51
|
Buk V, Emregul E, Emregul KC. Alginate copper oxide nano-biocomposite as a novel material for amperometric glucose biosensing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 74:307-314. [DOI: 10.1016/j.msec.2016.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 11/10/2016] [Accepted: 12/04/2016] [Indexed: 11/16/2022]
|
52
|
Velmurugan M, Karikalan N, Chen SM. Synthesis and characterizations of biscuit-like copper oxide for the non-enzymatic glucose sensor applications. J Colloid Interface Sci 2017; 493:349-355. [DOI: 10.1016/j.jcis.2017.01.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 11/30/2022]
|
53
|
Shabnam L, Faisal SN, Roy AK, Haque E, Minett AI, Gomes VG. Doped graphene/Cu nanocomposite: A high sensitivity non-enzymatic glucose sensor for food. Food Chem 2017; 221:751-759. [DOI: 10.1016/j.foodchem.2016.11.107] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/02/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
|
54
|
Bo X, Zhou M, Guo L. Electrochemical sensors and biosensors based on less aggregated graphene. Biosens Bioelectron 2017; 89:167-186. [DOI: 10.1016/j.bios.2016.05.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 11/26/2022]
|
55
|
Molazemhosseini A, Magagnin L, Vena P, Liu CC. Single-use nonenzymatic glucose biosensor based on CuO nanoparticles ink printed on thin film gold electrode by micro-plotter technology. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
56
|
Gnana kumar G, Amala G, Gowtham SM. Recent advancements, key challenges and solutions in non-enzymatic electrochemical glucose sensors based on graphene platforms. RSC Adv 2017. [DOI: 10.1039/c7ra02845h] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review elucidates the recent advances in graphene platforms in electrochemical non-enzymatic glucose sensors and provides solutions for existing bottlenecks.
Collapse
Affiliation(s)
- G. Gnana kumar
- Department of Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - G. Amala
- Department of Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - S. M. Gowtham
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| |
Collapse
|
57
|
Liu W, Wu X, Li X. Gold nanorods on three-dimensional nickel foam: a non-enzymatic glucose sensor with enhanced electro-catalytic performance. RSC Adv 2017. [DOI: 10.1039/c7ra06909j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A non-enzymatic electrochemical sensor with a unique three dimensional network structure was developed by combining Ni foam with Au NRs.
Collapse
Affiliation(s)
- Wenqi Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- P. R. China
| | - Xiaochun Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Xiaojin Li
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- P. R. China
| |
Collapse
|
58
|
Copper oxide supported on three-dimensional ammonia-doped porous reduced graphene oxide prepared through electrophoretic deposition for non-enzymatic glucose sensing. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
59
|
A maltose, L-rhamnose sensor based on porous Cu foam and electrochemical amperometric i-t scanning method. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2016. [DOI: 10.1007/s11694-016-9422-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
60
|
Ju L, Wu G, Lu B, Li X, Wu H, Liu A. Non-enzymatic Amperometric Glucose Sensor Based on Copper Nanowires Decorated Reduced Graphene Oxide. ELECTROANAL 2016. [DOI: 10.1002/elan.201600100] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lele Ju
- Center for Optoelectronics Materials and Devices; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Guosong Wu
- Center for Optoelectronics Materials and Devices; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Biao Lu
- Center for Optoelectronics Materials and Devices; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Xiaoyun Li
- Center for Optoelectronics Materials and Devices; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Huaping Wu
- Key Laboratory of E&M (Zhejiang University of Technology); Ministry of Education & Zhejiang Province; Hangzhou 310014 China
| | - Aiping Liu
- Center for Optoelectronics Materials and Devices; Zhejiang Sci-Tech University; Hangzhou 310018 China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
61
|
Gopalan A, Muthuchamy N, Komathi S, Lee KP. A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor. Biosens Bioelectron 2016; 84:53-63. [DOI: 10.1016/j.bios.2015.10.079] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/25/2022]
|
62
|
Pourbeyram S, Mehdizadeh K. Nonenzymatic glucose sensor based on disposable pencil graphite electrode modified by copper nanoparticles. J Food Drug Anal 2016; 24:894-902. [PMID: 28911630 PMCID: PMC9337299 DOI: 10.1016/j.jfda.2016.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 02/03/2016] [Accepted: 02/26/2016] [Indexed: 01/22/2023] Open
Abstract
A nonenzymatic glucose sensor based on a disposable pencil graphite electrode (PGE) modified by copper nanoparticles [Cu(NP)] was prepared for the first time. The prepared Cu(NP) exhibited an absorption peak centered at ~562 nm using UV-visible spectrophotometry and an almost homogenous spherical shape by scanning electron microscopy. Cyclic voltammetry of Cu(NP)-PGE showed an adsorption controlled charge transfer process up to 90.0 mVs−1. The sensor was applied for the determination of glucose using an amperometry technique with a detection limit of [0.44 (±0.01) μM] and concentration sensitivity of [1467.5 (±1.3) μA/mMcm−2]. The preparation of the Cu(NP)-PGE sensor was reproducible (relative standard deviation = 2.10%, n = 10), very simple, fast, and inexpensive, and the Cu(NP)-PGE is suitable to be used as a disposable glucose sensor.
