51
|
Wibowo YG, Ramadan BS, Taher T, Khairurrijal K. Advancements of Nanotechnology and Nanomaterials in Environmental and Human Protection for Combatting the COVID-19 During and Post-pandemic Era: A Comprehensive Scientific Review. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023:1-24. [PMID: 37363141 PMCID: PMC10171735 DOI: 10.1007/s44174-023-00086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 06/28/2023]
Abstract
In December 2019, an outbreak of unknown pneumonia emerged in Wuhan City, Hubei Province, China. It was later identified as the SARS-CoV-2 virus and has since infected over 9 million people in more than 213 countries worldwide. Massive papers on the topic of SARS-CoV-2 that have already been published are necessary to be analyzed and discussed. This paper used the combination of systematic literature network analysis and content analysis to develop a comprehensive discussion related to the use of nanotechnology and materials in environmental and human protection. Its is shown that various efforts have been made to control the transmission of this pandemic. Nanotechnology plays a crucial role in modern vaccine design, as nanomaterials are essential tools for antigen delivery, adjuvants, and mimics of viral structures. In addition, nanomaterials and nanotechnology also reported a crucial role in environmental protection for defence and treating the pandemic. To eradicate pandemics now and in the future, successful treatments must enable rapid discovery, scalable manufacturing, and global distribution. In this review, we discuss the current approaches to COVID-19 development and highlight the critical role of nanotechnology and nanomaterials in combating the virus in the human body and the environment.
Collapse
Affiliation(s)
- Yudha Gusti Wibowo
- Department of Mining Engineering, Institut Teknologi Sumatrea, Lampung, 35365 Indonesia
| | | | - Tarmizi Taher
- Department of Environmental Engineering, Institut Teknologi Sumatera, Lampung, 35365 Indonesia
| | - Khairurrijal Khairurrijal
- Department of Physics, Institut Teknologi Sumatera, Lampung, 35365 Indonesia
- Department of Physics, Institut Teknologi Bandung, Bandung, 40132 Indonesia
| |
Collapse
|
52
|
Słota D, Piętak K, Florkiewicz W, Jampilek J, Tomala A, Urbaniak MM, Tomaszewska A, Rudnicka K, Sobczak-Kupiec A. Clindamycin-Loaded Nanosized Calcium Phosphates Powders as a Carrier of Active Substances. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091469. [PMID: 37177013 PMCID: PMC10180150 DOI: 10.3390/nano13091469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Bioactive calcium phosphate ceramics (CaPs) are one of the building components of the inorganic part of bones. Synthetic CaPs are frequently used as materials for filling bone defects in the form of pastes or composites; however, their porous structure allows modification with active substances and, thus, subsequent use as a drug carrier for the controlled release of active substances. In this study, four different ceramic powders were compared: commercial hydroxyapatite (HA), TCP, brushite, as well as HA obtained by wet precipitation methods. The ceramic powders were subjected to physicochemical analysis, including FTIR, XRD, and determination of Ca/P molar ratio or porosity. These techniques confirmed that the materials were phase-pure, and the molar ratios of calcium and phosphorus elements were in accordance with the literature. This confirmed the validity of the selected synthesis methods. CaPs were then modified with the antibiotic clindamycin. Drug release was determined on HPLC, and antimicrobial properties were tested against Staphylococcus aureus. The specific surface area of the ceramic has been demonstrated to be a factor in drug release efficiency.
Collapse
Affiliation(s)
- Dagmara Słota
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Karina Piętak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Wioletta Florkiewicz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Tomala
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Mateusz M Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
- Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Łódź, Poland
| | - Agata Tomaszewska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
- Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Łódź, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| |
Collapse
|
53
|
El-Borlsy H, Hanafy NAN, El-Kemary MA. Development and application of naturally derived, cost-effective CQDs with cancer targeting potential. Cell Biol Int 2023; 47:808-822. [PMID: 36640423 DOI: 10.1002/cbin.11986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/06/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
Carbon quantum dots (CQDs) derived from natural sources have obtained potential interest in biomedical imaging and therapy because of their excellent biocompatibility properties, which include water solubility, simple synthesis and low cytotoxicity. Here the cytotoxicity of ethylene-diamine doped carbon quantum dots (N-CQDs) delivered to breast cancer MCF-7 cells was investigated. Folic acid was used to raise folate recognition and increase FA-NCQD accumulation in the cells, then apoptosis was assayed using nuclear fragmentation, acridine orange labeling, fluorescence imaging, flow cytometry, and caspase 3 expression. The data show that functionalization of these CQDs, derived from a natural source, have potential application in eliminating cancer cells, as shown here for the invasive breast cancer cells, MCF-7. This nano-delivery system provides a novel target therapy possibility therapeutic approach for cancer cells.
Collapse
Affiliation(s)
- Hanaa El-Borlsy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nemany A N Hanafy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Maged A El-Kemary
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
54
|
Das C, Sillanpää M, Zaidi SA, Khan MA, Biswas G. Current trends in carbon-based quantum dots development from solid wastes and their applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45528-45554. [PMID: 36809626 PMCID: PMC9942668 DOI: 10.1007/s11356-023-25822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Urbanization and a massive population boom have immensely increased the solid wastes (SWs) generation and are expected to reach 3.40 billion tons by 2050. In many developed and emerging nations, SWs are prevalent in both major and small cities. As a result, in the current context, the reusability of SWs through various applications has taken on added importance. Carbon-based quantum dots (Cb-QDs) and their many variants are synthesized from SWs in a straightforward and practical method. Cb-QDs are a new type of semiconductor that has attracted the interest of researchers due to their wide range of applications, which include everything from energy storage, chemical sensing, to drug delivery. This review is primarily focused on the conversion of SWs into useful materials, which is an essential aspect of waste management for pollution reduction. In this context, the goal of the current review is to investigate the sustainable synthesis routes of carbon quantum dots (CQDs), graphene quantum dots (GQDs), and graphene oxide quantum dots (GOQDs) from various types SWs. The applications of CQDs, GQDs, and GOQDs in the different areas are also been discussed. Finally, the challenges in implementing the existing synthesis methods and future research directions are highlighted.
