51
|
Xu C, Du Z, Ren S, Liang X, Li H. MiR-129-5p sensitization of lung cancer cells to etoposide-induced apoptosis by reducing YWHAB. J Cancer 2020; 11:858-866. [PMID: 31949489 PMCID: PMC6959023 DOI: 10.7150/jca.35410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Lung cancer is the most common cause of death from cancer worldwide and recent studies have revealed that microRNAs play critical roles to regulate lung carcinogenesis. microRNA-129-5p (miR-129-5p) has been reported to regulate cell proliferation and invasion in lung cancer, but its role in lung cancer apoptosis remains unknown. Methods: The expression of miR-129-5p and YWHAB in lung cancer tissues were analyzed from data downloaded from the NCBI Gene Expression Omnibus (GEO) database. Luciferase reporter assay, Western blot and qRT-PCR were used to determine the regulatory effect of miR-129-5p on YWHAB. Cell apoptosis was detected by using the PI/Annexin V Cell Apoptosis Kit. The effect of miR-129-5p and YWHAB on the survival of lung cancer patients was also explored. Results: In this study, by combining the data derived from six GEO database, our results showed that miR-129-5p was downregulated in lung cancer tissues and YWHAB was upregulated in lung cancer patient' serum. A significant negative correlation between miR-129-5p and YWHAB was found in lung cancer tissues. Both the expression of YWHAB and miR-129-5p were associated significantly with prognosis (overall survival) in patients with lung cancer. Overexpression of miR-129-5p promotes VP16-induced lung cancer cell apoptosis and YWHAB was shown to be a direct downstream target of miR-129-5p. Conclusion: Overexpression of expression miR-129-5p contributes to etoposide-induced lung cancer apoptosis by modulating YWHAB.
Collapse
Affiliation(s)
- Chengshan Xu
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of GeriatricMedicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhongli Du
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of GeriatricMedicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Simei Ren
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of GeriatricMedicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoshuan Liang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huihui Li
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| |
Collapse
|
52
|
Wu C, Miao C, Tang Q, Zhou X, Xi P, Chang P, Hua L, Ni H. MiR-129-5p promotes docetaxel resistance in prostate cancer by down-regulating CAMK2N1 expression. J Cell Mol Med 2019; 24:2098-2108. [PMID: 31876385 PMCID: PMC7011149 DOI: 10.1111/jcmm.14050] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/11/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
This study focuses on the effect of miR‐129‐5p on docetaxel‐resistant (DR) prostate cancer (PCa) cells invasion, migration and apoptosis. In our study, the expression of CAMK2N1 was assessed by qRT‐PCR in PCa patient tissues and cell lines including PC‐3 and PC‐3‐DR. Cells transfected with miR‐129‐5p mimics, inhibitor, CAMK2N1 or negative controls (NC) were used to interrogate their effects on DR cell invasions, migrations and apoptosis during docetaxel (DTX) treatments. The apoptosis rate of the PCa cells was validated by flow cytometry. Relationships between miR‐129‐5p and CAMK2N1 levels were identified by qRT‐PCR and dual‐luciferase reporter assay. CAMK2N1 was found to be down‐expressed in DR PCa tissue sample, and low levels of CAMK2N1 were correlated with high docetaxel resistance and clinical prediction of poor survival. CAMK2N1 levels were decreased in DR PCa cells treated with DXT. We further explored that up‐regulation of miR‐129‐5p could promote DR PCa cells viability, invasion and migration but demote apoptosis. Involved molecular mechanism studies revealed that miR‐129‐5p reduced downstream CAMK2N1 expression to further impact on chemoresistance to docetaxel of PCa cells, indicating its vital role in PCa docetaxel resistance. Our findings revealed that miR‐129‐5p contributed to the resistance of PC‐3‐DR cells to docetaxel through suppressing CAMK2N1 expression, and thus targeting miR‐129‐5p may provide a novel therapeutic approach in sensitizing PCa to future docetaxel treatment.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunqing Miao
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Qingsheng Tang
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Xunrong Zhou
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Pengshan Xi
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Ping'an Chang
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Lixin Hua
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haodong Ni
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| |
Collapse
|
53
|
Wang X, Peng L, Gong X, Zhang X, Sun R. LncRNA HIF1A-AS2 promotes osteosarcoma progression by acting as a sponge of miR-129-5p. Aging (Albany NY) 2019; 11:11803-11813. [PMID: 31866584 PMCID: PMC6949059 DOI: 10.18632/aging.102448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/04/2019] [Indexed: 01/17/2023]
Abstract
Increasing studies have demonstrated that long noncoding RNAs (lncRNAs) play vital roles in tumor development and progression. However, the relationship between osteosarcoma and HIF1AAS2 remains unknown. The expression of HIF1AAS2 and miR-129-5p was detected in osteosarcoma cell lines and samples via qRT-PCR. Cell Counting Kit-8 (CCK-8) and invasion assays were performed to determine cell proliferation and invasion ability, and a dual luciferase reporter assay was performed to determine the interaction between HIF1AAS2 and miR-129-5p. We showed that the expression of HIF1A-AS2 was upregulated in the osteosarcoma samples compared with the expression in noncancerous samples. Moreover, patients with high HIF1A-AS2 expression had a shorter overall survival. Ectopic expression of HIF1A-AS2 enhanced osteosarcoma cell proliferation, cell cycle progression and invasion. We found that overexpression of miR-129-5p decreased the luciferase activity of wild-type (WT) HIF1A-AS2 but not mutant HIF1A-AS2. Ectopic expression of HIF1A-AS2 suppressed miR-129-5p expression in MG-63 cells. We demonstrated that miR-129-5p was downregulated in osteosarcoma and was negatively associated with HIF1A-AS2 expression. Furthermore, ectopic expression of miR-129-5p suppressed osteosarcoma cell proliferation, cell cycle progression and invasion. In addition, overexpression of HIF1A-AS2 promoted cell proliferation, cell cycle progression and invasion of osteosarcoma cells through the modulation of miR-129-5p. These results indicated that HIF1A-AS2 might be a potential therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Xuesong Wang
- No.1 Spinal Department of No.2 Affiliated Hospital of Qingdao University, Qingdao Central Hospital, Shandong, China