Collapse
|
63
|
Guan P, Li Y, Zhang J, Li W. Non-Enzymatic Glucose Biosensor Based on CuO-Decorated CeO₂ Nanoparticles. NANOMATERIALS 2016; 6:nano6090159. [PMID: 28335287 PMCID: PMC5224637 DOI: 10.3390/nano6090159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 11/24/2022]
Abstract
Copper oxide (CuO)-decorated cerium oxide (CeO2) nanoparticles were synthesized and used to detect glucose non-enzymatically. The morphological characteristics and structure of the nanoparticles were characterized through transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The sensor responses of electrodes to glucose were investigated via an electrochemical method. The CuO/CeO2 nanocomposite exhibited a reasonably good sensitivity of 2.77 μA mM−1cm−2, an estimated detection limit of 10 μA, and a good anti-interference ability. The sensor was also fairly stable under ambient conditions.
Collapse
Affiliation(s)
- Panpan Guan
- Department of Materials Science, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Yongjian Li
- Department of Materials Science, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Jie Zhang
- Department of Materials Science, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Wei Li
- Department of Materials Science, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
64
|
Xu J, Cao X, Xia J, Gong S, Wang Z, Lu L. Phosphomolybdic acid functionalized graphene loading copper nanoparticles modified electrodes for non-enzymatic electrochemical sensing of glucose. Anal Chim Acta 2016; 934:44-51. [DOI: 10.1016/j.aca.2016.06.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 11/15/2022]
|
65
|
Study of a Sucrose Sensor by Functional Cu Foam Material and Its Applications in Commercial Beverages. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0580-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
66
|
Park MS, Bae TS, Lee YS. Improvement in Sensitivity of Electrochemical Glucose Biosensor Based on CuO/Au@MWCNTs Nanocomposites. APPLIED CHEMISTRY FOR ENGINEERING 2016. [DOI: 10.14478/ace.2015.1117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
67
|
Wang Y, Zhang S, Bai W, Zheng J. Layer-by-layer assembly of copper nanoparticles and manganese dioxide-multiwalled carbon nanotubes film: A new nonenzymatic electrochemical sensor for glucose. Talanta 2016; 149:211-216. [DOI: 10.1016/j.talanta.2015.11.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 01/05/2023]
|
68
|
2-Dimensional graphene as a route for emergence of additional dimension nanomaterials. Biosens Bioelectron 2016; 89:8-27. [PMID: 26992844 DOI: 10.1016/j.bios.2016.02.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/12/2022]
Abstract
Dimension has a different and impactful significance in the field of innovation, research and technologies. Starting from one-dimension, now, we all are moving towards 3-D visuals and try to do the things in this dimension. However, we still have some very innovative and widely applicable nanomaterials, which have tremendous potential in the form of 2-D only i.e. graphene. In this review, we have tried to incorporate the reported pathways used so far for modification of 2-D graphene sheets to make is three-dimensional. The modified graphene been applied in many fields like supercapacitors, sensors, catalysis, energy storage devices and many more. In addition, we have also incorporated the conversion of 2-D graphene to their various other dimensions like zero-, one- or three-dimensional nanostructures.
