published from 2005 to 2016 were selected. RESULTS Anaesthesiologists should pay attention to patients receiving chemotherapy and its side effects on organ systems. Bleomycin causes pulmonary damage, anthracyclines are cardiotoxic, and platinum-based chemotherapy agents are nephrotoxic. A lot of chemotherapy agents lead to abnormal liver function, vomiting, diarrhoea, etc. Surgery itself is suspected to be associated with an increased risk of metastasis and recurrence of cancer. Regional anaesthesia and general anaesthesia with propofol should be used and volatile agents should be avoided to prevent cancer patients from perioperative immunosuppression that leads to increased risk of cancer recurrence. Pain management for palliative patients remains a major problem. CONCLUSIONS To provide the best treatment for cancer patients, cooperation of anaesthesiologists with oncologists and surgeons becomes imperative. It has been established that anaesthetic techniques and drugs could minimize the perioperative inflammation. However, further research of the perioperative "onco-anaesthetic" is needed.
Collapse
Affiliation(s)
- Jūratė Gudaitytė
- Department of Anaesthesiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dominykas Dvylys
- Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Indrė Šimeliūnaitė
- Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
71
|
Tatsumi K, Hirotsu A, Daijo H, Matsuyama T, Terada N, Tanaka T. Effect of propofol on androgen receptor activity in prostate cancer cells. Eur J Pharmacol 2017; 809:242-252. [PMID: 28552345 DOI: 10.1016/j.ejphar.2017.05.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 01/10/2023]
Abstract
Androgen receptor is a nuclear receptor and transcription factor activated by androgenic hormones. Androgen receptor activity plays a pivotal role in the development and progression of prostate cancer. Although accumulating evidence suggests that general anesthetics, including opioids, affect cancer cell growth and impact patient prognosis, the effect of those drugs on androgen receptor in prostate cancer is not clear. The purpose of this study was to investigate the effect of the general anesthetic propofol on androgen receptor activity in prostate cancer cells. An androgen-dependent human prostate cancer cell line (LNCaP) was stimulated with dihydrotestosterone (DHT) and exposed to propofol. The induction of androgen receptor target genes was investigated using real-time reverse transcription polymerase chain reaction, and androgen receptor protein levels and localization patterns were analyzed using immunoblotting and immunofluorescence assays. The effect of propofol on the proliferation of LNCaP cells was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Propofol significantly inhibited DHT-induced expression of androgen receptor target genes in a dose- and time-dependent manner, and immunoblotting and immunofluorescence assays indicated that propofol suppressed nuclear levels of androgen receptor proteins. Exposure to propofol for 24h suppressed the proliferation of LNCaP cells, whereas 4h of exposure did not exert significant effects. Together, our results indicate that propofol suppresses nuclear androgen receptor protein levels, and inhibits androgen receptor transcriptional activity and proliferation in LNCaP cells.
Collapse
Affiliation(s)
- Kenichiro Tatsumi
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akiko Hirotsu
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroki Daijo
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomonori Matsuyama
- Department of Anesthesia, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-0861, Japan
| | - Naoki Terada
- Department of Urology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoharu Tanaka
- Department of Anesthesia, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
72
|
Zhou CL, Li JJ, Ji P. Propofol Suppresses Esophageal Squamous Cell Carcinoma Cell Migration and Invasion by Down-Regulation of Sex-Determining Region Y-box 4 (SOX4). Med Sci Monit 2017; 23:419-427. [PMID: 28118321 PMCID: PMC5286919 DOI: 10.12659/msm.899732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background This study was done to verify whether propofol could inhibit esophageal squamous cell carcinoma (ESCC) cell line EC9706 cell migration and invasion by targeting SOX4. Material/Methods Different concentrations of propofol were co-incubated with EC9706 cells. The pcDNA-SOX4 or SOX4 siRNA plasmid was transfected into cells before the treatment with propofol 5 μg/L. The migratory and invasion ability of EC9706 cells were tested by wound-healing assay and Transwell chambers. Western blotting was used to investigate the expressions of MMP-2, MMP-9, TIMP-1, TIMP-2, and SOX4. Gelatin zymography was employed to detect the activity of MMP2 and MMP-9. Results Compared with the control, the migration and invasion activity of EC9706 cells were decreased after incubation with different concentrations of propofol (P<0.01). The expression of MMP-2, MMP-9, and SOX4 was decreased and that of TIMP-1 was increased in the propofol-treated EC9706 cells (P<0.01). Down-regulation of SOX4 by SOX4-siRNA had the same effect as propofol on EC9706 cells, including suppressing cell migration and invasion, inhibiting the expression and activity of MMP-2/9, and increasing the expression TIMP-1. Over-expression of SOX4 could partly abrogated propofol-mediated inhibition of EC9706 cell migration and invasion. Conclusions Propofol inhibits EC9706 cell migration and invasion by down-regulation of SOX4.