| | - Lei Peng
- Library of No.2 Affiliated Hospital of Qingdao University, Qingdao Central Hospital, Shandong, China
| | - Xiaojin Gong
- No.1 Spinal Department of No.2 Affiliated Hospital of Qingdao University, Qingdao Central Hospital, Shandong, China
| | - Xiugong Zhang
- No.1 Spinal Department of No.2 Affiliated Hospital of Qingdao University, Qingdao Central Hospital, Shandong, China
| | - Ruifu Sun
- No.1 Spinal Department of No.2 Affiliated Hospital of Qingdao University, Qingdao Central Hospital, Shandong, China
| |
Collapse
|
54
|
Wu Q, Shi M, Meng W, Wang Y, Hui P, Ma J. Long noncoding RNA FOXD3-AS1 promotes colon adenocarcinoma progression and functions as a competing endogenous RNA to regulate SIRT1 by sponging miR-135a-5p. J Cell Physiol 2019; 234:21889-21902. [PMID: 31058315 DOI: 10.1002/jcp.28752] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/30/2022]
Abstract
More and more documents have proved that the abnormal expression of long noncoding RNAs (lncRNAs) are correlated with the initiation and progression of colorectal cancer (CRC). lncRNA FOXD3-AS1 has been reported in glioma for its oncogenic property. According to the survival analysis of The Cancer Genome Atlas database, FOXD3-AS1 upregulation implied lower survival rate of patients with CRC. Quantitative real-time polymerase chain reaction showed the overexpression of FOXD3-AS1 in both CRC tissues and cells. The Kaplan-Meier method demonstrated the prognostic value of FOXD3-AS1 for patients with CRC. To explore the effect of FOXD3-AS1 on CRC progression, loss-of-function experiments were carried out, whose results indicated that knockdown of FOXD3-AS1 suppressed cell proliferation, migration, and invasion, inhibited cell cycle and promoted cell apoptosis in vitro. In vivo experiments affirmed that FOXD3-AS1 affected tumor growth. FOXD3-AS1 expression was enriched in the cytoplasm of CRC cells. Mechanism experiments revealed that FOXD3-AS1 served as a competing endogenous RNA to upregulate SIRT1 by sponging miR-135a-5p. In addition, SIRT1 silencing also restrained cell proliferation and motility. Rescue assays revealed the biological function of FOXD3-AS1/miR-135a-5p/SIRT1 axis in CRC progression. In conclusion, FOXD3-AS1 promotes CRC progression by regulating miR-135a-5p/SIRT1 axis, shedding lights on the way to CRC treatments.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenying Meng
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingping Hui
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiali Ma
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
55
|
Jiang Y, Liu G, Ye W, Xie J, Shao C, Wang X, Li X. ZEB2-AS1 Accelerates Epithelial/Mesenchymal Transition Through miR-1205/CRKL Pathway in Colorectal Cancer. Cancer Biother Radiopharm 2019; 35:153-162. [PMID: 31755734 DOI: 10.1089/cbr.2019.3000] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Accumulating reports have demonstrated that long-noncoding RNAs (lncRNAs) play critical roles in the pathological progression of colorectal cancer (CRC). However, the role of lncRNA zinc finger E-box binding homeobox 2 antisense RNA 1 (ZEB2-AS1) in CRC remains largely unknown. Methods: The authors detected the ZEB2-AS1 expression in CRC tissue sample and CRC cell lines. The effects of ZEB2-AS1 on CRC were identified through in vitro assays (i.e., transwell assay, wound-healing assay, immunofluorescence assay, and Western blot) in a ZEB2-AS1 knockdown system. The molecular mechanism of ZEB2-AS1 was explored via bioinformatic tools, quantitative real-time polymerase chain reaction (qRT-PCR), dual-luciferase reporter assay, RNA immunoprecipitation assay, and so on. Moreover, a series of gain-of-function experiments were performed to identify the effect of ZEB2-AS1 and miR-1205 on epithelial-to-mesenchymal transition (EMT) in CRC cells. Results: This analysis clarified that ZEB2-AS1 was upregulated in both CRC tissue sample and cells lines; meanwhile, the high expression of ZEB2-AS1 was correlated with poor overall survival rate. ZEB2-AS1 knockdown significantly suppresses the EMT in CRC cells. Furthermore, the authors identified that the expression of ZEB2-AS1 was negatively correlated with expression of miR-1205, and CRKL could be a direct target of miR-1205. Through the gain-of-function experiments, they found that ZEB2-AS1 accelerates EMT in CRC cells via modulating the expression of miR-1205 and CRKL. Conclusion: Taken together, this study revealed that ZEB2-AS1 accelerates EMT in CRC through the miR-1205/CRKL pathway, suggesting that ZEB2-AS1 may potentially serve as a target of CRC.
Collapse
Affiliation(s)
- Yinghao Jiang
- Department of Anorectal Surgery, The First People's Hospital of Wenling, Wenling, China
| | - Guangming Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Wei Ye
- Department of Anorectal Surgery, The First People's Hospital of Wenling, Wenling, China
| | - Jianjin Xie
- Department of Anorectal Surgery, The First People's Hospital of Wenling, Wenling, China
| | - Chunfa Shao
- Department of Anorectal Surgery, The First People's Hospital of Wenling, Wenling, China
| | - Xiaowei Wang
- Department of Anorectal Surgery, The First People's Hospital of Wenling, Wenling, China
| | - Xia Li
- Department of Anorectal Surgery, The First People's Hospital of Wenling, Wenling, China
| |
Collapse
|
56
|
Wang L, Cho KB, Li Y, Tao G, Xie Z, Guo B. Long Noncoding RNA (lncRNA)-Mediated Competing Endogenous RNA Networks Provide Novel Potential Biomarkers and Therapeutic Targets for Colorectal Cancer. Int J Mol Sci 2019; 20:E5758. [PMID: 31744051 PMCID: PMC6888455 DOI: 10.3390/ijms20225758] [Citation(s) in RCA: 430] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and has a high metastasis and reoccurrence rate. Long noncoding RNAs (lncRNAs) play an important role in CRC growth and metastasis. Recent studies revealed that lncRNAs participate in CRC progression by coordinating with microRNAs (miRNAs) and protein-coding mRNAs. LncRNAs function as competitive endogenous RNAs (ceRNAs) by competitively occupying the shared binding sequences of miRNAs, thus sequestering the miRNAs and changing the expression of their downstream target genes. Such ceRNA networks formed by lncRNA/miRNA/mRNA interactions have been found in a broad spectrum of biological processes in CRC, including liver metastasis, epithelial to mesenchymal transition (EMT), inflammation formation, and chemo-/radioresistance. In this review, we summarize typical paradigms of lncRNA-associated ceRNA networks, which are involved in the underlying molecular mechanisms of CRC initiation and progression. We comprehensively discuss the competitive crosstalk among RNA transcripts and the novel targets for CRC prognosis and therapy.