Collapse
|
69
|
Ordered self-assembly of screen-printed flower-like CuO and CuO/MWCNTs modified graphite electrodes and applications in non-enzymatic glucose sensor. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2015.12.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
70
|
Xue Z, Li M, Rao H, Yin B, Zhou X, Liu X, Lu X. Phase transformation-controlled synthesis of CuO nanostructures and their application as an improved material in a carbon-based modified electrode. RSC Adv 2016. [DOI: 10.1039/c5ra22297d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Column-shaped CuO nanorods have been synthesized by a two-step “precursor formation-crystallization” process using a hydrothermal method with advantages of being template- and surfactant-free.
Collapse
Affiliation(s)
- Zhonghua Xue
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry & Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Mengqian Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry & Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | | | - Bo Yin
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry & Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Xibin Zhou
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry & Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry & Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry & Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| |
Collapse
|
71
|
Zhu H, Li L, Zhou W, Shao Z, Chen X. Advances in non-enzymatic glucose sensors based on metal oxides. J Mater Chem B 2016; 4:7333-7349. [DOI: 10.1039/c6tb02037b] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review summarizes the advances in non-enzymatic glucose sensors based on different metal oxides (ZnO, CuO/Cu2O, NiO,etc.) and their composites.
Collapse
Affiliation(s)
- Hua Zhu
- Laboratory for Advanced Interdisciplinary Research
- Center for Personalized Medicine/Institutes of Translational Medicine
- The First Affiliated Hospital of Wenzhou Medical University
- Wenzhou
- China
| | - Li Li
- Faculty of Energy Science and Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Wei Zhou
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing 210009
- P. R. China
| | - Zongping Shao
- Faculty of Energy Science and Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
| | - Xianjian Chen
- Laboratory for Advanced Interdisciplinary Research
- Center for Personalized Medicine/Institutes of Translational Medicine
- The First Affiliated Hospital of Wenzhou Medical University
- Wenzhou
- China
| |
Collapse
|
72
|
Gowthaman NSK, John SA. Fabrication of different copper nanostructures on indium-tin-oxide electrodes: shape dependent electrocatalytic activity. CrystEngComm 2016. [DOI: 10.1039/c6ce01846g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
73
|
Zheng J, Zhang W, Lin Z, Wei C, Yang W, Dong P, Yan Y, Hu S. Microwave synthesis of 3D rambutan-like CuO and CuO/reduced graphene oxide modified electrodes for non-enzymatic glucose detection. J Mater Chem B 2016; 4:1247-1253. [DOI: 10.1039/c5tb02624e] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Illustration of the glucose biosensing mechanism based on CuO/r-GO composites.
