51
|
Barandun LJ, Ehrmann FR, Zimmerli D, Immekus F, Giroud M, Grünenfelder C, Schweizer WB, Bernet B, Betz M, Heine A, Klebe G, Diederich F. Replacement of Water Molecules in a Phosphate Binding Site by Furanoside-Appendedlin-Benzoguanine Ligands of tRNA-Guanine Transglycosylase (TGT). Chemistry 2014; 21:126-35. [DOI: 10.1002/chem.201405764] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 11/09/2022]
|
52
|
Zhu Y, Back TG. Preparation of 1,7- and 3,9-Dideazapurines from 2-Amino-3-iodo- and 3-Amino-4-iodopyridines and Activated Acetylenes by Conjugate Addition and Copper-Catalyzed Intramolecular Arylation. J Org Chem 2014; 79:11270-6. [DOI: 10.1021/jo502150v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ying Zhu
- Department
of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
| | - Thomas G. Back
- Department
of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
| |
Collapse
|
53
|
Levic J, Micura R. Syntheses of (15)N-labeled pre-queuosine nucleobase derivatives. Beilstein J Org Chem 2014; 10:1914-8. [PMID: 25246950 PMCID: PMC4168690 DOI: 10.3762/bjoc.10.199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/14/2014] [Indexed: 01/21/2023] Open
Abstract
Pre-queuosine or queuine (preQ1) is a guanine derivative that is involved in the biosynthetic pathway of the hypermodified tRNA nucleoside queuosine (Que). The core structure of preQ1 is represented by 7-(aminomethyl)-7-deazaguanine (preQ1 base). Here, we report the synthesis of three preQ1 base derivatives with complementary (15)N-labeling patterns, utilizing [(15)N]-KCN, [(15)N]-phthalimide, and [(15)N3]-guanidine as cost-affordable (15)N sources. Such derivatives are required to explore the binding process of the preQ1 base to RNA targets using advanced NMR spectroscopic methods. PreQ1 base specifically binds to bacterial mRNA domains and thereby regulates genes that are required for queuosine biosynthesis.
Collapse
Affiliation(s)
- Jasmin Levic
- Institute of Organic Chemistry, University of Innsbruck and Center for Molecular Biosciences Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, University of Innsbruck and Center for Molecular Biosciences Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
| |
Collapse
|
54
|
Miles ZD, Roberts SA, McCarty RM, Bandarian V. Biochemical and structural studies of 6-carboxy-5,6,7,8-tetrahydropterin synthase reveal the molecular basis of catalytic promiscuity within the tunnel-fold superfamily. J Biol Chem 2014; 289:23641-52. [PMID: 24990950 DOI: 10.1074/jbc.m114.555680] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
6-Pyruvoyltetrahydropterin synthase (PTPS) homologs in both mammals and bacteria catalyze distinct reactions using the same 7,8-dihydroneopterin triphosphate substrate. The mammalian enzyme converts 7,8-dihydroneopterin triphosphate to 6-pyruvoyltetrahydropterin, whereas the bacterial enzyme catalyzes the formation of 6-carboxy-5,6,7,8-tetrahydropterin. To understand the basis for the differential activities we determined the crystal structure of a bacterial PTPS homolog in the presence and absence of various ligands. Comparison to mammalian structures revealed that although the active sites are nearly structurally identical, the bacterial enzyme houses a His/Asp dyad that is absent from the mammalian protein. Steady state and time-resolved kinetic analysis of the reaction catalyzed by the bacterial homolog revealed that these residues are responsible for the catalytic divergence. This study demonstrates how small variations in the active site can lead to the emergence of new functions in existing protein folds.