Collapse
Affiliation(s)
- Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University, West Bengal, Cooch Behar, 736101, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Moonis Ali Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, West Bengal, Cooch Behar, 736101, India
| |
Collapse
|
55
|
Wang Z, Han J, Guo Z, Wu H, Liu Y, Wang W, Zhang C, Liu J. Ginseng-based carbon dots inhibit the growth of squamous cancer cells by increasing ferroptosis. Front Oncol 2023; 13:1097692. [PMID: 36969027 PMCID: PMC10036825 DOI: 10.3389/fonc.2023.1097692] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Recent studies indicated that Ginseng potentiate cancer treatments. Ginseng-based carbon dots (GCDs) might possess properties to kill cancer cells and inhibit malignant tumor development and invasion. This study aimed to prepare GCDs, examine their effects on cancer cell growth and invasion, and explore the mechanisms involved. METHODS GCDs were synthesized, purified, and characterized. Cells were cultured with GCDs and were tested for growth, invasiveness, and wound healing. RNA was extracted for transcriptomics analysis. Protein expression was evaluated using western blot and immunohistochemistry. Mice were injected with cancer cells and treated with PBS or GCDs. Tumor volume was evaluated. RESULTS GCDs were successfully synthesized and purified. The solution was yellow under sunlight and fluorescent blue under ultraviolet light. Electron microscopy showed GCDs with a uniform shape without apparent aggregation and an average diameter of about 4 nm. GCDs inhibited Cal-27, SCC-25, and SCC-7 cancer cell growth at concentrations of >250-300 μg/mL, while GCDs inhibited the non-cancerous HaCaT cells at concentrations >400 μg/mL. Immunofluorescence showed that GCDs could enter the cells. Transcriptomics revealed 552 downregulated mRNAs and 338 upregulated ones, including mRNAs involved in the oxidative phosphorylation and ferroptosis pathways. GCDs induced the ferroptosis of cancer cells, as shown by decreased GPX-4 and increased COX-2. GCDs decreased cell invasion and migration. In vivo, GCDs decreased tumor growth without apparent organ toxicity and promoted CD4+ T cell infiltration in the tumor. CONCLUSION GCDs appear to possess anticancer properties by increasing ferroptosis, resulting in cancer cell growth inhibition in vitro and in vivo.
Collapse
Affiliation(s)
- Zilin Wang
- Department of Oral Maxillofacial - Head & Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Han
- Department of Oral Maxillofacial - Head & Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyong Guo
- Department of Oral Maxillofacial - Head & Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
| | - Hao Wu
- Department of Oral Maxillofacial - Head & Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yige Liu
- Department of Oral Maxillofacial - Head & Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
| | - Wenying Wang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Chenping Zhang
- Department of Oral Maxillofacial - Head & Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiannan Liu
- Department of Oral Maxillofacial - Head & Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
56
|
A novel fluorescent biomimetic sensor based on cerium, nitrogen co-doped carbon quantum dots embedded in cobalt-based metal organic framework@molecularly imprinted polymer for selective and sensitive detection of oxytetracycline. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
57
|
Wang X, Wu T, Yang Y, Zhou L, Wang S, Liu J, Zhao Y, Zhang M, Zhao Y, Qu H, Kong H, Zhang Y. Ultrasmall and highly biocompatible carbon dots derived from natural plant with amelioration against acute kidney injury. J Nanobiotechnology 2023; 21:63. [PMID: 36814298 PMCID: PMC9946873 DOI: 10.1186/s12951-023-01795-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) refers to a tricky clinical disease, known by its high morbidity and mortality, with no real specific medicine for AKI. The carbonization product from Pollen Typhae (i.e., Pu-huang in China) has been extensively employed in clinic, and it is capable of relieving the renal damage and other diseases in China since acient times. RESULTS Inspired by the carbonization process of Traditional Chinese Medicine (TCM), a novel species of carbon dots derived from Pollen Typhae (PT-CDs) was separated and then collected using a one-pot pyrolysis method. The as-prepared PT-CDs (4.85 ± 2.06 nm) with negative charge and abundant oxygenated groups exhibited high solubility, and they were stable in water. Moreover, the rhabdomyolysis (RM)-induced AKI rat model was used, and it was first demonstrated that PT-CDs had significant activity in improving the level of BUN and CRE, urine volume and kidney index, and histopathological morphology in RM-induced AKI rats. It is noteworthy that interventions of PT-CDs significantly reduced degree of inflammatory reaction and oxidative stress, which may be correlated with the basial potential mechanism of anti-AKI activities. Furthermore, cytotoxicity assay and biosafety evaluation exhibited high biocompatibility of PT-CDs. CONCLUSION This study offers a novel relieving strategy for AKI based on PT-CDs and suggests its potential to be a related candidate for clinical applications.
Collapse
Affiliation(s)
- Xiaoke Wang
- grid.477982.70000 0004 7641 2271Encephalopathy Hospital, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000 China
| | - Tong Wu
- grid.24695.3c0000 0001 1431 9176School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yingxin Yang
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Long Zhou
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Shuxian Wang
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Jiaxing Liu
- grid.24695.3c0000 0001 1431 9176Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yafang Zhao
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Meiling Zhang
- grid.412073.3Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100020 China
| | - Yan Zhao
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Huihua Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China. .,Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
58
|
Bazazi S, Hosseini SP, Hashemi E, Rashidzadeh B, Liu Y, Saeb MR, Xiao H, Seidi F. Polysaccharide-based C-dots and polysaccharide/C-dot nanocomposites: fabrication strategies and applications. NANOSCALE 2023; 15:3630-3650. [PMID: 36728615 DOI: 10.1039/d2nr07065k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
C-dots are a new class of materials with vast applications. The synthesis of bio-based C-dots has attracted increasing attention in recent years. Polysaccharides being the most abundant natural materials with high biodegradability and no toxicity have been the focus of researchers for the synthesis of C-dots. C-dots obtained from polysaccharides are generally fabricated via thermal procedures, carbonization, and microwave pyrolysis. Small size, photo-induced electron transfer (PET), and highly adjustable luminosity behavior are the most important physical and chemical properties of C-dots. However, C-dot/polysaccharide composites can be introduced as a new generation of composites that combine the features of both C-dots and polysaccharides having a wide range of applications in biomedicines, biosensors, drug delivery systems, etc. This review demonstrates the features, raw materials, and methods used for the fabrication of C-dots derived from different polysaccharides. Furthermore, the properties, applications, and synthesis conditions of various C-dot/polysaccharide composites are discussed in detail.
Collapse
Affiliation(s)
- Sina Bazazi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Seyedeh Parisa Hosseini
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Esmaeil Hashemi
- Department of Chemistry, Faculty of Science, University of Guilan, PO Box 41335-1914, Rasht, Iran
| | | | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 Canada.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
59
|
Zhang Y, Chen Y, Bai X, Cheng G, Cao T, Dong L, Zhao J, Zhang Y, Qu H, Kong H, Zhao Y. Glycyrrhizae radix et Rhizoma-Derived Carbon Dots and Their Effect on Menopause Syndrome in Ovariectomized Mice. Molecules 2023; 28:molecules28041830. [PMID: 36838814 PMCID: PMC9962818 DOI: 10.3390/molecules28041830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
With the extension of the human life span and the increasing pressure of women's work and life, menopause syndrome (MPS) refers to a problem that puzzles almost all women worldwide. Hormone replacement treatment (HRT) can effectively mitigate the symptoms but can also exert adverse effects to a certain extent. Glycyrrhizae radix et rhizome (GRR) is commonly made into a charcoal processed product, termed GRR Carbonisatas (GRRC), for use in traditional Chinese medicine (TCM). GRRC is widely used to treat MPS and other gynecological diseases. In this study, GRRC was prepared through pyrolysis. Subsequently, GRR-derived carbon dots (GRR-CDs) were purified through dialysis and characterized using transmission electron microscopy, high-resolution transmission electron microscopy, Fourier-transform infrared, ultraviolet, fluorescence, X-ray photoelectron microscopy, and high-performance liquid chromatography. The effects of GRR-CDs on MPS were examined and confirmed using ovariectomized female mice models. The GRR-CDs ranged from 1.0 to 3.0 nm in diameter and with multiple surface chemical groups, as indicated by the results. GRR-CDs can elevate the estradiol (E2) level of healthy female mice. Moreover, GRR-CDs can alleviate MPS using the typical ovariectomized mice model, as confirmed by elevating the estradiol (E2) level and reducing the degree of follicle stimulating hormone (FSH) and luteinizing hormone (LH) and raising the degree of uterine atrophy. The results of this study suggested that GRR-CDs may be a potential clinical candidate for the treatment of MPS, which also provides a possibility for nanodrugs to treat hormonal diseases.