Collapse
Affiliation(s)
- Jianzhong Zheng
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- P. R. China
- College of Chemistry and Environment
| | - Wuxiang Zhang
- College of Chemistry and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Zhongqiu Lin
- College of Chemistry and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Chan Wei
- College of Chemistry and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Weize Yang
- College of Chemistry and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Peihui Dong
- College of Chemistry and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Yaru Yan
- College of Chemistry and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Shirong Hu
- College of Chemistry and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| |
Collapse
|
74
|
Zhang Y, Shen J, Li H, Wang L, Cao D, Feng X, Liu Y, Ma Y, Wang L. Recent Progress on Graphene-based Electrochemical Biosensors. CHEM REC 2015; 16:273-94. [DOI: 10.1002/tcr.201500236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Indexed: 01/25/2023]
Affiliation(s)
- Yu Zhang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Jingjing Shen
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Huihua Li
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Linlin Wang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Dashun Cao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Xiaomiao Feng
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Yuge Liu
- The South Subtropical Crops Research Institute Chinese Academy of Tropical Agricultural Science; Zhanjiang 524091 P. R. China
| | - Yanwen Ma
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| |
Collapse
|
75
|
Tehrani F, Reiner L, Bavarian B. Rapid Prototyping of a High Sensitivity Graphene Based Glucose Sensor Strip. PLoS One 2015; 10:e0145036. [PMID: 26678700 PMCID: PMC4682964 DOI: 10.1371/journal.pone.0145036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/30/2015] [Indexed: 12/02/2022] Open
Abstract
A rapid prototyping of an inexpensive, disposable graphene and copper nanocomposite sensor strip using polymeric flexible substrate for highly sensitive and selective nonenzymatic glucose detection has been developed and tested for direct oxidization of glucose. The CuNPs were electrochemically deposited on to the graphene sheets to improve electron transfer rates and to enhance electrocatalytic activity toward glucose. The graphene based electrode with CuNPs demonstrated a high degree of sensitivity (1101.3 ± 56 μA/mM.cm2), excellent selectivity (without an interference with Ascorbic Acid, Uric Acid, Dopamine, and Acetaminophen), good stability with a linear response to glucose ranging from 0.1 mM to 0.6 mM concentration, and detection limits of 0.025 mM to 0.9 mM. Characterization of the electrodes was performed by scanning electron microscopy (FESEM and SEM). The electrochemical properties of the modified graphene electrodes were inspected by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry.
Collapse
Affiliation(s)
- Farshad Tehrani
- Keck’s Advanced Materials Laboratory, Manufacturing Systems Engineering & Management, California State University of Northridge, Northridge, California, United States of America
- Corrosion Research Laboratory, Manufacturing Systems Engineering & Management, California State University of Northridge, Northridge, California, United States of America
| | - Lisa Reiner
- Keck’s Advanced Materials Laboratory, Manufacturing Systems Engineering & Management, California State University of Northridge, Northridge, California, United States of America
- Corrosion Research Laboratory, Manufacturing Systems Engineering & Management, California State University of Northridge, Northridge, California, United States of America
| | - Behzad Bavarian
- Keck’s Advanced Materials Laboratory, Manufacturing Systems Engineering & Management, California State University of Northridge, Northridge, California, United States of America
- Corrosion Research Laboratory, Manufacturing Systems Engineering & Management, California State University of Northridge, Northridge, California, United States of America
| |
Collapse
|
76
|
Zaidi SA, Shin JH. Recent developments in nanostructure based electrochemical glucose sensors. Talanta 2015; 149:30-42. [PMID: 26717811 DOI: 10.1016/j.talanta.2015.11.033] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/07/2015] [Accepted: 11/14/2015] [Indexed: 12/13/2022]
Abstract
Diabetes is a major health problem causing 4 million deaths each year and 171 million people suffering worldwide. Although there is no cure for diabetes, nevertheless, the blood glucose level of diabetic patients should be monitored tightly to avoid further complications. Thus, monitoring of glucose in blood has become an inevitable need leading to fabrication of accurate and sensitive advanced blood sugar detection devices for clinical diagnosis and personal care. It led to the development of enzymatic glucose sensing approach. Later on, various types of nanostructures have been utilized owing to their high surface area, great stability, and cost effectiveness for the fabrication of enzymatic as well as for nonenzymatic glucose sensing approach. This work reviews on both categories, however it is not intended to discuss all the research reports published regarding nanostructure based enzymatic and nonenzymatic approaches between mid-2010 and mid-2015. We, do, however, focused to describe the details of many substantial articles explaining the design of sensors, and utilities of the prepared sensors, so that readers might get the principles behind such devices and relevant detection strategies. This work also focuses on biocompatibility and toxicity of nanomaterials as well as provides a critical opinion and discussions about misconceptions in glucose sensors.