Collapse
Affiliation(s)
- Liye Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX,77204, USA; (K.B.C.); (Y.L.); (G.T.); (Z.X.)
| | | | | | | | | | - Bin Guo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX,77204, USA; (K.B.C.); (Y.L.); (G.T.); (Z.X.)
| |
Collapse
|
57
|
Jin Y, Xie H, Duan L, Zhao D, Ding J, Jiang G. Long Non-Coding RNA CASC9 And HIF-1α Form A Positive Feedback Loop To Facilitate Cell Proliferation And Metastasis In Lung Cancer. Onco Targets Ther 2019; 12:9017-9027. [PMID: 31802910 PMCID: PMC6827505 DOI: 10.2147/ott.s226078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/21/2019] [Indexed: 11/23/2022] Open
Abstract
Background The long noncoding RNA cancer susceptibility 9 (CASC9) has been recognized as an important modulator of cell growth and metastasis in many cancers. However, its detailed roles in lung cancer remain unclear. In this study, we aimed to investigate its functions and molecular mechanism in lung cancer progression. Methods Expression of CASC9 was determined in lung cancer tissues and cell lines by real-time PCR. CCK-8, colony formation, wound healing and transwell assays were done to evaluate the cell proliferation, migration and invasion capacities in vitro. Real-time PCR, Western blot and RNA immunoprecipitation (RIP) assays were performed to dissect the mechanisms. Results CASC9 was overexpressed in lung cancer specimens and cell lines. Knockdown of CASC9 inhibited cell proliferation, migration, invasion and EMT in lung cancer cells. While overexpression of CASC9 in normal lung epithelial cells did the opposite. CASC9 interacted with HIF-1α and enhanced its protein stability. They formed a positive feedback loop by reciprocally inducing each other expression and regulated cell proliferation and metastasis. Conclusion Our findings demonstrated a novel regulatory signaling pathway, namely the CASC9/HIF-1α axis, which was involved in lung cancer progression. These findings can provide valuable insights on the potential therapy application for lung cancer.
Collapse
Affiliation(s)
- Yuxing Jin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Huikang Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Liang Duan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Deping Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Jiaan Ding
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| |
Collapse
|
58
|
Ke MJ, Ji LD, Li YX. Explore prognostic marker of colorectal cancer based on ceRNA network. J Cell Biochem 2019; 120:19358-19370. [PMID: 31490563 DOI: 10.1002/jcb.28860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 01/06/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors in the world. With the deepening of people's understanding of CRC at the molecular level, the survival and prognosis of CRC have been significantly improved with the help of surgery, radiotherapy, and chemotherapy, molecular targeted biological therapy and early detection of diseases. The research of different disciplines and the development of multihistological analysis in recent years have proved that the occurrence and development of CRC is a complex biological process with the common action of multiple factors, which involves the huge changes of various histological levels such as the genome, transcriptome, and epigenome. At present, the abnormal expression of protein products in the transcription process has attracted more and more attention. Based on the sensitivity and timeliness of its changes, it has become a hot topic to study the occurrence and development mechanism of CRC through transcriptome changes, so as to provide markers for early diagnosis and prognosis. In recent years, competitive endogenous RNA (ceRNA) has become one of the hot topics in cancer research. The ceRNA hypothesis holds that transcripts such as long noncoding RNA can competitively bind microRNA (miRNA), thus preventing miRNA from binding to messenger RNA (mRNA) and thereby regulating the expression of mRNA. At present, the interaction mechanism of ceRNA in CRC is still unclear, and exploring its interaction relationship is of great significance to elucidate the occurrence and development mechanism of CRC. In this study, we used The Cancer Genome Atlas (TCGA) RNA - seq data of colorectal Cancer and microRnas - seq data to construct colorectal Cancer ceRNA topology network to mine key RNAs that influence the prognosis of colorectal cancer, providing potential RNA biomarkers.
Collapse
Affiliation(s)
- Mu-Jing Ke
- Department of Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Lian-Dong Ji
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yi-Xiong Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
59
|
Amirkhah R, Naderi-Meshkin H, Shah JS, Dunne PD, Schmitz U. The Intricate Interplay between Epigenetic Events, Alternative Splicing and Noncoding RNA Deregulation in Colorectal Cancer. Cells 2019; 8:cells8080929. [PMID: 31430887 PMCID: PMC6721676 DOI: 10.3390/cells8080929] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) results from a transformation of colonic epithelial cells into adenocarcinoma cells due to genetic and epigenetic instabilities, alongside remodelling of the surrounding stromal tumour microenvironment. Epithelial-specific epigenetic variations escorting this process include chromatin remodelling, histone modifications and aberrant DNA methylation, which influence gene expression, alternative splicing and function of non-coding RNA. In this review, we first highlight epigenetic modulators, modifiers and mediators in CRC, then we elaborate on causes and consequences of epigenetic alterations in CRC pathogenesis alongside an appraisal of the complex feedback mechanisms realized through alternative splicing and non-coding RNA regulation. An emphasis in our review is put on how this intricate network of epigenetic and post-transcriptional gene regulation evolves during the initiation, progression and metastasis formation in CRC.
