51
|
Abstract
In this review, Shen and Kang provide an overview of the tumor-intrinsic and microenvironment- and treatment-induced stresses that tumor cells encounter in the metastatic cascade and the molecular pathways they develop to relieve these stresses. Metastasis is the ultimate “survival of the fittest” test for cancer cells, as only a small fraction of disseminated tumor cells can overcome the numerous hurdles they encounter during the transition from the site of origin to a distinctly different distant organ in the face of immune and therapeutic attacks and various other stresses. During cancer progression, tumor cells develop a variety of mechanisms to cope with the stresses they encounter, and acquire the ability to form metastases. Restraining these stress-releasing pathways could serve as potentially effective strategies to prevent or reduce metastasis and improve the survival of cancer patients. Here, we provide an overview of the tumor-intrinsic, microenvironment- and treatment-induced stresses that tumor cells encounter in the metastatic cascade and the molecular pathways they develop to relieve these stresses. We also summarize the preclinical and clinical studies that evaluate the potential therapeutic benefit of targeting these stress-relieving pathways.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
52
|
Jimenez-Luna C, González-Flores E, Ortiz R, Martínez-González LJ, Antúnez-Rodríguez A, Expósito-Ruiz M, Melguizo C, Caba O, Prados J. Circulating PTGS2, JAG1, GUCY2C and PGF mRNA in Peripheral Blood and Serum as Potential Biomarkers for Patients with Metastatic Colon Cancer. J Clin Med 2021; 10:2248. [PMID: 34067294 PMCID: PMC8196898 DOI: 10.3390/jcm10112248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Genes involved in the angiogenic process have been proposed for the diagnosis and therapeutic response of metastatic colorectal cancer (CRC). This study aimed to investigate the value of PTGS2, JAG1, GUCY2C and PGF-circulating RNA as biomarkers in metastatic CRC. Blood cells and serum mRNA from 59 patients with metastatic CRC and 47 healthy controls were analyzed by digital PCR. The area under the receiver operating characteristic curve (AUC) was used to estimate the diagnostic value of each mRNA alone or mRNA combinations. A significant upregulation of the JAG1, PTGS2 and GUCY2C genes in blood cells and serum samples from metastatic CRC patients was detected. Circulating mRNA levels in the serum of all genes were significantly more abundant than in blood. The highest discrimination ability between metastatic CRC patients and healthy donors was obtained with PTGS2 (AUC of 0.984) and GUCY2C (AUC of 0.896) in serum samples. Biomarker combinations did not improve the discriminatory capacity of biomarkers separately. Analyzed biomarkers showed no correlation with overall survival or progression-free survival, but GUCY2C and GUCY2C/PTGS2 expression in serum correlated significantly with the response to antiangiogenic agents. These findings demonstrate that assessment of genes involved in the angiogenic process may be a potential non-invasive diagnostic tool for metastatic CRC and its response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Cristina Jimenez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (C.J.-L.); (R.O.); (O.C.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 18012 Granada, Spain;
| | - Encarnación González-Flores
- Instituto de Investigación Biosanitaria ibs. Granada, 18012 Granada, Spain;
- Medical Oncology Service, Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (C.J.-L.); (R.O.); (O.C.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 18012 Granada, Spain;
| | - Luis J. Martínez-González
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, 18016 Granada, Spain; (L.J.M.-G.); (A.A.-R.)
| | - Alba Antúnez-Rodríguez
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, 18016 Granada, Spain; (L.J.M.-G.); (A.A.-R.)
| | - Manuela Expósito-Ruiz
- Unit of Biostatistics, Department of Statistics and Operations Research, School of Medicine, University of Granada, 18071 Granada, Spain;
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (C.J.-L.); (R.O.); (O.C.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 18012 Granada, Spain;
| | - Octavio Caba
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (C.J.-L.); (R.O.); (O.C.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 18012 Granada, Spain;
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (C.J.-L.); (R.O.); (O.C.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 18012 Granada, Spain;
| |
Collapse
|
53
|
Li HL, Li QY, Jin MJ, Lu CF, Mu ZY, Xu WY, Song J, Zhang Y, Zhang SY. A review: hippo signaling pathway promotes tumor invasion and metastasis by regulating target gene expression. J Cancer Res Clin Oncol 2021; 147:1569-1585. [PMID: 33864521 DOI: 10.1007/s00432-021-03604-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The Hippo pathway is widely considered to inhibit cell growth and play an important role in regulating the size of organs. However, recent studies have shown that abnormal regulation of the Hippo pathway can also affect tumor invasion and metastasis. Therefore, finding out how the Hippo pathway promotes tumor development by regulating the expression of target genes provides new ideas for future research on targeted drugs that inhibit tumor progression. METHODS PubMed, Embase, Web of Science, and the Cochrane Library were systematically searched. RESULTS The search strategy identified 1892 hits and 196 publications were finally included in this review. As the core molecule of the Hippo pathway, YAP/TAZ are usually highly expressed in tumors that undergo invasion and migration and are accompanied by abnormally strong nuclear metastasis. Through its interaction with nuclear transcription factors TEADs, it directly or indirectly regulates and the expressions of target genes related to tumor metastasis and invasion. These target genes can induce the formation of invasive pseudopodia in tumor cells, reduce intercellular adhesion, degrade extracellular matrix (ECM), and cause epithelial-mesenchymal transition (EMT), or indirectly promote through other signaling pathways, such as mitogen-activated protein kinases (MAPK), TGF/Smad, etc, which facilitate the invasion and metastasis of tumors. CONCLUSION This article mainly introduces the research progress of YAP/TAZ which are the core molecules of the Hippo pathway regulating related target genes to promote tumor invasion and metastasis. Focus on the target genes that affect tumor invasion and metastasis, providing the possibility for the selection of clinical drug treatment targets, to provide some help for a more in-depth study of tumor invasion and migration mechanism and the development of clinical drugs.