Collapse
Affiliation(s)
- Shabi Abbas Zaidi
- Department of Chemistry, Kwangwoon University, Wolgye-Dong, Nowon-Gu, Seoul 139-701, Republic of Korea.
| | - Jae Ho Shin
- Department of Chemistry, Kwangwoon University, Wolgye-Dong, Nowon-Gu, Seoul 139-701, Republic of Korea
| |
Collapse
|
77
|
Zheng D, Hu H, Liu X, Hu S. Application of graphene in elctrochemical sensing. Curr Opin Colloid Interface Sci 2015. [DOI: 10.1016/j.cocis.2015.10.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
78
|
Zhao Y, Bo X, Guo L. Highly exposed copper oxide supported on three-dimensional porous reduced graphene oxide for non-enzymatic detection of glucose. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.143] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
79
|
Yakoh A, Pinyorospathum C, Siangproh W, Chailapakul O. Biomedical Probes Based on Inorganic Nanoparticles for Electrochemical and Optical Spectroscopy Applications. SENSORS 2015; 15:21427-77. [PMID: 26343676 PMCID: PMC4610547 DOI: 10.3390/s150921427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/20/2023]
Abstract
Inorganic nanoparticles usually provide novel and unique physical properties as their size approaches nanometer scale dimensions. The unique physical and optical properties of nanoparticles may lead to applications in a variety of areas, including biomedical detection. Therefore, current research is now increasingly focused on the use of the high surface-to-volume ratios of nanoparticles to fabricate superb chemical- or biosensors for various detection applications. This article highlights various kinds of inorganic nanoparticles, including metal nanoparticles, magnetic nanoparticles, nanocomposites, and semiconductor nanoparticles that can be perceived as useful materials for biomedical probes and points to the outstanding results arising from their use in such probes. The progress in the use of inorganic nanoparticle-based electrochemical, colorimetric and spectrophotometric detection in recent applications, especially bioanalysis, and the main functions of inorganic nanoparticles in detection are reviewed. The article begins with a conceptual discussion of nanoparticles according to types, followed by numerous applications to analytes including biomolecules, disease markers, and pharmaceutical substances. Most of the references cited herein, dating from 2010 to 2015, generally mention one or more of the following characteristics: a low detection limit, good signal amplification and simultaneous detection capabilities.
Collapse
Affiliation(s)
- Abdulhadee Yakoh
- Electrochemistry and Optical Spectroscopy Research Unit (EOSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| | - Chanika Pinyorospathum
- Electrochemistry and Optical Spectroscopy Research Unit (EOSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| | - Weena Siangproh
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110, Thailand.
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Research Unit (EOSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| |
Collapse
|
80
|
Highly sensitive and wide-range nonenzymatic disposable glucose sensor based on a screen printed carbon electrode modified with reduced graphene oxide and Pd-CuO nanoparticles. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1549-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
81
|
Salazar P, Rico V, Rodríguez-Amaro R, Espinós JP, González-Elipe AR. New Copper wide range nanosensor electrode prepared by physical vapor deposition at oblique angles for the non-enzimatic determination of glucose. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.04.092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
82
|
Jiaojiao J, Yangyang G, Gangying Z, Yanping C, Wei L, Guohua H. d-Glucose, d-Galactose, and d-Lactose non-enzyme quantitative and qualitative analysis method based on Cu foam electrode. Food Chem 2015; 175:485-93. [DOI: 10.1016/j.foodchem.2014.11.148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
|
83
|
Shahriary L, Athawale AA. Electrochemical deposition of silver/silver oxide on reduced graphene oxide for glucose sensing. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2865-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
84
|
Dhara K, Ramachandran T, Nair BG, Satheesh Babu T. Single step synthesis of Au–CuO nanoparticles decorated reduced graphene oxide for high performance disposable nonenzymatic glucose sensor. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
85
|
Copper/nickel nanoparticle decorated carbon nanotubes for nonenzymatic glucose biosensor. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2766-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
86
|
Huang J, Zhu Y, Yang X, Chen W, Zhou Y, Li C. Flexible 3D porous CuO nanowire arrays for enzymeless glucose sensing: in situ engineered versus ex situ piled. NANOSCALE 2015; 7:559-69. [PMID: 25415769 DOI: 10.1039/c4nr05620e] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Convenient determination of glucose in a sensitive, reliable and cost-effective way has aroused sustained research passion, bringing along assiduous investigation of high-performance electroactive nanomaterials to build enzymeless sensors. In addition to the intrinsic electrocatalytic capability of the sensing materials, electrode architecture at the microscale is also crucial for fully enhancing the performance. In this work, free-standing porous CuO nanowire (NW) was taken as a model sensing material to illustrate this point, where an in situ formed 3D CuO nanowire array (NWA) and CuO nanowires pile (NWP) immobilized with polymer binder by conventional drop-casting technique were both studied for enzymeless glucose sensing. The NWA electrode exhibited greatly promoted electrochemistry characterized by decreased overpotential for electro-oxidation of glucose and over 5-fold higher sensitivity compared to the NWP counterpart, benefiting from the binder-free nanoarray structure. Besides, its sensing performance was also satisfying in terms of rapidness, selectivity and durability. Further, the CuO NWA was utilized to fabricate a flexible sensor which showed excellent performance stability against mechanical bending. Thanks to its favorable electrode architecture, the CuO NWA is believed to offer opportunities for building high-efficiency flexible electrochemical devices.