Collapse
Affiliation(s)
- Ying Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yumin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guoliang Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tianyou Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liyang Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huihua Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (H.K.); (Y.Z.); Tel.: +86-010-6248-6705 (Y.Z.); Fax: +86-010-6428-6821 (Y.Z.)
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (H.K.); (Y.Z.); Tel.: +86-010-6248-6705 (Y.Z.); Fax: +86-010-6428-6821 (Y.Z.)
| |
Collapse
|
60
|
Image-guided drug delivery in nanosystem-based cancer therapies. Adv Drug Deliv Rev 2023; 192:114621. [PMID: 36402247 DOI: 10.1016/j.addr.2022.114621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/18/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
The past decades have shown significant advancements in the development of solid tumor treatment. For instance, implementation of nanosystems for drug delivery has led to a reduction in side effects and improved delivery to the tumor region. However, clinical translation has faced challenges, as tumor drug levels are still considered to be inadequate. Interdisciplinary research has resulted in the development of more advanced drug delivery systems. These are coined "smart" due to the ability to be followed and actively manipulated in order to have better control over local drug release. Therefore, image-guided drug delivery can be a powerful strategy to improve drug activity at the target site. Being able to visualize the inflow of the administered smart nanosystem within the tumor gives the potential to determine the right moment to apply the facilitator to initiate drug release. Here we provide an overview of available nanosystems, imaging moieties, and imaging techniques. We discuss preclinical application of these smart drug delivery systems, the strength of image-guided drug delivery, and the future of personalized treatment.
Collapse
|
61
|
Alam MB, Minocha T, Yadav SK, Parmar AS. Therapeutic Potential of Chlorophyll Functionalized Carbon Quantum Dots against Cervical Cancer. ChemistrySelect 2022. [DOI: 10.1002/slct.202204562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Md Bayazeed Alam
- Department of Physics Indian Institute of Technology (BHU) Varanasi 221005 India
| | - Tarun Minocha
- Department of Zoology Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Sanjeev K. Yadav
- Department of Zoology Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Avanish Singh Parmar
- Department of Physics Indian Institute of Technology (BHU) Varanasi 221005 India
| |
Collapse
|
62
|
Kazeminava F, Javanbakht S, Nouri M, Gholizadeh P, Nezhad-Mokhtari P, Ganbarov K, Tanomand A, Kafil HS. Gentamicin-loaded chitosan/folic acid-based carbon quantum dots nanocomposite hydrogel films as potential antimicrobial wound dressing. J Biol Eng 2022; 16:36. [PMID: 36544213 PMCID: PMC9773523 DOI: 10.1186/s13036-022-00318-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND To provide effective healing in the wound, various carbohydrate polymers are commonly utilized that are highly potent platforms as wound dressing films. In this work, novel antibacterial flexible polymeric hydrogel films were designed via crosslinking polymeric chitosan (CS) with folic acid-based carbon quantum dots (CQDs). To end this, folic acid as a bio-precursor is used to synthesize CQDs through the hydrothermal technique. The synthesized CQDs as a crosslinking agent was performed at different concentrations to construct nanocomposite hydrogel films via the casting technique. Also, gentamicin (GM), L-Arginine and glycerol were supplemented in the formulation of nanocomposite since their antibiotic, bioactivity and plasticizing ability, respectively. RESULTS The successful construction of films were verified with different methods (FT-IR, UV-Vis, PL, SEM, and AFM analyses). The GM release profile displayed a controlled release manner over 48 h with a low initial burst release in the simulated wound media (PBS, pH 7.4). Antibacterial and in vitro cytotoxicity results showed a significant activity toward different gram-positive and negative bacterial strains (about 2.5 ± 0.1 cm inhibition zones) and a desired cytocompatibility against Human skin fibroblast (HFF-1) cells (over 80% cell viability), respectively. CONCLUSION The obtained results recommend CQDs-crosslinked CS (CS/CQD) nanocomposite as a potent antimicrobial wound dressing.
Collapse
Affiliation(s)
- Fahimeh Kazeminava
- grid.412888.f0000 0001 2174 8913Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Javanbakht
- grid.412888.f0000 0001 2174 8913Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- grid.412888.f0000 0001 2174 8913Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- grid.412888.f0000 0001 2174 8913Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Nezhad-Mokhtari
- grid.412888.f0000 0001 2174 8913Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khudaverdi Ganbarov
- grid.37600.320000 0001 1010 9948Research Laboratory of Microbiology and Virology, Baku State University, Baku, Azerbaijan
| | - Asghar Tanomand
- grid.449862.50000 0004 0518 4224Department of Microbiology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Hossein Samadi Kafil
- grid.412888.f0000 0001 2174 8913Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
63
|
Zhang M, Han S, Niu X, Li H, Zhang D, Fan H, Liu X, Wang K. PPy and CQDs‐doped novel CuO nanocomposites for enhanced antibacterial activity against drug‐resistant bacteria.**. ChemistrySelect 2022. [DOI: 10.1002/slct.202203636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Mengmeng Zhang
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Sha Han
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Xiaohui Niu
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Hongxia Li
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Deyi Zhang
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Haiyan Fan
- Chemistry Department Nazarbayev University Astana 010000 Kazakhstan
| | - Xiaoyu Liu
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Kunjie Wang
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province Lanzhou 730050 China
| |
Collapse
|
64
|
Kolanowska A, Dzido G, Krzywiecki M, Tomczyk MM, Łukowiec D, Ruczka S, Boncel S. Carbon Quantum Dots from Amino Acids Revisited: Survey of Renewable Precursors toward High Quantum-Yield Blue and Green Fluorescence. ACS OMEGA 2022; 7:41165-41176. [PMID: 36406556 PMCID: PMC9670729 DOI: 10.1021/acsomega.2c04751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Carbon quantum dots (CQDs) were synthesized via a green, one-step hydrothermal method. As CQD precursors, nine amino acids of different structural descriptors (negatively/positively charged in water, polar, hydrophobic, sulfur-containing, and other/complex ones) were surveyed: Asp, Cys, Gly, His, Leu, Lys, Phe, Pro, and Ser. The reactions were performed in an autoclave in the presence of citric acid at 180 °C for 24 h and yielded core-shell CQDs. CQDs were comprehensively characterized by transmission electron microscopy, dynamic light scattering, Raman, UV/Vis, infrared, X-ray photoelectron spectroscopy, and fluorescence spectroscopy. At the excitation wavelength of λex = 350 nm, Cys-, Phe-, Leu-, and Lys-based CQDs displayed the highest quantum yield blue fluorescence-90 ± 5, 90 ± 4, 87 ± 5, and 67 ± 3%, respectively-superior to the conventional fluorescent dyes. Strikingly, for Lys- and Phe-CQDs, dissimilar trends in the excitation-emission wavelength relationships were identified, that is, constantly strong red shifts versus excitation wavelength-independent emission. Cys- and Lys-CQDs were water-dispersible toward the narrow unimodal distribution of hydrodynamic diameters-0.6 and 2.5 nm, respectively. Additionally, Lys- and Cys-CQDs, with high absolute zeta potential values, formed stable aqueous colloids in a broad range of pH (2, 7, and 12). The results constitute important premises for water-based applications of CQDs, such as bioimaging or photocatalysis.