Collapse
Affiliation(s)
- Raheleh Amirkhah
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
- Nastaran Center for Cancer Prevention (NCCP), Mashhad 9185765476, Iran
| | - Hojjat Naderi-Meshkin
- Nastaran Center for Cancer Prevention (NCCP), Mashhad 9185765476, Iran
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad 9177949367, Iran
| | - Jaynish S Shah
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Philip D Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia.
- Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia.
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia.
| |
Collapse
|
60
|
Wan J, Deng D, Wang X, Wang X, Jiang S, Cui R. LINC00491 as a new molecular marker can promote the proliferation, migration and invasion of colon adenocarcinoma cells. Onco Targets Ther 2019; 12:6471-6480. [PMID: 31496744 PMCID: PMC6698166 DOI: 10.2147/ott.s201233] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/08/2019] [Indexed: 12/24/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of multiple tumors. However, the roles of lncRNAs during colon adenocarcinoma and cancer progression remain unclear. This study aimed identify new lncRNAs that act as molecular markers for the prevention and diagnosis of colon adenocarcinoma. Methods RNA sequencing (RNA-Seq) data associated with colon adenocarcinoma were retrieved from the Cancer Genome Atlas (TCGA). Biological processes in Gene Ontology (Go) and the Kyoto Encyclopedia of Genomes (KEGG) were searched for pathways at the significance level. The expression of LINC00491 and its downstream targets were assessed by real-time PCR, Western blotting and dual-luciferase assays. Biological functions of LINC00491 during cell proliferation, migration and invasion were assessed using CCK-8, colony formation assays, wound healing, and transwell invasion assays in colon adenocarcinoma HT-29 and HCT116 cells. Results Bioinformatics analysis with the TCGA colon adenocarcinoma dataset showed that LINC00491 was significantly up-regulated in colon adenocarcinoma. Furthermore, we found that LINC00491 positively regulates SERPINE1 expression through sponging miR-145 and promoting the proliferation, migration, and invasion of colon adenocarcinoma cells, thus playing an oncogenic role during colon adenocarcinoma pathogenesis. Conclusion LINC00491 functions as a ceRNA to promote SERPINE1 expression by sponging miR-145. LINC00491 serves as a therapeutic target and prognostic biomarker in colon adenocarcinoma.
Collapse
Affiliation(s)
- Jiahui Wan
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, People's Republic of China.,Department of Clinical Laboratory, Harbin Public Security Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Daiqian Deng
- Department of Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, People's Republic of China
| | - Xiuli Wang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, People's Republic of China.,Department of Clinical Laboratory, The Seventh Hospital in Qiqihar, Qiqihar, Heilongjiang, People's Republic of China
| | - Xiaojin Wang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, People's Republic of China
| | - Shijun Jiang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, People's Republic of China.,Department of Clinical Laboratory, Daqing Medical College, Daqing, Heilongjiang, People's Republic of China
| | - Rongjun Cui
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, People's Republic of China
| |
Collapse
|
61
|
Lin Y, Chen Z, Lin S, Zheng Y, Liu Y, Gao J, Chen S. MiR-202 inhibits the proliferation and invasion of colorectal cancer by targeting UHRF1. Acta Biochim Biophys Sin (Shanghai) 2019; 51:598-606. [PMID: 31058289 DOI: 10.1093/abbs/gmz042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to investigate the expression of microRNA-202 (miR-202) and its role in colorectal cancer (CRC) in vivo and in vitro. We examined the expression of miR-202 in CRC tissues by quantitative real-time PCR (qRT-PCR) assay. Lentiviral vectors were constructed to overexpress or inhibit the expression of miR-202 in the CRC cell lines HCT116 and SW480 to determine its effects on cell invasion and proliferation. We found that overexpression of miR-202 significantly inhibited the proliferation and invasion of HCT116 cells. MiRNA target gene prediction, dual luciferase assay, and western blot analysis demonstrated that miR-202 regulated ubiquitin-like with PHD and RING finger domain 1 (UHRF1) expression in both cell lines. The effect of miR-202 on cell proliferation and invasion was partially reversed by activating the expression of UHRF1. Furthermore, miR-202 induced tumor formation in HCT116 xenograft BALB/c nude mice. Mice vaccinated with miR-202-overexpressing cells had smaller tumors and lower UHRF1 expression than the control group. These results indicate the possibility that miR-202 is under-expressed in CRC tissues, and that miR-202 inhibits the proliferation and invasion of CRC via targeting UHRF1. MiR-202 is a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yilin Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhihua Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Suyong Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yan Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yisu Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ji Gao
- Fujian University of Medicine, School of Nursing, Fuzhou, China
| | - Shaoqin Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
62
|
Wang Y, Yan L, Yang S, Xu H, Chen T, Dong Z, Chen S, Wang W, Yang Q, Chen C. Long noncoding RNA AC073284.4 suppresses epithelial–mesenchymal transition by sponging miR‐18b‐5p in paclitaxel‐resistant breast cancer cells. J Cell Physiol 2019; 234:23202-23215. [DOI: 10.1002/jcp.28887] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Yue‐Yue Wang
- Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu Anhui China
- Department of Clinical Laboratory The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College Bengbu Anhui China
| | - Lei Yan
- Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu Anhui China
| | - Shuo Yang
- Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu Anhui China
| | - He‐Nan Xu
- Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu Anhui China
| | - Tian‐Tian Chen
- Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu Anhui China
| | - Zheng‐Yuan Dong
- Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu Anhui China
| | - Su‐Lian Chen
- Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu Anhui China
- Department of Biochemistry and Molecular Biology Bengbu Medical College Bengbu Anhui China
| | - Wen‐Rui Wang
- Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu Anhui China
- Department of Biotechnology Bengbu Medical College Bengbu Anhui China
| | - Qing‐Ling Yang
- Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu Anhui China
- Department of Biochemistry and Molecular Biology Bengbu Medical College Bengbu Anhui China
| | - Chang‐Jie Chen
- Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu Anhui China
- Department of Biochemistry and Molecular Biology Bengbu Medical College Bengbu Anhui China
| |
Collapse
|
63
|
Tang XJ, Wang W, Hann SS. Interactions among lncRNAs, miRNAs and mRNA in colorectal cancer. Biochimie 2019; 163:58-72. [PMID: 31082429 DOI: 10.1016/j.biochi.2019.05.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
Long non-coding RNAs (lncRNAs) are longer than 200 nts non-coding transcripts and have recently emerged as one of the largest and significantly diverse RNA families whereas microRNAs (miRNAs) are highly conserved short single-stranded ncRNAs (∼18-22 nucleotides). As families of small and long evolutionarily conserved ncRNAs, lncRNAs activate and repress genes via a variety of mechanisms at both transcriptional and translational levels, while miRNAs regulate protein-coding gene expression mainly through mRNA degradation or silencing, These ncRNAs have been proved to be involved in multiple biological functions, such as proliferation, differentiation, migration, angiogenesis and apoptosis. Today, while majority of studies have focused on defining the regulatory functions of lncRNAs and miRNAs, limited information have now available for the mutual regulations of lncRNAs, miRNAs and mRNA. Thus, the underlying molecular mechanisms, in particularly the interactions among lncRNAs, miRNAs and mRNA in development, growth, metastasis and therapeutic potential of cancer still remain obscure. Colorectal cancer (CRC) is known as the third most common and fourth leading cancer death worldwide. Increasing evidence showed the close correlations among aberrant expressions of lncRNAs, miRNAs and the occurrence, development of CRC. This review summarize the potential links among these RNAs in following three areas: 1, The biogenesis and roles of miRNAs in CRC; 2, The biogenesis and functions of lncRNAs in CRC; 3, The interactions among lncRNAs, miRNAs and mRNA in tumorigensis, growth, progression, EMT formation, chemoradiotherapy resistance, and therapeutic potential in CRC. We believe that identifying diverging lncRNAs, miRNAs and relevant genes, their interactions and complex molecular regulatory networks will provide important clues for understanding the mechanism and developing novel diagnostic and therapeutic strategies for CRC. Further efforts are warranted to bring the promise of regulating their activities into clinical utilities.
Collapse
Affiliation(s)
- Xiao Juan Tang
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Wei Wang
- Department of Gastrointestinal Surgery, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
64
|
Gao G, Xiu D, Yang B, Sun D, Wei X, Ding Y, Ma Y, Wang Z. miR-129-5p inhibits prostate cancer proliferation via targeting ETV1. Onco Targets Ther 2019; 12:3531-3544. [PMID: 31190859 PMCID: PMC6512784 DOI: 10.2147/ott.s183435] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Prostate cancer is one of the most commonly diagnosed diseases in males. Methods RT-qPCR was used to detect miR-129-5p expression in tumor tissues and adjacent normal tissues from patients with prostate cancer. The cell proliferation assay and colony forming assay were used to study the role of miR-129-5p in mediating prostate cancer cell growth. Bioinformatic analysis and dual luciferase assay were performed to predict and confirm ETV1 as a target gene of miR-129-5p. Results We found that miR-129-5p levels were decreased significantly in human prostate cancer tissues compared with matched normal tissues from patients with prostate cancer. Overexpression of miR-129-5p suppressed prostate cancer cell growth while antagonist of miR-129-5p promoted cell proliferation in immortal prostate cell line RWPE-1. In addition, elevation of miR-129-5p decreased ETV1 expression in prostate cancer cells while downregulation of miR-129-5p increased ETV1 expression in RWPE-1. Mechanistically, ETV1 is confirmed a direct target of miR-129-5p in prostate cancer cells. Through repression of ETV1 expression, miR-129-5p could inactivate YAP signaling in prostate cancer cells. In addition, overexpression of ETV1 attenuated miR-129-5p induced cell proliferation in prostate cancer cells. Correlation analysis further revealed that there was a negative correlation between miR-129-5p levels and ETV1 mRNA levels in tumor tissues from patients with prostate cancer. Conclusion Our results identified miR-129-5p as a tumor suppressor in prostate cancer via repression of ETV1.
Collapse
Affiliation(s)
- Ge Gao
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dianhui Xiu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bin Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Daju Sun
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xin Wei
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China,
| | - Youpeng Ding
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China,
| | - Yanan Ma
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China,
| | - Zhixin Wang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China,
| |
Collapse
|
65
|
Wu D, Yang N, Xu Y, Wang S, Zhang Y, Sagnelli M, Hui B, Huang Z, Sun L. lncRNA HIF1A Antisense RNA 2 Modulates Trophoblast Cell Invasion and Proliferation through Upregulating PHLDA1 Expression. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:605-615. [PMID: 31085354 PMCID: PMC6517652 DOI: 10.1016/j.omtn.2019.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/12/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been reported to be involved in various human diseases, and increasing studies have revealed that lncRNAs can play a vital role in preeclampsia (PE). In our study, lncRNA hypoxia-inducible factor 1 alpha (HIF1A) antisense RNA 2 (HIF1A-AS2) was found to be significantly downregulated in placenta tissues of PE patients by quantitative real-time PCR analysis. Moreover, Cell Counting Kit-8 (CCK-8) assays showed that downregulation of HIF1A-AS2 can impede cell proliferation of HTR-8/SVneo and JAR trophoblasts cells. Ectopic overexpression of HIF1A-AS2 can increase the function of trophoblasts cell migration and invasion in vitro. RNA-sequencing (RNA-seq), RNA immunoprecipitation (RIP), and chromatin immunoprecipitation (ChIP) experiments showed that HIF1A-AS2 can recruit lysine-specific demethylase 1 (LSD1) and epigenetically repress pleckstrin homology-like domain, family A, member 1 (PHLDA1) transcription in human trophoblasts cells. In summary, our findings suggest that downregulated HIF1A-AS2 may play a role in the pathogenesis and progression of PE, and has potential as a novel prognostic marker in PE.