Collapse
Affiliation(s)
- Hong-Li Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian-Yu Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Min-Jie Jin
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chao-Fan Lu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Mu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei-Yi Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Institute of Drug Discovery and Development, Zhengzhou, 450001, China.
| | - Yan Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Institute of Drug Discovery and Development, Zhengzhou, 450001, China. .,Zhengzhou University, Henan Institute of Advanced Technology, Zhengzhou, 450001, China.
| |
Collapse
|
54
|
Wan X, Zhu L, Zhao L, Peng L, Xiong J, Yang W, Yuan J, Liang F, Zhang K, Chen K. hPER3 promotes adipogenesis via hHSP90AA1-mediated inhibition of Notch1 pathway. Cell Death Dis 2021; 12:301. [PMID: 33741899 PMCID: PMC7979882 DOI: 10.1038/s41419-021-03584-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
The period circadian regulator 3 (PER3) has been reported to play a negative role in human immortalized bone marrow-derived Scp-1 cells (iBMSCs) and patient adipose-derived stromal cells (PASCs) or a negative/positive role in mice adipogenesis. However, human PER3 (hPER3) was identified as a positive regulator of human adipose tissue-derived stromal cells (hADSCs) adipogenesis in this study. Silencing or overexpression of hPER3 in hADSCs inhibited and promoted adipogenesis in vitro. In vivo, the overexpression of hPER3 increased high-fat diet-induced inguinal white adipose tissue (iWAT) and epididymal white adipose tissue (eWAT) forms, increasing systemic glucose intolerance and insulin resistance. Molecularly, hPER3 does not interact with hPPARγ, but represses Notch1 signaling pathway to enhance adipogenesis by interacting with hHSP90AA1, which is able to combine with the promoter of hNotch1 and inactivate its expression. Thus, our study revealed hPER3 as a critical positive regulator of hADSCs adipogenesis, which was different from the other types of cells, providing a critical role of it in treating obesity.
Collapse
Affiliation(s)
- Xinxing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Liyong Zhu
- Department of Bariatric and Metabolic Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Liling Zhao
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, Changsha, Hunan, 410005, China
| | - Jing Xiong
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wenjun Yang
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jingjing Yuan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Fang Liang
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Keke Zhang
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Ke Chen
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
55
|
Tian J, Zhao Y, Li L, Cui Y, Wu Y. MicroRNA-936 Targets JAG1 and Inhibits the Proliferation of Hepatocellular Carcinoma Cells. Technol Cancer Res Treat 2021; 20:1533033820985785. [PMID: 33550933 PMCID: PMC7876578 DOI: 10.1177/1533033820985785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Investigating the underlying molecular mechanism is essential for the treatment and prognosis of HCC. Emerging evidence suggests that microRNAs (miRNAs) play pivotal roles in cancer progression. Down-regulation of miR-936 has been found in several cancers, which serves as a tumor suppressor to inhibit the development of cancers. However, the clinical significance and functional roles of miR-936 in HCC have not been determined. To explore this, the expression of miR-936 in HCC tissues and cells was detected by RT-qPCR. Cell Counting Kit-8 (CCK-8) assay, cell migration and cell cycle analysis were performed to evaluate the effects of miR-936 on the growth of HCC cells. The targets of miR-936 were predicted using the miRDB database and confirmed by luciferase reporter experiments. The protein expression of targets was determined by western blot. The results showed that miR-936 was significantly decreased in HCC tissues and cell lines. Low expression of miR-936 was associated with the advance progression and poor survival of HCC patients (P = 0.0036). Functional study revealed that overexpression of miR-936 inhibited the proliferation, migration (decreased to ∼0.26 fold) and induced cell cycle arrested in G1 phase (from 35.3% to 44.7%) of HCC cells. Additionally, miR-936 targeted the 3′-untranslated region (UTR) of jagged-1 (JAG1) and reduced the expression of JAG1 (decreased to ∼0.35 fold). JAG1 was found to be up-regulated in HCC tissues and was inversely correlated with the expression of miR-936 (Pearson r = −0.4633; P = 0.0007). The anti-cancer effects of miR-936 on the proliferation of HCC cells were partially reversed by the rescue of JAG1. Therefore, these results suggested that miR-936 might be a potential target for HCC treatment.