Collapse
Affiliation(s)
- Anna Kolanowska
- Faculty
of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry
and Biotechnology, Silesian University of
Technology, Krzywosutego 4, 44-100Gliwice, Poland
- Faculty
of Chemistry, Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Strzody 9, 44-100Gliwice, Poland
- Biotechnology
Centre, Silesian University of Technology, Krzywoustego 8, 44-100Gliwice, Poland
| | - Grzegorz Dzido
- Faculty
of Chemistry, Department of Chemical Engineering and Process Design, Silesian University of Technology, Strzody 7, 44-100Gliwice, Poland
| | - Maciej Krzywiecki
- Institute
of Physics—CSE, Silesian University
of Technology, Konarskiego
22B, 44-100Gliwice, Poland
| | - Mateusz M. Tomczyk
- Faculty
of Chemistry, Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Strzody 9, 44-100Gliwice, Poland
| | - Dariusz Łukowiec
- Materials
Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100Gliwice, Poland
| | - Szymon Ruczka
- Faculty
of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry
and Biotechnology, Silesian University of
Technology, Krzywosutego 4, 44-100Gliwice, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100Gliwice, Poland
| | - Sławomir Boncel
- Faculty
of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry
and Biotechnology, Silesian University of
Technology, Krzywosutego 4, 44-100Gliwice, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100Gliwice, Poland
| |
Collapse
|
65
|
Jiwanti PK, Wardhana BY, Sutanto LG, Dewi DMM, Putri IZD, Savitri INI. Recent Development of Nano-Carbon Material in Pharmaceutical Application: A Review. Molecules 2022; 27:7578. [PMID: 36364403 PMCID: PMC9654677 DOI: 10.3390/molecules27217578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Carbon nanomaterials have attracted researchers in pharmaceutical applications due to their outstanding properties and flexible dimensional structures. Carbon nanomaterials (CNMs) have electrical properties, high thermal surface area, and high cellular internalization, making them suitable for drug and gene delivery, antioxidants, bioimaging, biosensing, and tissue engineering applications. There are various types of carbon nanomaterials including graphene, carbon nanotubes, fullerenes, nanodiamond, quantum dots and many more that have interesting applications in the future. The functionalization of the carbon nanomaterial surface could modify its chemical and physical properties, as well as improve drug loading capacity, biocompatibility, suppress immune response and have the ability to direct drug delivery to the targeted site. Carbon nanomaterials could also be fabricated into composites with proteins and drugs to reduce toxicity and increase effectiveness in the pharmaceutical field. Thus, carbon nanomaterials are very effective for applications in pharmaceutical or biomedical systems. This review will demonstrate the extraordinary properties of nanocarbon materials that can be used in pharmaceutical applications.
Collapse
Affiliation(s)
- Prastika K. Jiwanti
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Brasstira Y. Wardhana
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Laurencia G. Sutanto
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Diva Meisya Maulina Dewi
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Ilmi Nur Indira Savitri
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
66
|
El-brolsy HMEM, Hanafy NAN, El-Kemary MA. Fighting Non-Small Lung Cancer Cells Using Optimal Functionalization of Targeted Carbon Quantum Dots Derived from Natural Sources Might Provide Potential Therapeutic and Cancer Bio Image Strategies. Int J Mol Sci 2022; 23:13283. [PMID: 36362075 PMCID: PMC9658332 DOI: 10.3390/ijms232113283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is an important sub-type of lung cancer associated with poor diagnosis and therapy. Innovative multi-functional systems are urgently needed to overcome the invasiveness of NSCLC. Carbon quantum dots (CQDs) derived from natural sources have received interest for their potential in medical bio-imaging due to their unique properties, which are characterized by their water solubility, biocompatibility, simple synthesis, and low cytotoxicity. In the current study, ethylene-diamine doped CQDs enhanced their cytotoxicity (98 ± 0.4%, 97 ± 0.38%, 95.8 ± 0.15%, 86 ± 0.15%, 12.5 ± 0.14%) compared to CQDs alone (99 ± 0.2%, 98 ± 1.7%, 96 ± 0.8%, 93 ± 0.38%, 91 ± 1.3%) at serial concentrations (0.1, 1, 10, 100, 1000 μg/mL). In order to increase their location in a specific tumor site, folic acid was used to raise their functional folate recognition. The apoptotic feature of A549 lung cells exposed to N-CQDs and FA-NCQDs was characterized by a light orange-red color under fluorescence microscopy. Additionally, much nuclear fragmentation and condensation were seen. Flow cytometry results showed that the percentage of cells in late apoptosis and necrosis increased significantly in treated cells to (19.7 ± 0.03%), (27.6 ± 0.06%) compared to untreated cells (4.6 ± 0.02%), (3.5 ± 0.02%), respectively. Additionally, cell cycle arrest showed a strong reduction in cell numbers in the S phase (14 ± 0.9%) compared to untreated cells (29 ± 0.5%). Caspase-3 levels were increased significantly in A549 exposed to N-CQDs (2.67 ± 0.2 ng/mL) and FA-NCQDs (3.43 ± 0.05 ng/mL) compared to untreated cells (0.34 ± 0.04 ng/mL). The functionalization of CQDs derived from natural sources has proven their potential application to fight off non-small lung cancer.
Collapse
|
67
|
Selvaraju N, Ganesh PS, Palrasu V, Venugopal G, Mariappan V. Evaluation of Antimicrobial and Antibiofilm Activity of Citrus medica Fruit Juice Based Carbon Dots against Pseudomonas aeruginosa. ACS OMEGA 2022; 7:36227-36234. [PMID: 36278088 PMCID: PMC9583329 DOI: 10.1021/acsomega.2c03465] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is one of the common immortal pathogens that cause intense chronic infections in low-immunity patients, significantly evading the immune system and suppressing the respiratory system. This work reports on the synthesis of prominent members of the carbon family, carbon quantum dots (CQDs), from a natural carbon precursor, Citrus medica (C. medica) fruit, and their inhibiting property against P. aeruginosa. CQDs synthesized by the conventional hydrothermal method with an average particle size of 4.5 nm exhibit renowned antimicrobial properties. To enhance the properties of the CQDs, nitrogen was doped using ammonium hydroxide as a nitrogen source, and absorption and fluorescence studies and the elemental composition of CQDs were also reported. CQDs potentially inhibited the growth of bacteria at the lowest concentration level of 1.25% (v/v). Similarly, CQDs moderately inhibited biofilm formation at the concentration level of 0.07% (v/v) for both clinical and control strains of P. aeruginosa. A fluorescence microscopy study revealed that the treated strain shows a moderately reduced biofilm formation when compared to the control strain of P. aeruginosa PAO1.