Collapse
Affiliation(s)
- Dan Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Department of Neurobiology, Care Science and Society, Karolinska Institutet, Solna 17177, Sweden
| | - Nana Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yetao Xu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Sailan Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yuanyuan Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Matthew Sagnelli
- University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Bingqing Hui
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Zhenyao Huang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
66
|
Tang X, Qiao X, Chen C, Liu Y, Zhu J, Liu J. Regulation Mechanism of Long Noncoding RNAs in Colon Cancer Development and Progression. Yonsei Med J 2019; 60:319-325. [PMID: 30900417 PMCID: PMC6433576 DOI: 10.3349/ymj.2019.60.4.319] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related death worldwide, and its high rates of relapse and metastasis are associated with a poor prognosis. Despite extensive research, the underlying regulatory mechanisms of CRC remain unclear. Long noncoding RNAs (lncRNAs) are a major type of noncoding RNAs that have received increasing attention in the past few years, and studies have shown that they play a role in many biological processes in CRC. Here, we summarize recent studies on lncRNAs associated with CRC and the signaling pathways and mechanisms underlying this association. We show that dysregulated lncRNAs may be new prognostic and diagnostic biomarkers or therapeutic targets for clinical application. This review contributes not only to our understanding of CRC, but also suggests novel signaling pathways associated with lncRNAs that can be targeted to block or eradicate CRC.
Collapse
Affiliation(s)
- Xiaohuan Tang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xiaofang Qiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Chao Chen
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yuanda Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiaming Zhu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China.
| | - Jingjing Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
67
|
Puccini A, Loupakis F, Stintzing S, Cao S, Battaglin F, Togunaka R, Naseem M, Berger MD, Soni S, Zhang W, Mancao C, Salhia B, Mumenthaler SM, Weisenberger DJ, Liang G, Cremolini C, Heinemann V, Falcone A, Millstein J, Lenz HJ. Impact of polymorphisms within genes involved in regulating DNA methylation in patients with metastatic colorectal cancer enrolled in three independent, randomised, open-label clinical trials: a meta-analysis from TRIBE, MAVERICC and FIRE-3. Eur J Cancer 2019; 111:138-147. [PMID: 30852420 DOI: 10.1016/j.ejca.2019.01.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND CpG island DNA hypermethylation and global DNA hypomethylation are hallmark characteristics of colorectal cancer (CRC). Therefore, we aim to explore the effect of genetic variations within the genes that regulate the DNA methylation and demethylation pathways on outcomes in patients with metastatic CRC (mCRC) treated with first-line therapy and enrolled in three independent, randomised, open-label clinical trials. METHODS A total of 884 patients with mCRC enrolled in TRIBE, MAVERICC and FIRE-3 trials were included. Single-nucleotide polymorphisms (SNPs) within genes involved in DNA methylation and demethylation pathways were analysed. The prognostic value of each SNP across all treatment arms was quantified using the inverse-variance-weighted effect size, a meta-analysis approach implemented in the METASOFT software. RESULTS In the meta-analysis, DNMT3A rs11681717 was significantly associated with overall survival (hazard ratio = 1.26; 95% confidence interval [CI] 1.08-1.46; P = 0.002; false discovery rate [FDR] = 0.016), accounting for seven tests in the DNA methylation pathway. In addition, there was suggestive evidence of association for ten-eleven translocation (TET) genes variance with tumour response (TET1 rs3814177, odds ratio [OR] = 0.76, 95% CI 0.59-0.97, P = 0.025, FDR = 0.087; TET3 rs7560668, OR = 1.44; 95% CI 1.10-1.89; P = 0.009; FDR = 0.062). CONCLUSIONS We showed that polymorphisms within the genes responsible for the DNA methylation and demethylation machineries are correlated with outcomes in patients with mCRC who were enrolled in three independent, randomised, open-label, phase II/III clinical trials. In addition, we demonstrated the feasibility of a meta-analysis approach to identify stronger and more convincing association between gene polymorphisms and outcome, potentially leading the way to a new method of analysis for similar data set.
Collapse
Affiliation(s)
- Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fotios Loupakis
- Clinical and Experimental Oncology Department, Medical Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Sebastian Stintzing
- Comprehensive Cancer Center, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Clinical and Experimental Oncology Department, Medical Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Ryuma Togunaka
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christoph Mancao
- Oncology Biomarker Development, Genentech Inc., Basel, Switzerland
| | - Bodour Salhia
- Department of Translational Genomics, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Gangning Liang
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | | | - Volker Heinemann
- Comprehensive Cancer Center, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Alfredo Falcone
- Department of Medical Oncology, University of Pisa, Pisa, Italy
| | - Joshua Millstein
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
68
|
Guo X, Lee S, Cao P. The inhibitive effect of sh-HIF1A-AS2 on the proliferation, invasion, and pathological damage of breast cancer via targeting miR-548c-3p through regulating HIF-1α/VEGF pathway in vitro and vivo. Onco Targets Ther 2019; 12:825-834. [PMID: 30774370 PMCID: PMC6352864 DOI: 10.2147/ott.s192377] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Breast cancer (BC) has been the commonest malignant tumor with a low survival rate among woman. Long non-coding RNA hypoxia-inducible factor-1 alpha antisense RNA-2 (HIF1A-AS2) was correlated with various cancers. Purpose The study aimed to investigate the roles and related underlying molecular mechanisms of HIF1A-AS2 in BC. Material and methods Target relationships were speculated by Targetscan 7.0 and confirmed by dual luciferase reporter assay. Proteins levels were monitored by RT-qPCR, Western blot and immunohistochemistry assays. CCK-8 assay, SA-β-gal staining and transwell assay were used to detect proliferation, senescence and invasion, respectively. Xenograft nude mice were put into use to evaluate the tumor growth and motility. Results The present study exhibited that HIF1A-AS2 and hypoxia-inducible factor-1 alpha (HIF-1α) were upregulated while miR-548c-3p was downregulated in MDA-MB-231, MCF-7, ZR-75-1, and BT-549 BC cell lines. Bioinformatics analysis showed HIF1A-AS2 and HIF-1α were two targets of miR-548c-3p, and the target relationship was further confirmed by dual luciferase reporter assay. Moreover, knockdown of HIF1A-AS2 by shRNA (sh-HIF1A-AS2) markedly elevated miR-548c-3p level, and the enhanced miR-548c-3p noticeably suppressed cell proliferation, invasion, and epithelial–mesenchymal transition, and promoted senescence in vitro. In addition, overexpression of HIF-1α promoted MCF-7 cell invasion. Intriguingly, low expression of HIF1A-AS2 reduced HIF-1α level by upregulating the expression of miR-548c-3p. Furthermore, experiment in xenograft nude mice has indicated that sh-HIF1A-AS2 inhibited tumor growth and motility by targeting miR-548c-3p through regulating HIF-1α/vascular endothelial growth factor (VEGF) pathway in vivo. Conclusion The inhibitive effect of HIF-1α/VEGF pathway by sh-HIF1A-AS2 through targeting miR-548c-3p plays crucial regulatory roles in BC. Therefore, designing targeted drugs against HIF1A-AS2 provides a new direction for the treatment of BC.
