51
|
Tai HC, Lee TH, Tang CH, Chen LP, Chen WC, Lee MS, Chen PC, Lin CY, Chi CW, Chen YJ, Lai CT, Chen SS, Liao KW, Lee CH, Wang SW. Phomaketide A Inhibits Lymphangiogenesis in Human Lymphatic Endothelial Cells. Mar Drugs 2019; 17:md17040215. [PMID: 30959907 PMCID: PMC6520718 DOI: 10.3390/md17040215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
Lymphangiogenesis is an important biological process associated with cancer metastasis. The development of new drugs that block lymphangiogenesis represents a promising therapeutic strategy. Marine fungus-derived compound phomaketide A, isolated from the fermented broth of Phoma sp. NTOU4195, has been reported to exhibit anti-angiogenic and anti-inflammatory effects. However, its anti-lymphangiogenic activity has not been clarified to date. In this study, we showed that phomaketide A inhibited cell growth, migration, and tube formation of lymphatic endothelial cells (LECs) without an evidence of cytotoxicity. Mechanistic investigations revealed that phomaketide A reduced LECs-induced lymphangiogenesis via vascular endothelial growth factor receptor-3 (VEGFR-3), protein kinase Cδ (PKCδ), and endothelial nitric oxide synthase (eNOS) signalings. Furthermore, human proteome array analysis indicated that phomaketide A significantly enhanced the protein levels of various protease inhibitors, including cystatin A, serpin B6, tissue factor pathway inhibitor (TFPI), and tissue inhibitor matrix metalloproteinase 1 (TIMP-1). Importantly, phomaketide A impeded tumor growth and lymphangiogenesis by decreasing the expression of LYVE-1, a specific marker for lymphatic vessels, in tumor xenograft animal model. These results suggest that phomaketide A may impair lymphangiogenesis by suppressing VEGFR-3, PKCδ, and eNOS signaling cascades, while simultaneously activating protease inhibitors in human LECs. We document for the first time that phomaketide A inhibits lymphangiogenesis both in vitro and in vivo, which suggests that this natural product could potentially treat cancer metastasis.
Collapse
Affiliation(s)
- Huai-Ching Tai
- School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan.
- Department of Urology, Fu-Jen Catholic University Hospital, New Taipei City 242, Taiwan.
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 106, Taiwan.
| | - Chih-Hsin Tang
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan.
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, College of Health Science, Asia University, Taichung 413, Taiwan.
| | - Lei-Po Chen
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei 104, Taiwan.
- Ph.D. Degree Program of Biomedical Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Wei-Cheng Chen
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei 104, Taiwan.
- Ph.D. Degree Program of Biomedical Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Ming-Shian Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 106, Taiwan.
| | - Pei-Chi Chen
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| | - Chih-Yang Lin
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| | - Chih-Wen Chi
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 251, Taiwan.
| | - Yu-Jen Chen
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 251, Taiwan.
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei 104, Taiwan.
| | - Cheng-Ta Lai
- Division of Colon and Rectal Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei 104, Taiwan.
| | - Shiou-Sheng Chen
- Division of Urology, Taipei City Hospital HepingFuyou Branch, Taipei 100, Taiwan.
- Commission for General Education, National United University, Miaoli 360, Taiwan.
| | - Kuang-Wen Liao
- Ph.D. Degree Program of Biomedical Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 300, Taiwan.
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 300, Taiwan.
| | - Chien-Hsing Lee
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
52
|
Resistin facilitates VEGF-A-dependent angiogenesis by inhibiting miR-16-5p in human chondrosarcoma cells. Cell Death Dis 2019; 10:31. [PMID: 30631040 PMCID: PMC6328541 DOI: 10.1038/s41419-018-1241-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Abstract
Resistin is an adipokine that is associated with obesity, inflammation, and various cancers. Chondrosarcomas are primary malignant bone tumors that have a poor prognosis. VEGF-A is a critical angiogenic factor that is known to promote angiogenesis and metastasis in chondrosarcoma. It is unknown as to whether resistin affects human chondrosarcoma angiogenesis. In this study, we show how resistin promotes VEGF-A expression and subsequently induces angiogenesis of endothelial progenitor cells (EPCs). Resistin treatment activated the phosphatidylinositol-3-kinase (PI3K) and Akt signaling pathways, while PI3K and Akt inhibitors or siRNA diminished resistin-induced VEGF-A expression. In vitro and in vivo studies revealed the downregulation of micro RNA (miR)-16-5p in resistin-induced VEGF-A expression and EPCs angiogenesis. We also found a positive correlation between resistin and VEGF-A expression, and a negative correlation between resistin and VEGF-A with miR-16-5p in chondrosarcoma patients. These findings reveal that resistin facilitates VEGF-A expression and angiogenesis through the inhibition of miR-16-5p expression via PI3K/Akt signaling cascades. Resistin may be a promising target in chondrosarcoma angiogenesis.