Collapse
Affiliation(s)
- Nithya Selvaraju
- Advanced
Nanomaterials and System Lab, Department of Materials Science, School
of Technology, Central University of Tamil
Nadu, Thiruvarur 610005, Tamil Nadu, India
| | - Pitchaipillai Sankar Ganesh
- Department
of Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences
(SIMATS), Velappanchavadi, PH Road, Chennai 600077, India
| | - Veeramurali Palrasu
- Department
of Electronics, Government Arts College, Kulithalai, Karur District, 639120, Tamil Nadu, India
| | - Gunasekaran Venugopal
- Advanced
Nanomaterials and System Lab, Department of Materials Science, School
of Technology, Central University of Tamil
Nadu, Thiruvarur 610005, Tamil Nadu, India
| | - Vanitha Mariappan
- Center
for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
68
|
Wu S, Yin Y, Sun C, Song W. Efficient Synthesis of Highly Photo‐stable N‐doped Carbon Quantum Dots and their Applications in Detection and Cellular Imaging of Mercury Ions. ChemistrySelect 2022. [DOI: 10.1002/slct.202202540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shunwei Wu
- School of Chemical Engineering Qinghai University Xining 810016 China
| | - Yongzheng Yin
- School of Chemical Engineering Qinghai University Xining 810016 China
| | - Chunyan Sun
- School of Chemical Engineering Qinghai University Xining 810016 China
| | - Weijun Song
- School of Chemical Engineering Qinghai University Xining 810016 China
| |
Collapse
|
69
|
Masanam HB, Perumal G, Krishnan S, Singh SK, Jha NK, Chellappan DK, Dua K, Gupta PK, Narasimhan AK. Advances and opportunities in nanoimaging agents for the diagnosis of inflammatory lung diseases. Nanomedicine (Lond) 2022; 17:1981-2005. [PMID: 36695290 DOI: 10.2217/nnm-2021-0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The development of rapid, noninvasive diagnostics to detect lung diseases is a great need after the COVID-2019 outbreak. The nanotechnology-based approach has improved imaging and facilitates the early diagnosis of inflammatory lung diseases. The multifunctional properties of nanoprobes enable better spatial-temporal resolution and a high signal-to-noise ratio in imaging. Targeted nanoimaging agents have been used to bind specific tissues in inflammatory lungs for early-stage diagnosis. However, nanobased imaging approaches for inflammatory lung diseases are still in their infancy. This review provides a solution-focused approach to exploring medical imaging technologies and nanoprobes for the detection of inflammatory lung diseases. Prospects for the development of contrast agents for lung disease detection are also discussed.
Collapse
Affiliation(s)
- Hema Brindha Masanam
- Advanced Nano-Theranostics (ANTs), Biomaterials Lab, Department of Biomedical Engineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Govindaraj Perumal
- Department of Conservative Dentistry & Endodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Velappanchavadi, Chennai, 600 077, India.,Department of Biomedical Engineering, Rajalakshmi Engineering College, Thandalam, Chennai, 602 105, India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences & Research (SBSR), Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India.,Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India.,Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Ashwin Kumar Narasimhan
- Advanced Nano-Theranostics (ANTs), Biomaterials Lab, Department of Biomedical Engineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, 603 203, India
| |
Collapse
|
70
|
Nazli A, He DL, Liao D, Khan MZI, Huang C, He Y. Strategies and progresses for enhancing targeted antibiotic delivery. Adv Drug Deliv Rev 2022; 189:114502. [PMID: 35998828 DOI: 10.1016/j.addr.2022.114502] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 01/24/2023]
Abstract
Antibiotic resistance is a global health issue and a potential risk for society. Antibiotics administered through conventional formulations are devoid of targeting effect and often spread to various undesired body sites, leading to sub-lethal concentrations at the site of action and thus resulting in emergence of resistance, as well as side effects. Moreover, we have a very slim antibiotic pipeline. Drug-delivery systems have been designed to control the rate, time, and site of drug release, and innovative approaches for antibiotic delivery provide a glint of hope for addressing these issues. This review elaborates different delivery strategies and approaches employed to overcome the limitations of conventional antibiotic therapy. These include antibiotic conjugates, prodrugs, and nanocarriers for local and targeted antibiotic release. In addition, a wide range of stimuli-responsive nanocarriers and biological carriers for targeted antibiotic delivery are discussed. The potential advantages and limitations of targeted antibiotic delivery strategies are described along with possible solutions to avoid these limitations. A number of antibiotics successfully delivered through these approaches with attained outcomes and potentials are reviewed.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - David L He
- College of Chemistry, University of California, Berkeley, CA 94720, United States
| | - Dandan Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | | | - Chao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
71
|
Sahu Y, Hashmi A, Patel R, Singh AK, Susan MABH, Carabineiro SAC. Potential Development of N-Doped Carbon Dots and Metal-Oxide Carbon Dot Composites for Chemical and Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3434. [PMID: 36234561 PMCID: PMC9565249 DOI: 10.3390/nano12193434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 05/31/2023]
Abstract
Among carbon-based nanomaterials, carbon dots (CDs) have received a surge of interest in recent years due to their attractive features such as tunable photoluminescence, cost effectiveness, nontoxic renewable resources, quick and direct reactions, chemical and superior water solubility, good cell-membrane permeability, and simple operation. CDs and their composites have a large potential for sensing contaminants present in physical systems such as water resources as well as biological systems. Tuning the properties of CDs is a very important subject. This review discusses in detail heteroatom doping (N-doped CDs, N-CDs) and the formation of metal-based CD nanocomposites using a combination of matrices, such as metals and metal oxides. The properties of N-CDs and metal-based CDs nanocomposites, their syntheses, and applications in both chemical sensing and biosensing are reviewed.
Collapse
Affiliation(s)
- Yogita Sahu
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
| | - Ayesha Hashmi
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
| | - Rajmani Patel
- Hemchand Yadav University, Durg 491001, Chhattisgarh, India
| | - Ajaya K. Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | | | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
72
|
Le N, Zhang M, Kim K. Quantum Dots and Their Interaction with Biological Systems. Int J Mol Sci 2022; 23:ijms231810763. [PMID: 36142693 PMCID: PMC9501347 DOI: 10.3390/ijms231810763] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Quantum dots are nanocrystals with bright and tunable fluorescence. Due to their unique property, quantum dots are sought after for their potential in several applications in biomedical sciences as well as industrial use. However, concerns regarding QDs’ toxicity toward the environment and other biological systems have been rising rapidly in the past decade. In this mini-review, we summarize the most up-to-date details regarding quantum dots’ impacts, as well as QDs’ interaction with mammalian organisms, fungal organisms, and plants at the cellular, tissue, and organismal level. We also provide details about QDs’ cellular uptake and trafficking, and QDs’ general interactions with biological structures. In this mini-review, we aim to provide a better understanding of our current standing in the research of quantum dots, point out some knowledge gaps in the field, and provide hints for potential future research.