Collapse
Affiliation(s)
- Jianfei Huang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | |
Collapse
|
87
|
Wang Q, Wang Q, Li M, Szunerits S, Boukherroub R. Preparation of reduced graphene oxide/Cu nanoparticle composites through electrophoretic deposition: application for nonenzymatic glucose sensing. RSC Adv 2015. [DOI: 10.1039/c4ra14132f] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The paper reports on the simultaneous reduction/deposition of thin films of rGO/Cu NPs from an ethanol solution of GO and CuSO4 using EPD technique. The electrocatalytic properties of the electrode were exploited for non-enzymatic glucose sensing.
Collapse
Affiliation(s)
- Qian Wang
- Institut de Recherche Interdisciplinaire (IRI, USR CNRS 3078)
- Université Lille 1
- 59658 Villeneuve d'Ascq
- France
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
| | - Qi Wang
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Shandong University
- Jinan 250061
- China
| | - Musen Li
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Shandong University
- Jinan 250061
- China
| | - Sabine Szunerits
- Institut de Recherche Interdisciplinaire (IRI, USR CNRS 3078)
- Université Lille 1
- 59658 Villeneuve d'Ascq
- France
| | - Rabah Boukherroub
- Institut de Recherche Interdisciplinaire (IRI, USR CNRS 3078)
- Université Lille 1
- 59658 Villeneuve d'Ascq
- France
| |
Collapse
|
88
|
Li M, Zhao Z, Liu X, Xiong Y, Han C, Zhang Y, Bo X, Guo L. Novel bamboo leaf shaped CuO nanorod@hollow carbon fibers derived from plant biomass for efficient and nonenzymatic glucose detection. Analyst 2015; 140:6412-20. [DOI: 10.1039/c5an00675a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bamboo leaf shaped CuO nanorod@hollow carbon fibers have been simply prepared for nonenzymatic glucose detection with superior detection effects.
Collapse
Affiliation(s)
- Mian Li
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Zheng Zhao
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Xiaotian Liu
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Yueping Xiong
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Ce Han
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Yufan Zhang
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Xiangjie Bo
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Liping Guo
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| |
Collapse
|
89
|
Ahmad R, Tripathy N, Hahn YB, Umar A, Ibrahim AA, Kim SH. A robust enzymeless glucose sensor based on CuO nanoseed modified electrodes. Dalton Trans 2015; 44:12488-92. [DOI: 10.1039/c5dt01664a] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CuO nanoseeds were synthesized via a low-temperature aqueous route, for the fabrication of a robust enzymeless glucose sensor.
