Brambilla D, Le Droumaguet B, Nicolas J, Hashemi SH, Wu LP, Moghimi SM, Couvreur P, Andrieux K. Nanotechnologies for Alzheimer's disease: diagnosis, therapy, and safety issues.
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011;
7:521-40. [PMID:
21477665 DOI:
10.1016/j.nano.2011.03.008]
[Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/07/2011] [Accepted: 03/22/2011] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) represents the most common form of dementia worldwide, affecting more than 35 million people. Advances in nanotechnology are beginning to exert a significant impact in neurology. These approaches, which are often based on the design and engineering of a plethora of nanoparticulate entities with high specificity for brain capillary endothelial cells, are currently being applied to early AD diagnosis and treatment. In addition, nanoparticles (NPs) with high affinity for the circulating amyloid-β (Aβ) forms may induce "sink effect" and improve the AD condition. There are also developments in relation to in vitro diagnostics for AD, including ultrasensitive NP-based bio-barcodes, immunosensors, as well as scanning tunneling microscopy procedures capable of detecting Aβ(1-40) and Aβ(1-42). However, there are concerns regarding the initiation of possible NP-mediated adverse events in AD, thus demanding the use of precisely assembled nanoconstructs from biocompatible materials. Key advances and safety issues are reviewed and discussed.
Collapse