Collapse
Affiliation(s)
- Nhi Le
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
| | - Min Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
- Correspondence: ; Tel.: +1-417-836-5440; Fax: +1-417-836-5126
| |
Collapse
|
73
|
Singh S, Raina D, Rishipathak D, Babu KR, Khurana R, Gupta Y, Garg K, Rehan F, Gupta SM. Quantum dots in the biomedical world: A smart advanced nanocarrier for multiple venues application. Arch Pharm (Weinheim) 2022; 355:e2200299. [PMID: 36058643 DOI: 10.1002/ardp.202200299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022]
Abstract
Quantum dots (QDs) are semiconducting nanoparticles having different optical and electrical properties when compared to larger particles. They exhibit photoluminescence when irradiated with ultraviolet light, which is due to the transition of an excited electron from the valence band to the conductance band followed by the return of the exciting electron back into the valence band. The size and material of QDs can affect their optical and other properties too. The QDs possess special attributes like high brightness, protection from photobleaching, photostability, color tunability, low toxicity, low production cost, a multiplexing limit, and a high surface-to-volume proportion, which make them a promising tool for biomedical applications. Here, in this study, we summarize the utilization of QDs in different applications including bioimaging, diagnostics, immunostaining, single-cell analysis, drug delivery, and protein detection. Moreover, we discuss the advantages and challenges of using QDs in biomedical applications when compared with other conventional tools.
Collapse
Affiliation(s)
- Siddharth Singh
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Deepika Raina
- School of Pharmacy, Graphic era hill University, Dehradun, Uttarakhand, India
| | - Dinesh Rishipathak
- Department of Pharmaceutical Chemistry, MET's Institute of Pharmacy, Nashik, Maharashtra, India
| | - Kamesh R Babu
- Department of Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Riya Khurana
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Yogesh Gupta
- Faculty of Pharmaceutical Sciences, PDM University, Bahadurgarh, Haryana, India
| | - Kartik Garg
- Faculty of Pharmaceutical Sciences, PDM University, Bahadurgarh, Haryana, India
| | - Farah Rehan
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Shraddha M Gupta
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| |
Collapse
|
74
|
Ren G, Wang Z, Tian Y, Li J, Ma Y, Zhou L, Zhang C, Guo L, Diao H, Li L, Lu L, Ma S, Wu Z, Yan L, Liu W. Targeted chemo-photodynamic therapy toward esophageal cancer by GSH-sensitive theranostic nanoplatform. Biomed Pharmacother 2022; 153:113506. [DOI: 10.1016/j.biopha.2022.113506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 11/28/2022] Open
|
75
|
Manikandan V, Lee NY. Green synthesis of carbon quantum dots and their environmental applications. ENVIRONMENTAL RESEARCH 2022; 212:113283. [PMID: 35461844 DOI: 10.1016/j.envres.2022.113283] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 05/25/2023]
Abstract
Green synthesis of scalable, high-quality, fluorescent carbon quantum dots (CQDs) from natural biomass remains attractive due to their outstanding environmental application. CQDs are an emerging class of zero-dimensional carbon nanomaterials (<10 nm) that have recently attracted much attention due to their strong optical properties, biocompatibility, nontoxicity, uniform particle size, high photostability, low-cost synthesis, and highly tunable photoluminescence. The unique properties of CQDs possess a broad range of prospective applications in a number of fields such as metal ions detection, photocatalysis, sensing, medical diagnosis, bioimaging, and drug delivery. CQD nanostructures are synthesized using various techniques such as hydrothermal method, laser ablation, microwave irradiation, electrochemical oxidation, reflux method, and ultrasonication. However, this type of fabrication approach requires several chemical reactions including oxidation, carbonization, and pyrolysis. Green synthesis of CQDs has several advantages such as the use of low-cost and non-toxic raw materials, renewable resources, simple operations, and being environment-friendly. This review article will discuss the physicochemical properties of CQDs techniques used in the production of CQDs, and the stability of CQDs along with their applications in wastewater treatment and biomedical fields.
Collapse
Affiliation(s)
- Velu Manikandan
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| |
Collapse
|
76
|
Malavika JP, Shobana C, Sundarraj S, Ganeshbabu M, Kumar P, Selvan RK. Green synthesis of multifunctional carbon quantum dots: An approach in cancer theranostics. BIOMATERIALS ADVANCES 2022; 136:212756. [PMID: 35929302 DOI: 10.1016/j.bioadv.2022.212756] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 05/26/2023]
Abstract
Carbon quantum dots (CQDs) have gained significant growing attention in the recent past due to their peculiar characteristics including smaller size, high surface area, photoluminescence, chemical stability, facile synthesis and functionalization possibilities. They are carbon nanostructures having less than 10 nm size with fluorescent properties. In recent years, the scientific community is curiously adopting biomass precursors for the preparation of CQDs over the chemical compounds. These biomass sources are sustainable, eco-friendly, inexpensive, widely available and convert waste into valuable materials. Hence in our work the fundamental understating of diverse fabrication methodologies of CQDs, and the types of raw materials employed in recent times, are all examined and correlated comprehensively. Their unique combination of remarkable properties, together with the ease with which they can be fabricated, makes CQDs as promising materials for applications in diverse biomedical fields, in particular for bio-imaging, targeted drug delivery and phototherapy for cancer treatment. The mechanism for luminescence is of considerable significance for leading the synthesis of CQDs with tunable fluorescence emission. Therefore, it is aimed to explore and provide an updated review on (i) the recent progress on the different synthesis methods of biomass-derived CQDs, (ii) the contribution of surface states or functional groups on the luminescence origin and (iii) its potential application for cancer theranostics, concentrating on their fluorescence properties. Finally, we explored the challenges in modification for the synthesis of CQDs from biomass derivatives and the future scope of CQDs in phototherapy for cancer theranostics.
Collapse
Affiliation(s)
- Jalaja Prasad Malavika
- Department of Zoology, Kongunadu Arts and Science College (Autonomous), G. N. Mills, Coimbatore 641 029, Tamil Nadu, India
| | - Chellappan Shobana
- Department of Zoology, Kongunadu Arts and Science College (Autonomous), G. N. Mills, Coimbatore 641 029, Tamil Nadu, India.
| | - Shenbagamoorthy Sundarraj
- Department of Zoology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi - 626 124, Virudhunagar District, Tamil Nadu, India.
| | - Mariappan Ganeshbabu
- Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Ponnuchamy Kumar
- Department of Animal Health and Management, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | | |
Collapse
|
77
|
Ahuja V, Bhatt AK, Varjani S, Choi KY, Kim SH, Yang YH, Bhatia SK. Quantum dot synthesis from waste biomass and its applications in energy and bioremediation. CHEMOSPHERE 2022; 293:133564. [PMID: 35007612 DOI: 10.1016/j.chemosphere.2022.133564] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Quantum dots (QDs) are getting special attention due to their commendable optical properties and applications. Conventional metal-based QDs have toxicity and non-biodegradability issues, thus it becomes necessary to search for renewable precursor molecules for QDs synthesis. In recent years, biomass-based carbon rich QDs (CQDs) have been introduced which are mainly synthesised via carbonization (pyrolysis and hydrothermal treatment). These CQDs offered higher photostability, biocompatibility, low-toxicity, and easy tunability for physicochemical properties. Exceptional optical properties become a point of attraction for its multifaceted applications in various sectors like fabrication of electrodes and solar cells, conversion of solar energy to electricity, detection of pollutants, designing biosensors, etc. In recent years, a lot of work has been done in this field. This article will summarize these advancements along in a special context to biomass-based QDs and their applications in energy and the environment.