Collapse
Affiliation(s)
- Xiao Guo
- Department of Breast Surgery, Central Clinical College of Gynecology Obstetrics, Tianjin Medical University, Tianjin 300110, China
| | - Shenghai Lee
- Department of Surgery, Zhaoqing Medical College, Zhaoqing, Guangdong 526020, China
| | - Peilong Cao
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, China,
| |
Collapse
|
69
|
Wang Y, Zhang G, Han J. HIF1A-AS2 predicts poor prognosis and regulates cell migration and invasion in triple-negative breast cancer. J Cell Biochem 2019; 120:10513-10518. [PMID: 30635931 DOI: 10.1002/jcb.28337] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/10/2018] [Indexed: 01/23/2023]
Abstract
The aberrant expression of hypoxia-inducible factor 1 alpha (HIF1A)-antisense RNA 2 (HIF1A-AS2) was found in various human cancers including breast cancer. The aim of this study was to present more evidence about the role HIF1A-AS2 on triple-negative breast cancer (TNBC). In our results, HIF1A-AS2 was also found to be upregulated in TNBC tissues compared with non-TNBC tissues or adjacent normal tissues. Besides, HIF1A-AS2 expression was also elevated in TNBC cell lines compared with the normal breast epithelial cell line. Moreover, high expression of HIF1A-AS2 was associated with lymph node metastasis, distant metastasis and unfavorable histological grade in TNBC patients. Survival analysis showed a TNBC patient with high HIF1A-AS2 expression had shorter overall survival than patients with low HIF1A-AS2 expression, and HIF1A-AS2 high expression acted as an independent poor prognostic factor for overall survival in TNBC patients. The cell migration and invasion assays suggested inhibition of HIF1A-AS2 obviously depressed TNBC cell migration and invasion. In conclusion, HIF1A-AS2 serves as a novel biomarker for predicting clinical progression and prognosis in TNBC.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Thyroid and Breast Surgery, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Guochao Zhang
- Department of Thyroid and Breast Surgery, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Jie Han
- Department of Thyroid and Breast Surgery, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
70
|
Wu R, Ruan J, Sun Y, Liu M, Sha Z, Fan C, Wu Q. Long non-coding RNA HIF1A-AS2 facilitates adipose-derived stem cells (ASCs) osteogenic differentiation through miR-665/IL6 axis via PI3K/Akt signaling pathway. Stem Cell Res Ther 2018; 9:348. [PMID: 30545407 PMCID: PMC6293597 DOI: 10.1186/s13287-018-1082-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/10/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Background This study was aimed to investigate the role and specific molecular mechanism of HIF1A-AS2/miR-665/IL6 axis in regulating osteogenic differentiation of adipose-derived stem cells (ASCs) via the PI3K/Akt signaling pathway. Methods RNAs’ expression profile in normal/osteogenic differentiation-induced ASCs (osteogenic group) was from the Gene Expression Omnibus database. The analysis was carried out using Bioconductor of R. Gene Set Enrichment Analysis and Kyoto Encyclopedia of Genes and Genomes dataset were applied to identify up- and downregulated signaling pathways. Co-expression network of specific lncRNAs and mRNAs was structured by Cytoscape, while binding sites amongst lncRNA, mRNA, and miRNA were predicted by TargetScan and miRanda. ASCs were derived from human adipose tissue and were authenticated by flow cytometry. ASC cell function was surveyed by alizarin red and alkaline phosphatase (ALP) staining. Molecular mechanism of HIF1A-AS2/miR-665/IL6 axis was investigated by RNAi, cell transfection, western blot, and qRT-PCR. RNA target relationships were validated by dual-luciferase assay. Results HIF1A-AS2 and IL6 were highly expressed while miR-665 was lowly expressed in induced ASCs. HIF1A-AS2 and IL6 improved the expression level of osteoblast markers Runx2, Osterix, and Osteocalcin and also accelerated the formation of calcium nodule and ALP activity, yet miR-665 had opposite effects. HIF1A-AS2 directly targeted miR-665, whereas miR-665 repressed IL6 expression. Moreover, the HIF1A-AS2/miR-665/IL6 regulating axis activated the PI3K/Akt signaling pathway. Conclusions LncRNA HIF1A-AS2 could sponge miR-665 and hence upregulate IL6, activate the PI3K/Akt signaling pathway, and ultimately promote ASC osteogenic differentiation. Electronic supplementary material The online version of this article (10.1186/s13287-018-1082-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruoyu Wu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jihao Ruan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yongjin Sun
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Mengyu Liu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhuang Sha
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai, 200233, China.
| | - Qingkai Wu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai, 200233, China. .,Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
71
|
Neve B, Jonckheere N, Vincent A, Van Seuningen I. Epigenetic Regulation by lncRNAs: An Overview Focused on UCA1 in Colorectal Cancer. Cancers (Basel) 2018; 10:E440. [PMID: 30441811 PMCID: PMC6266399 DOI: 10.3390/cancers10110440] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancers have become the second leading cause of cancer-related deaths. In particular, acquired chemoresistance and metastatic lesions occurring in colorectal cancer are a major challenge for chemotherapy treatment. Accumulating evidence shows that long non-coding (lncRNAs) are involved in the initiation, progression, and metastasis of cancer. We here discuss the epigenetic mechanisms through which lncRNAs regulate gene expression in cancer cells. In the second part of this review, we focus on the role of lncRNA Urothelial Cancer Associated 1 (UCA1) to integrate research in different types of cancer in order to decipher its putative function and mechanism of regulation in colorectal cancer cells. UCA1 is highly expressed in cancer cells and mediates transcriptional regulation on an epigenetic level through the interaction with chromatin modifiers, by direct regulation via chromatin looping and/or by sponging the action of a diversity of miRNAs. Furthermore, we discuss the role of UCA1 in the regulation of cell cycle progression and its relation to chemoresistance in colorectal cancer cells.