Collapse
Affiliation(s)
- Rafiq Ahmad
- School of Semiconductor and Chemical Engineering
- and Nanomaterials Processing Research Center
- Chonbuk National University
- Deokjin-gu
- Republic of Korea
| | - Nirmalya Tripathy
- Department of BIN Fusion Technology
- Chonbuk National University
- Deokjin-gu
- Republic of Korea
| | - Yoon-Bong Hahn
- School of Semiconductor and Chemical Engineering
- and Nanomaterials Processing Research Center
- Chonbuk National University
- Deokjin-gu
- Republic of Korea
| | - Ahmad Umar
- Department of Chemistry
- Faculty of Science and Arts
- Najran University
- Najran-11001
- Kingdom of Saudi Arabia
| | - Ahmed A. Ibrahim
- Department of Chemistry
- Faculty of Science and Arts
- Najran University
- Najran-11001
- Kingdom of Saudi Arabia
| | - S. H. Kim
- Department of Chemistry
- Faculty of Science and Arts
- Najran University
- Najran-11001
- Kingdom of Saudi Arabia
| |
Collapse
|
90
|
Jin J, Zheng G, Ge Y, Deng S, Liu W, Hui G. A non-enzyme electrochemical qualitative and quantitative analyzing method for glucose, D-fructose, and sucrose utilizing Cu foam material. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.11.194] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
91
|
Hui N, Wang W, Xu G, Luo X. Graphene oxide doped poly(3,4-ethylenedioxythiophene) modified with copper nanoparticles for high performance nonenzymatic sensing of glucose. J Mater Chem B 2015; 3:556-561. [DOI: 10.1039/c4tb01831a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly sensitive and stable nonenzymatic glucose sensor was developed through the electrochemical deposition of Cu nanoparticles onto an electrodeposited nanocomposite of conducting polymer PEDOT doped with graphene oxide.
Collapse
Affiliation(s)
- Ni Hui
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Wenting Wang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Guiyun Xu
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
92
|
Khoshhesab ZM. Simultaneous electrochemical determination of acetaminophen, caffeine and ascorbic acid using a new electrochemical sensor based on CuO–graphene nanocomposite. RSC Adv 2015. [DOI: 10.1039/c5ra14138a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A sensor using CuO nanoparticles and graphene was constructed. It is a useful tool for determining of acetaminophen, caffeine and ascorbic acid.
Collapse
|
93
|
Dong J, Tian T, Ren L, Zhang Y, Xu J, Cheng X. CuO nanoparticles incorporated in hierarchical MFI zeolite as highly active electrocatalyst for non-enzymatic glucose sensing. Colloids Surf B Biointerfaces 2015; 125:206-12. [DOI: 10.1016/j.colsurfb.2014.11.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/24/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
|
94
|
Construction of a non-enzymatic glucose sensor based on copper nanoparticles/poly(o-phenylenediamine) nanocomposites. J Solid State Electrochem 2014. [DOI: 10.1007/s10008-014-2659-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
95
|
Li X, Wei C, Fu J, Wang L, Chen S, Li P, Li H, Song Y. Electrolyte-controllable synthesis of CuxO with novel morphology and their application in glucose sensors. RSC Adv 2014. [DOI: 10.1039/c4ra06682k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
96
|
Xiao X, Wang M, Li H, Pan Y, Si P. Non-enzymatic glucose sensors based on controllable nanoporous gold/copper oxide nanohybrids. Talanta 2014; 125:366-71. [DOI: 10.1016/j.talanta.2014.03.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 11/28/2022]
|
97
|
Mohd Yazid SNA, Md Isa I, Abu Bakar S, Hashim N, Ab Ghani S. A Review of Glucose Biosensors Based on Graphene/Metal Oxide Nanomaterials. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.888731] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
98
|
Thota R, Ganesh V. Chemically modified flexible strips as electrochemical biosensors. Analyst 2014; 139:4661-72. [DOI: 10.1039/c4an00646a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
99
|
Wang X, Liu E, Zhang X. Non-enzymatic glucose biosensor based on copper oxide-reduced graphene oxide nanocomposites synthesized from water-isopropanol solution. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.03.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
100
|
Scavetta E, Casagrande A, Gualandi I, Tonelli D. Analytical performances of Ni LDH films electrochemically deposited on Pt surfaces: Phenol and glucose detection. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|