Collapse
Affiliation(s)
- Vishal Ahuja
- Department of Biotechnology, Himachal Pradesh University, Shimla, 171005, India
| | - Arvind Kumar Bhatt
- Department of Biotechnology, Himachal Pradesh University, Shimla, 171005, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382010, Gujarat, India
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul, 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul, 05029, Republic of Korea.
| |
Collapse
|
78
|
Wang P, Wang J, Liu T, Sun Z, Gao M, Huang K, Wang X. Loquat fruit-based carbon quantum dots as an “ON-OFF” probe for fluorescent assay of MnO4- in waters based on the joint action of inner filter effect and static quenching. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
79
|
Rodwihok C, Tam TV, Choi WM, Suwannakaew M, Woo SW, Wongratanaphisan D, Kim HS. Preparation and Characterization of Photoluminescent Graphene Quantum Dots from Watermelon Rind Waste for the Detection of Ferric Ions and Cellular Bio-Imaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:702. [PMID: 35215030 PMCID: PMC8878562 DOI: 10.3390/nano12040702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Graphene quantum dots (GQDs) were synthesized using watermelon rind waste as a photoluminescent (PL) agent for ferric ion (Fe3+) detection and in vitro cellular bio-imaging. A green and simple one-pot hydrothermal technique was employed to prepare the GQDs. Their crystalline structures corresponded to the lattice fringe of graphene, possessing amide, hydroxyl, and carboxyl functional groups. The GQDs exhibited a relatively high quantum yield of approximately 37%. Prominent blue emission under UV excitation and highly selective PL quenching for Fe3+ were observed. Furthermore, Fe3+ could be detected at concentrations as low as 0.28 μM (limit of detection), allowing for high sensitivity toward Fe3+ detection in tap and drinking water samples. In the bio-imaging experiment, the GQDs exhibited a low cytotoxicity for the HeLa cells, and they were clearly illuminated at an excitation wavelength of 405 nm. These results can serve as the basis for developing an environment-friendly, simple, and cost-effective approach of using food waste by converting them into photoluminescent nanomaterials for the detection of metal ions in field water samples and biological cellular studies.
Collapse
Affiliation(s)
- Chatchai Rodwihok
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (C.R.); (M.S.); (S.W.W.)
| | - Tran Van Tam
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44160, Korea; (T.V.T.); (W.M.C.)
| | - Won Mook Choi
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44160, Korea; (T.V.T.); (W.M.C.)
| | - Mayulee Suwannakaew
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (C.R.); (M.S.); (S.W.W.)
| | - Sang Woon Woo
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (C.R.); (M.S.); (S.W.W.)
| | - Duangmanee Wongratanaphisan
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Han S. Kim
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (C.R.); (M.S.); (S.W.W.)
| |
Collapse
|
80
|
Gengan S, Ananda Murthy H, Sillanpää M, Nhat T. Carbon dots and their application as photocatalyst in dye degradation studies- Mini review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
81
|
Mohammadi R, Naderi-Manesh H, Farzin L, Vaezi Z, Ayarri N, Samandari L, Shamsipur M. Fluorescence sensing and imaging with carbon-based quantum dots for early diagnosis of cancer: A review. J Pharm Biomed Anal 2022; 212:114628. [DOI: 10.1016/j.jpba.2022.114628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022]
|
82
|
Rao C, Sharma S, Garg R, Anjum F, Kaushik K, Nandi CK. Mapping the Time Dependent DNA Fragmentation caused by doxorubicin Loaded on PEGylated Carbogenic Nanodots using Fluorescence Lifetime Imaging and Super-resolution microscopy. Biomater Sci 2022; 10:4525-4537. [DOI: 10.1039/d2bm00641c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Doxorubicin is an anthracycline drug most commonly used in cancer therapy. It intercalates with the nuclear DNA and induces toxicity by causing DNA breaks and histone evictions. However, the kinetics...
Collapse
|
83
|
Pandey S, Keerthana AC, Madhulika S, Prasad P, Peruncheralathan S, Ghosh A. Hydrothermal treatment as a means of improving the solubility and enhancing the diaCEST MRI contrast efficiency. NEW J CHEM 2022. [DOI: 10.1039/d2nj02529a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon dot formation through the hydrothermal treatment of amino-thioamide improves the diaCEST contrast efficiency.
Collapse
Affiliation(s)
- Shalini Pandey
- School of Chemical Sciences, National Institute of Science Education and Research(NISER), HBNI, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India
| | - Anil C. Keerthana
- School of Chemical Sciences, National Institute of Science Education and Research(NISER), HBNI, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India
| | - Swati Madhulika
- Chromatin and Epigenetic group, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Punit Prasad
- Chromatin and Epigenetic group, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - S. Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research(NISER), HBNI, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India
| | - Arindam Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research(NISER), HBNI, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India
| |
Collapse
|
84
|
Qi C, Wang H, Yang A, Wang X, Xu J. Facile Fabrication of Highly Fluorescent N-Doped Carbon Quantum Dots Using an Ultrasonic-Assisted Hydrothermal Method: Optical Properties and Cell Imaging. ACS OMEGA 2021; 6:32904-32916. [PMID: 34901641 PMCID: PMC8655932 DOI: 10.1021/acsomega.1c04903] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 05/03/2023]
Abstract
Fluorescent N-doped carbon nanodots (CNDs) are a type of environmentally friendly nanomaterial that is promising for application in cell imaging and optoelectronics. In this paper, a natural amino acid (l-glutamic acid) was used as a precursor, and two different morphological and structured N-doped carbon quantum dots (CQDs) were synthesized via a one-step ultrasonic-assisted hydrothermal method at 230 and 250 °C. Various microscopy and spectroscopy techniques were employed to characterize the morphology, structure, optical properties, and stability of the CQDs. The results showed that N-CQDs-1 are new CNDs composed of amorphous carbon with a large amount of pyroglutamic acid, and N-CQDs-2 are composed of pure amorphous carbon. The CQDs exhibit excellent optical properties, such as 40.5% quantum yield, strong photobleaching resistance, and superior photostability. Combining the fluorescence lifetimes and radiative and non-radiative decay constants, the photoluminescence mechanism of the CQDs was qualitatively explained. The two CQDs were used for BV2 cell imaging and showed good results, implying the ultrasonic-assisted hydrothermal approach as a facile method to obtain structure- and morphology-controllable N-doped CQDs with prospect for application in cell imaging.