Collapse
Affiliation(s)
- Chun-Li Zhou
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China (mainland)
| | - Jing-Jing Li
- Department of Ophthalmology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China (mainland)
| | - Peng Ji
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China (mainland)
| |
Collapse
|
73
|
Cata J, Hagan K, Bhavsar S, Arunkumar R, Grasu R, Dang A, Carlson R, Arnold B, Potylchansky Y, Lipski I, McHugh T, Jimenez F, Nguyen A, Feng L, Rahlfs T. The use of isoflurane and desflurane as inhalational agents for glioblastoma surgery. A survival analysis. J Clin Neurosci 2017; 35:82-87. [DOI: 10.1016/j.jocn.2016.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/03/2016] [Indexed: 11/28/2022]
|
74
|
Li H, Lu Y, Pang Y, Li M, Cheng X, Chen J. Propofol enhances the cisplatin-induced apoptosis on cervical cancer cells via EGFR/JAK2/STAT3 pathway. Biomed Pharmacother 2016; 86:324-333. [PMID: 28011380 DOI: 10.1016/j.biopha.2016.12.036] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE The main purpose of this study was to evaluate propofol and its combined effect with cisplatin on apoptosis of cervical cancer cells and molecular mechanisms of this phenomenon. METHODS The effects of propofol and cisplatin on cell viability and apoptosis were detected by cell counting kit-8 (CCK-8) assay, colony formation assay and flow cytometry assay. Besides, protein expression of EGFR/JAK2/STAT3 pathway was determined by western blot. STAT3 was over-expressed in cervical cancer cells by STAT3 cDNA. Expression of EGFR and STAT3 protein of human tissues was evaluated by immunohistochemistry (IHC) assay. RESULTS In this study, we found that not only propofol alone could inhibit cervical cancer cells viability but also could increase the inhibitory effect of cisplatin on cervical cancer cells growth. Meanwhile, propofol sensitized cervical cancer cells to cisplatin-induced apoptosis but not affected normal cervical cells. In genetic level, propofol could enhance the anti-tumor effect of cisplatin through EGFR/JAK2/STAT3 pathway. Further studies indicated that overexpression of EGFR and STAT3 is related to poor prognoses in cervical cancer patients, which contributed to confirm the clinical role of combined application of propofol and cisplatin. CONCLUSION Propofol enhances the cisplatin-induced cell apoptosis cervical cancer cells via EGFR/JAK2/STAT3 pathway and may be developed as a potential therapeutic agent to treat cervical cancer.
Collapse
Affiliation(s)
- Haoran Li
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Lu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yangyang Pang
- Institute of Urology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Mengjiao Li
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Cheng
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Jiawei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
75
|
Long non-coding RNA lnc-MX1-1 is associated with poor clinical features and promotes cellular proliferation and invasiveness in prostate cancer. Biochem Biophys Res Commun 2016; 470:721-727. [DOI: 10.1016/j.bbrc.2016.01.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/09/2016] [Indexed: 02/02/2023]
|