Collapse
Affiliation(s)
- Zachary D Miles
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Sue A Roberts
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Reid M McCarty
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Vahe Bandarian
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
55
|
Eichhorn CD, Kang M, Feigon J. Structure and function of preQ 1 riboswitches. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:939-950. [PMID: 24798077 DOI: 10.1016/j.bbagrm.2014.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 12/17/2022]
Abstract
PreQ1 riboswitches help regulate the biosynthesis and transport of preQ1 (7-aminomethyl-7-deazaguanine), a precursor of the hypermodified guanine nucleotide queuosine (Q), in a number of Firmicutes, Proteobacteria, and Fusobacteria. Queuosine is almost universally found at the wobble position of the anticodon in asparaginyl, tyrosyl, histidyl and aspartyl tRNAs, where it contributes to translational fidelity. Two classes of preQ1 riboswitches have been identified (preQ1-I and preQ1-II), and structures of examples from both classes have been determined. Both classes form H-type pseudoknots upon preQ1 binding, each of which has distinct unusual features and modes of preQ1 recognition. These features include an unusually long loop 2 in preQ1-I pseudoknots and an embedded hairpin in loop 3 in preQ1-II pseudoknots. PreQ1-I riboswitches are also notable for their unusually small aptamer domain, which has been extensively investigated by NMR, X-ray crystallography, FRET, and other biophysical methods. Here we review the discovery, structural biology, ligand specificity, cation interactions, folding, dynamics, and applications to biotechnology of preQ1 riboswitches. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Catherine D Eichhorn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Mijeong Kang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
56
|
Broderick JB, Duffus B, Duschene KS, Shepard EM. Radical S-adenosylmethionine enzymes. Chem Rev 2014; 114:4229-317. [PMID: 24476342 PMCID: PMC4002137 DOI: 10.1021/cr4004709] [Citation(s) in RCA: 616] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Joan B. Broderick
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Benjamin
R. Duffus
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Kaitlin S. Duschene
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Eric M. Shepard
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
57
|
Radical SAM enzyme QueE defines a new minimal core fold and metal-dependent mechanism. Nat Chem Biol 2014; 10:106-12. [PMID: 24362703 PMCID: PMC3939041 DOI: 10.1038/nchembio.1426] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/21/2013] [Indexed: 01/07/2023]
Abstract
7-carboxy-7-deazaguanine synthase (QueE) catalyzes a key S-adenosyl-L-methionine (AdoMet)- and Mg(2+)-dependent radical-mediated ring contraction step, which is common to the biosynthetic pathways of all deazapurine-containing compounds. QueE is a member of the AdoMet radical superfamily, which employs the 5'-deoxyadenosyl radical from reductive cleavage of AdoMet to initiate chemistry. To provide a mechanistic rationale for this elaborate transformation, we present the crystal structure of a QueE along with structures of pre- and post-turnover states. We find that substrate binds perpendicular to the [4Fe-4S]-bound AdoMet, exposing its C6 hydrogen atom for abstraction and generating the binding site for Mg(2+), which coordinates directly to the substrate. The Burkholderia multivorans structure reported here varies from all other previously characterized members of the AdoMet radical superfamily in that it contains a hypermodified (β6/α3) protein core and an expanded cluster-binding motif, CX14CX2C.
Collapse
|
58
|
Liberman JA, Bogue JT, Jenkins JL, Salim M, Wedekind JE. ITC analysis of ligand binding to preQ₁ riboswitches. Methods Enzymol 2014; 549:435-50. [PMID: 25432759 DOI: 10.1016/b978-0-12-801122-5.00018-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Riboswitches regulate genes by binding to small-molecule effectors. Isothermal titration calorimetry (ITC) provides a label-free method to quantify the equilibrium association constant, K(A), of a riboswitch interaction with its cognate ligand. In addition to probing affinity and specific chemical contributions that contribute to binding, ITC can be used to measure the thermodynamic parameters of an interaction (ΔG, ΔH, and ΔS), in addition to the binding stoichiometry (N). Here, we describe methods developed to measure the binding affinity of various preQ1 riboswitch classes for the pyrrolopyrimidine effector, preQ1. Example isotherms are provided along with a review of various preQ1-II (class 2) riboswitch mutants that were interrogated by ITC to quantify the energetic contributions of specific interactions visualized in the crystal structure. Protocols for ITC are provided in sufficient detail that the reader can reproduce experiments independently, or develop derivative methods suitable for analyzing novel riboswitch-ligand binding interactions.
Collapse
Affiliation(s)
- Joseph A Liberman
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jarrod T Bogue
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jermaine L Jenkins
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Structural Biology & Biophysics Facility, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Mohammad Salim
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Joseph E Wedekind
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Structural Biology & Biophysics Facility, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
59
|
Radical mediated ring formation in the biosynthesis of the hypermodified tRNA base wybutosine. Curr Opin Chem Biol 2013; 17:613-8. [PMID: 23856057 DOI: 10.1016/j.cbpa.2013.05.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/28/2013] [Indexed: 01/24/2023]
Abstract
Wyosine and its derivatives are highly modified, acid labile tricyclic bases found at position 37 of tRNA(Phe) in archaea and eukarya. The formation of the common 4-demethylwyosine structural feature entails condensation of pyruvate and N-methylguanosine catalyzed by TYW1. This review will focus on the mechanism of this complex radical mediated transformation.