Collapse
Affiliation(s)
- Bernadette Neve
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| | - Nicolas Jonckheere
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| | - Audrey Vincent
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| | - Isabelle Van Seuningen
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| |
Collapse
|
72
|
Li J, Zhu Y, Wang H, Ji X. Targeting Long Noncoding RNA in Glioma: A Pathway Perspective. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:431-441. [PMID: 30388617 PMCID: PMC6202792 DOI: 10.1016/j.omtn.2018.09.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/15/2018] [Accepted: 09/26/2018] [Indexed: 02/09/2023]
Abstract
Long noncoding RNAs (lncRNAs) participate extensively in biological processes of various cancers. The majority of these transcripts are uniquely expressed in differentiated tissues or specific cancer types. lncRNAs are aberrantly expressed in gliomas and exert diverse functions. In this article, we provided an overview of how lncRNAs regulate cellular processes in glioma, enumerated the lncRNAs that may act as glioma biomarkers, and showed their potential clinical implications.
Collapse
Affiliation(s)
- Junyang Li
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Yihao Zhu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China.
| | - Xiangjun Ji
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
73
|
Long noncoding RNA DANCR, working as a competitive endogenous RNA, promotes ROCK1-mediated proliferation and metastasis via decoying of miR-335-5p and miR-1972 in osteosarcoma. Mol Cancer 2018; 17:89. [PMID: 29753317 PMCID: PMC5948795 DOI: 10.1186/s12943-018-0837-6] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/25/2018] [Indexed: 12/15/2022] Open
Abstract
Background Accumulating evidences indicate that non-coding RNAs (ncRNAs) including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) acting as crucial regulators in osteosarcoma (OS). Previously, we reported that Rho associated coiled-coil containing protein kinase 1 (ROCK1), a metastatic-related gene was negatively regulated by microRNA-335-5p (miR-335-5p) and work as an oncogene in osteosarcoma. Whether any long non-coding RNAs participate in the upstream of miR-335-5p/ROCK1 axial remains unclear. Methods Expression of differentiation antagonizing non-protein coding RNA (DANCR) and miR-335-5p/miR-1972 in osteosarcoma tissues were determined by a qRT-PCR assay and an ISH assay. Osteosarcoma cells’ proliferation and migration/invasion ability changes were measured by a CCK-8/EDU assay and a transwell assay respectively. ROCK1 expression changes were checked by a qRT-PCR assay and a western blot assay. Targeted binding effects between miR-335-5p/miR-1972 and ROCK1 or DANCR were verified by a dual luciferase reporter assay and a RIP assay. In vivo experiments including a nude formation assay as well as a CT scan were applied to detect tumor growth and metastasis changes in animal level. Results In the present study, an elevated DNACR was found in osteosarcoma tissue specimens and in osteosarcoma cell lines, and the elevated DNACR was closely correlated with poor prognosis in clinical patients. Functional experiments illustrated that a depression of DANCR suppressed ROCK1-mediated proliferation and metastasis in osteosarcoma cells. The results of western blot assays and qRT-PCR assays revealed that DANCR regulated ROCK1 via crosstalk with miR-335-5p and miR-1972. Further cellular behavioral experiments demonstrated that DNACR promoted ROCK1-meidated proliferation and metastasis through decoying both miR-335-5p and miR-1972. Finally, the outcomes of in vivo animal models showed that DANCR promoted tumor growth and lung metastasis of osteosarcoma. Conclusions LncRNA DANCR work as an oncogene and promoted ROCK1-mediated proliferation and metastasis through acting as a competing endogenous RNA (ceRNA) in osteosarcoma. Electronic supplementary material The online version of this article (10.1186/s12943-018-0837-6) contains supplementary material, which is available to authorized users.
Collapse
|
74
|
MiR-876-5p acts as an inhibitor in hepatocellular carcinoma progression by targeting DNMT3A. Pathol Res Pract 2018; 214:1024-1030. [PMID: 29724530 DOI: 10.1016/j.prp.2018.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/04/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the biggest challenges that human beings faced with in 21st century. Previous researches have revealed that miRNAs can serve as regulators in various cancers. MiR-876-5p, a member of miRNA family, has been studied in lung cancer for its anti-oncogenic function. However, the exact function of it is not reported in HCC. Our study aims to find out the effects of miR-876-5p expression on HCC progression. Two HCC cells were chosen to do functional assays after miR-876-5p expression was detected in cell lines by qRT-PCR. HepG2 cell was transfected with miR-876-5p mimics, whereas LM3 cell was transfected with miR-876-5p inhibitors. Next, cell activities of these two indicated cells were analyzed by means of MTT assay, colony forming assay, transwell migration assay and western blot analysis. Consequently, we found that miR-876-5p could inhibit both cell proliferation and metastasis. Moreover, we found out a target gene (DNMT3A) of miR-876-5p by performing bioinformatics analysis, dual luciferase reporter assay and biotin-avidin pull-down assay. Finally, rescue assays were carried out in HepG2 cells. We found that DNMT3A could reverse miR-876-5p mimics-induced inhibition. Therefore, we concluded that miR-876-5p suppressed hepatocellular carcinoma progression by targeting DNMT3A.
Collapse
|