Collapse
Affiliation(s)
- Junmei Tian
- Nutritional Department, Luoyang Central Hospital Affiliated Zhengzhou University, Luoyang, Henan, People's Republic of China
| | - Yongfei Zhao
- Nutritional Department, Luoyang Central Hospital Affiliated Zhengzhou University, Luoyang, Henan, People's Republic of China
| | - Li Li
- Nutritional Department, Luoyang Central Hospital Affiliated Zhengzhou University, Luoyang, Henan, People's Republic of China
| | - Yanling Cui
- Nutritional Department, Kaifeng Central Hospital, Kaifeng, Henan, People's Republic of China
| | - Yang Wu
- Oncology Department, Luoyang Central Hospital Affiliated Zhengzhou University, Luoyang, Henan, People's Republic of China
| |
Collapse
|
56
|
朱 慧, 王 坤, 杨 磊, 徐 晴, 任 冯, 刘 向. [ Yanghe Pingchuan granule promotes BMSCs homing in asthmatic rats by upregulating miR-139-5p and downregulating Notch1/Hes1 pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1703-1711. [PMID: 33380402 PMCID: PMC7835696 DOI: 10.12122/j.issn.1673-4254.2020.12.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To observe the effect of Yanghe Pingchuan (YHPC) granule on miR-139-5p, Notch1/Hes1 pathway and homing of bone marrow-derived mesenchymal stem cells (BMSCs) in asthmatic rats. METHODS Fifty SD rats were randomized divided into normal control (NC) group, asthmatic model group, BMSCs transplantation group, BMSCs + dexamethasone (0.0625 mg/kg daily) group, and BMSCs+YHPC granule (3.5 g/kg daily) group. In all but the normal control group, asthmatic rat models were established by ovalbumin challenge, and BMSCs (1×106/mL) transplantation via the tail vein was performed in the latter 3 groups on last day of ovalbumin challenge. In all the groups, lung pathologies of the rats were evaluated using HE staining after the treatments. Flow cytometry was employed to detect pulmonary expression of CXCR4 protein, and ELISA was used to determine the expressions of interferon-γ (IFN-γ) and interleukin-4 (IL-4) in the lung tissue. The expressions of CXCR4, Notch1 and Hes1 in bronchial epithelial cells was examined using immunofluorescence assay. RT-PCR was used to detect the expressions of miR-139-5p, Notch1, Jagged1, RBP-J and Hes1 mRNAs, and the protein expressions of Notch1, Jagged1 and Hes1 were detected with Western blotting. RESULTS Compared with the normal control rats, the asthmatic rats exhibited significantly increased expressions of CXCR4, IL-4, Notch1, Jagged1, RBP-J, and Hes1 mRNA and Notch1, Jagged1, and Hes1 proteins and lowered expressions of INF-γ mRNA and miR-139-5p in the lung tissues (P < 0.05 or 0.01). Compared with those in the asthmatic model group, the mRNA expressions of CXCR4, IFN-γ, and miR-139-5p increased and the expressions of IL-4, Notch1, Jagged1, RBP-J, and Hes1 mRNA and Notch1, Jagged1, and Hes1 proteins decreased significantly in the 3 groups with BMSCs transplantation (P < 0.05 or 0.01). The rats in BMSCs+YHPC granule group showed significantly higher CXCR4, IFN-γ, and miR-139-5p mRNA expressions and lower IL-4 and Notch1 mRNA expressions than those in BMSCs transplantation group (P < 0.05). CONCLUSIONS YHPC granule can enhance the inhibitory effect of BMSCs homing on Th2 inflammatory response in asthmatic rats by up-regulating miR-139-5p and down-regulating Notch1/Hes1 pathway.
Collapse
Affiliation(s)
- 慧志 朱
- 安徽中医药大学第一附属医院,安徽 合肥 230031Department of Respiratory Medicine, First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230031, China
| | - 坤 王
- 安徽中医药大学研究生院,安徽 合肥 230031Graduate School, Anhui University of Chinese Medicine, Hefei 230031, China
| | - 磊 杨
- 安徽中医药大学研究生院,安徽 合肥 230031Graduate School, Anhui University of Chinese Medicine, Hefei 230031, China
| | - 晴雯 徐
- 安徽中医药大学研究生院,安徽 合肥 230031Graduate School, Anhui University of Chinese Medicine, Hefei 230031, China
| | - 冯春 任
- 安徽中医药大学研究生院,安徽 合肥 230031Graduate School, Anhui University of Chinese Medicine, Hefei 230031, China
| | - 向国 刘
- 安徽中医药大学中西医结合学院,安徽 合肥 230031College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230031, China
| |
Collapse
|