Collapse
|
60
|
Iyer LM, Zhang D, Burroughs AM, Aravind L. Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA. Nucleic Acids Res 2013; 41:7635-55. [PMID: 23814188 PMCID: PMC3763556 DOI: 10.1093/nar/gkt573] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Discovery of the TET/JBP family of dioxygenases that modify bases in DNA has sparked considerable interest in novel DNA base modifications and their biological roles. Using sensitive sequence and structure analyses combined with contextual information from comparative genomics, we computationally characterize over 12 novel biochemical systems for DNA modifications. We predict previously unidentified enzymes, such as the kinetoplastid J-base generating glycosyltransferase (and its homolog GREB1), the catalytic specificity of bacteriophage TET/JBP proteins and their role in complex DNA base modifications. We also predict the enzymes involved in synthesis of hypermodified bases such as alpha-glutamylthymine and alpha-putrescinylthymine that have remained enigmatic for several decades. Moreover, the current analysis suggests that bacteriophages and certain nucleo-cytoplasmic large DNA viruses contain an unexpectedly diverse range of DNA modification systems, in addition to those using previously characterized enzymes such as Dam, Dcm, TET/JBP, pyrimidine hydroxymethylases, Mom and glycosyltransferases. These include enzymes generating modified bases such as deazaguanines related to queuine and archaeosine, pyrimidines comparable with lysidine, those derived using modified S-adenosyl methionine derivatives and those using TET/JBP-generated hydroxymethyl pyrimidines as biosynthetic starting points. We present evidence that some of these modification systems are also widely dispersed across prokaryotes and certain eukaryotes such as basidiomycetes, chlorophyte and stramenopile alga, where they could serve as novel epigenetic marks for regulation or discrimination of self from non-self DNA. Our study extends the role of the PUA-like fold domains in recognition of modified nucleic acids and predicts versions of the ASCH and EVE domains to be novel ‘readers’ of modified bases in DNA. These results open opportunities for the investigation of the biology of these systems and their use in biotechnology.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
61
|
Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold. Nat Chem Biol 2013; 9:353-5. [PMID: 23584677 PMCID: PMC3661761 DOI: 10.1038/nchembio.1231] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 03/14/2013] [Indexed: 11/26/2022]
Abstract
PreQ1 riboswitches regulate genes by binding the pyrrolopyrimidine intermediate preQ1 during biosynthesis of the essential tRNA base queuosine. We report the first preQ1-II riboswitch structure at 2.3 Å resolution, which uses a novel fold to achieve effector recognition at the confluence of a three-way-helical junction flanking a pseudoknotted ribosome-binding site (RBS). The results account for preQ1-II-riboswitch-mediated translational control, and expand the known repertoire of ligand binding modes utilized by regulatory RNAs.
Collapse
|
62
|
McCarty RM, Krebs C, Bandarian V. Spectroscopic, steady-state kinetic, and mechanistic characterization of the radical SAM enzyme QueE, which catalyzes a complex cyclization reaction in the biosynthesis of 7-deazapurines. Biochemistry 2012. [PMID: 23194065 DOI: 10.1021/bi301156w] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
7-Carboxy-7-deazaguanine (CDG) synthase (QueE) catalyzes the complex heterocyclic radical-mediated conversion of 6-carboxy-5,6,7,8-tetrahydropterin (CPH(4)) to CDG in the third step of the biosynthetic pathway to all 7-deazapurines. Here we present a detailed characterization of QueE from Bacillus subtilis to delineate the mechanism of conversion of CPH(4) to CDG. QueE is a member of the radical S-adenosyl-l-methionine (SAM) superfamily, all of which use a bound [4Fe-4S](+) cluster to catalyze the reductive cleavage of the SAM cofactor to generate methionine and a 5'-deoxyadenosyl radical (5'-dAdo(•)), which initiates enzymatic transformations requiring hydrogen atom abstraction. The ultraviolet-visible, electron paramagnetic resonance, and Mössbauer spectroscopic features of the homodimeric QueE point to the presence of a single [4Fe-4S] cluster per monomer. Steady-state kinetic experiments indicate a K(m) of 20 ± 7 μM for CPH(4) and a k(cat) of 5.4 ± 1.2 min(-1) for the overall transformation. The kinetically determined K(app) for SAM is 45 ± 1 μM. QueE is also magnesium-dependent and exhibits a K(app) for the divalent metal ion of 0.21 ± 0.03 mM. The SAM cofactor supports multiple turnovers, indicating that it is regenerated at the end of each catalytic cycle. The mechanism of rearrangement of QueE was probed with CPH(4) isotopologs containing deuterium at C-6 or the two prochiral positions at C-7. These studies implicate 5'-dAdo(•) as the initiator of the ring contraction reaction catalyzed by QueE by abstraction of the H atom from C-6 of CPH(4).
Collapse
Affiliation(s)
- Reid M McCarty
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
63
|
Bandarian V. Radical SAM enzymes involved in the biosynthesis of purine-based natural products. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1245-53. [PMID: 22902275 DOI: 10.1016/j.bbapap.2012.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 07/21/2012] [Accepted: 07/26/2012] [Indexed: 12/19/2022]
Abstract
The radical S-adenosyl-l-methionine (SAM) superfamily is a widely distributed group of iron-sulfur containing proteins that exploit the reactivity of the high energy intermediate, 5'-deoxyadenosyl radical, which is produced by the reductive cleavage of SAM, to carry-out complex radical-mediated transformations. The reactions catalyzed by radical SAM enzymes range from simple group migrations to complex reactions in protein and RNA modification. This review will highlight three radical SAM enzymes that catalyze reactions involving modified guanosines in the biosynthesis pathways of the hypermodified tRNA base wybutosine; secondary metabolites of 7-deazapurine structure, including the hypermodified tRNA base queuosine; and the redox cofactor F(420). This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.
Collapse
Affiliation(s)
- Vahe Bandarian
- University of Arizona, Department of Chemistry and Biochemistry, 1041 E. Lowell St., Tucson, AZ 85721‐0088, USA.
| |
Collapse
|