Collapse
|
53
|
Dai C, Kuo SJ, Hu SL, Tsai CH, Huang YL, Huang CC, Wang L, Xu G, Su CM, Tang CH. VEGF-C Gene Polymorphisms Increase Susceptibility to Rheumatoid Arthritis. Int J Med Sci 2019; 16:1397-1403. [PMID: 31692815 PMCID: PMC6818187 DOI: 10.7150/ijms.34659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
Vascular endothelial growth factor C (VEGF-C) promotes angiogenesis, a prominent feature in rheumatoid synovitis, contributing to the perpetuation of the global burden of rheumatoid arthritis (RA). VEGF-C gene polymorphisms predict the risk of developing various human diseases, such as urothelial cell carcinoma, oral cancer and coronary artery disease. We sought to determine whether single nucleotide polymorphisms (SNPs) of the VEGF-C gene can predict the risk of RA. Our study recruited 210 patients with RA and 373 healthy controls between 2007 and 2015, and performed comparative genotyping for SNPs rs7664413, rs11947611, rs1485766, rs2046463 and rs3775194. In analyses adjusted for potential covariates, we found that compared with subjects with the A/A genotype of SNP rs11947611, those with the A/G genotype were 40% more likely to develop RA (adjusted odds ratio [AOR] 0.61; 95% confidence interval [CI] 0.40 to 0.92; p = 0.02). In addition, subjects lacking the A/A genotype (A/G, G/G) of SNP rs2046463 were more than twice as likely as those with the A/A genotype to require methotrexate (AOR 2.23, 95% CI 1.25 to 3.98; p = 0.01), while those who lacked the G/G genotype (G/C, C/C) in the SNP rs3775194 had a significantly lower risk of requiring prednisolone as compared with those with the G/G genotype (AOR 0.39, 95% CI 0.19 to 0.79; p = 0.01). Our findings suggest that VEGF-C gene polymorphisms might serve as a diagnostic marker and therapeutic target for RA therapy. Pharmacotherapies that modulate the activity of the VEGF-C gene may be promising for RA treatment.
Collapse
Affiliation(s)
- Chengqian Dai
- Department of Orthopedics, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Shu-Jui Kuo
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Sung-Lin Hu
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Family Medicine, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Chun-Hao Tsai
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung, Taiwan.,Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Lihong Wang
- Department of Orthopedics, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Guohong Xu
- Department of Orthopedics, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chen-Ming Su
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
54
|
Su C, Hu S, Sun Y, Zhao J, Dai C, Wang L, Xu G, Tang C. Myostatin induces tumor necrosis factor‐α expression in rheumatoid arthritis synovial fibroblasts through the PI3K–Akt signaling pathway. J Cell Physiol 2018; 234:9793-9801. [PMID: 30378113 DOI: 10.1002/jcp.27665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/04/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Chen‐Ming Su
- Department of Biomedical Sciences Laboratory Affiliated Dongyang Hospital of Wenzhou Medical University Dongyang China
| | - Sung‐Lin Hu
- Program for Aging China Medical University Taichung Taiwan
- Department of Family Medicine China Medical University Hospital Taichung Taiwan
| | - Yi Sun
- Department of Biomedical Sciences Laboratory Affiliated Dongyang Hospital of Wenzhou Medical University Dongyang China
| | - Jin Zhao
- Department of Biomedical Sciences Laboratory Affiliated Dongyang Hospital of Wenzhou Medical University Dongyang China
| | - Chengqian Dai
- Department of Orthopedics Affiliated Dongyang Hospital of Wenzhou Medical University Dongyang China
| | - Lihong Wang
- Department of Orthopedics Affiliated Dongyang Hospital of Wenzhou Medical University Dongyang China
| | - Guohong Xu
- Department of Orthopedics Affiliated Dongyang Hospital of Wenzhou Medical University Dongyang China
| | - Chih‐Hsin Tang
- Department of Pharmacology School of Medicine, China Medical University Taichung Taiwan
- Chinese Medicine Research Center, China Medical University Taichung Taiwan
- Department of Biotechnology College of Health Science, Asia University Taichung Taiwan
| |
Collapse
|
55
|
Association of Resistin Gene Polymorphisms with Oral Squamous Cell Carcinoma Progression and Development. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9531315. [PMID: 30406149 PMCID: PMC6204179 DOI: 10.1155/2018/9531315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022]
Abstract
Oral squamous cell carcinoma (OSCC) accounts for over 90% of malignant neoplasms of the mouth. In Taiwan, OSCC is the fourth most common male cancer and the fourth leading cause of male cancer death. Resistin (RETN) is an adipokine that is associated with obesity, inflammation, and various cancers. Here, we examine the association between four single nucleotide polymorphisms (SNPs) of the RETN gene (rs3745367, rs7408174, rs1862513, and rs3219175) and OSCC susceptibility as well as clinical outcomes in 935 patients with OSCC and in 1200 cancer-free healthy controls. We found that, in 1465 smokers, RETN polymorphisms carriers with the betel-nut chewing habit had a 6.708–10.882-fold greater risk of having OSCC compared to RETN wild-type carriers without the betel-nut chewing habit. Patients with OSCC who had A/A homozygous of RETN rs3219175 polymorphism showed a high risk for an advanced tumor size (> T2), compared to those patients with G/G homozygotes. In addition, A/T/G/G haplotype significantly increased the risks for OSCC by 1.376-fold. This study is the first to examine the risk factors associated with RETN SNPs in OSCC progression and development in Taiwan.
Collapse
|