Collapse
Affiliation(s)
- Chong Qi
- College
of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, Shandong Province, China
| | - Huaidong Wang
- College
of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, Shandong Province, China
| | - Ailing Yang
- College
of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, Shandong Province, China
| | - Xiaoxu Wang
- College
of Food Science and Engineering, Ocean University
of China, Qingdao 266033, Shandong Province, China
| | - Jie Xu
- College
of Food Science and Engineering, Ocean University
of China, Qingdao 266033, Shandong Province, China
| |
Collapse
|
85
|
Chan MH, Chen BG, Ngo LT, Huang WT, Li CH, Liu RS, Hsiao M. Natural Carbon Nanodots: Toxicity Assessment and Theranostic Biological Application. Pharmaceutics 2021; 13:1874. [PMID: 34834289 PMCID: PMC8618595 DOI: 10.3390/pharmaceutics13111874] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
This review outlines the methods for preparing carbon dots (CDs) from various natural resources to select the process to produce CDs with the best biological application efficacy. The oxidative activity of CDs mainly involves photo-induced cell damage and the destruction of biofilm matrices through the production of reactive oxygen species (ROS), thereby causing cell auto-apoptosis. Recent research has found that CDs derived from organic carbon sources can treat cancer cells as effectively as conventional drugs without causing damage to normal cells. CDs obtained by heating a natural carbon source inherit properties similar to the carbon source from which they are derived. Importantly, these characteristics can be exploited to perform non-invasive targeted therapy on human cancers, avoiding the harm caused to the human body by conventional treatments. CDs are attractive for large-scale clinical applications. Water, herbs, plants, and probiotics are ideal carbon-containing sources that can be used to synthesize therapeutic and diagnostic CDs that have become the focus of attention due to their excellent light stability, fluorescence, good biocompatibility, and low toxicity. They can be applied as biosensors, bioimaging, diagnosis, and treatment applications. These advantages make CDs attractive for large-scale clinical application, providing new technologies and methods for disease occurrence, diagnosis, and treatment research.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
| | - Bo-Gu Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
| | - Loan Thi Ngo
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei 115, Taiwan
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
86
|
Wareing TC, Gentile P, Phan AN. Biomass-Based Carbon Dots: Current Development and Future Perspectives. ACS NANO 2021; 15:15471-15501. [PMID: 34559522 DOI: 10.1021/acsnano.1c03886] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Carbon dots have been considered as a solution to the challenges that semiconductor quantum dots have encountered because they are more biocompatible and can be synthesized from abundant and nontoxic materials such as biomass. This review will highlight the advantages of these biomass-based carbon dots in terms of synthesis, properties, and applications in the biomedical field. Furthermore, future applications especially in the biomedical field of biomass-based carbon dots as well as the challenges of semiconductor quantum dots such as biocompatibility, photobleaching, environmental challenges, toxicity, and poor solubility will be discussed in detail. Biomass-derived quantum dots, a subsection of carbon dots that are the most desirable for future research, will be focused upon including from synthesis to applications. Finally, the future development of biomass derived quantum dots in the biomedical field will be discussed and evaluated to unlock the potential for their applications.
Collapse
Affiliation(s)
- Thomas C Wareing
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Anh N Phan
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
87
|
Torad NL, El-Hosainy H, Esmat M, El-Kelany KE, Tahawy R, Na J, Ide Y, Fukata N, Chaikittisilp W, Hill JP, Zhang X, El-Kemary M, Yamauchi Y. Phenyl-Modified Carbon Nitride Quantum Nanoflakes for Ultra-Highly Selective Sensing of Formic Acid: A Combined Experimental by QCM and Density Functional Theory Study. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48595-48610. [PMID: 34633180 DOI: 10.1021/acsami.1c12196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Formic acid (HCOOH) is an important intermediate in chemical synthesis, pharmaceuticals, the food industry, and leather tanning and is considered to be an effective hydrogen storage molecule. Direct contact with its vapor and its inhalation lead to burns, nerve injury, and dermatosis. Thus, it is critical to establish efficient sensing materials and devices for the rapid detection of HCOOH. In the present study, we introduce a chemical sensor based on a quartz crystal microbalance (QCM) sensor capable of detecting trace amounts of HCOOH. This sensor is composed of colloidal phenyl-terminated carbon nitride (Ph-g-C3N4) quantum nanoflakes prepared using a facile solid-state method involving the supramolecular preorganization technology. In contrast to other synthetic methods of modified carbon nitride materials, this approach requires no hard templates, hazardous chemicals, or hydrothermal treatments. Comprehensive characterization and density functional theory (DFT) calculations revealed that the QCM sensor designed and prepared here exhibits enhanced detection sensitivity and selectivity for volatile HCOOH, which originates from chemical and hydrogen-bonding interactions between HCOOH and the surface of Ph-g-C3N4. According to DFT results, HCOOH is located close to the cavity of the Ph-g-C3N4 unit, with bonding to graphitic carbon and pyridinic nitrogen atoms of the nanoflake. The sensitivity of the Ph-g-C3N4-nanoflake-based QCM sensor was found to be the highest (128.99 Hz ppm-1) of the substances studied, with a limit of detection (LOD) of HCOOH down to a sub-ppm level of 80 ppb. This sensing technology based on phenyl-terminated attached-g-C3N4 nanoflakes establishes a simple, low-cost solution to improve the performance of QCM sensors for the effective discrimination of HCOOH, HCHO, and CH3COOH vapors using smart electronic noses.
Collapse
Affiliation(s)
- Nagy L Torad
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 210016, China
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Hamza El-Hosainy
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohamed Esmat
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University (BSU), Beni-Suef 62511, Egypt
| | - Khaled E El-Kelany
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Rafat Tahawy
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yusuke Ide
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Naoki Fukata
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Watcharop Chaikittisilp
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jonathan P Hill
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 210016, China
| | - Maged El-Kemary
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
88
|
Qin J, Gao X, Chen Q, Liu H, Liu S, Hou J, Sun T. pH sensing and bioimaging using green synthesized carbon dots from black fungus. RSC Adv 2021; 11:31791-31794. [PMID: 35496837 PMCID: PMC9041562 DOI: 10.1039/d1ra05199g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
Biomass is regarded as an excellent candidate for the preparation of carbon nanomaterials. A pH sensor was established based on carbon dots synthesized from black fungus, and possesses good fluorescence response and reversibility for pH detection. Meanwhile, the CDs can also be applied to intra-cellular bioimaging, showing potential for bioimaging. Carbon dots derived from black fungus were prepared and applied as a pH sensor for real water samples.![]()
Collapse
Affiliation(s)
- Jing Qin
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Xu Gao
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Qinqin Chen
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Huiling Liu
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Shuqi Liu
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Juan Hou
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| | - Tiedong Sun
- Department of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University 26 Hexing Road Harbin 150040 PR China
| |
Collapse
|
89
|
Carbon Dot/Polymer Composites with Various Precursors and Their Sensing Applications: A Review. COATINGS 2021. [DOI: 10.3390/coatings11091100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carbon dots (CDs) have generated much interest because of their significant fluorescence (FL) properties, extraordinary photophysical attributes, and long-term colloidal stability. CDs have been regarded as a prospective carbon nanomaterial for various sensing applications because of their low toxicity, strong and broad optical absorption, high chemical stability, rapid transfer properties, and easy modification. To improve their functionality, CD/polymer composites have been developed by integrating polymers into CDs. CD/polymer composites have diversified because of their easy preparation and applications in sensing, optoelectronics, semiconductors, molecular delivery, and various commercial fields. Many review articles are available regarding the preparation and applications of CDs. Some review articles describing the production and multiple applications of the composites are available. However, no such article has focused on the types of precursors, optical properties, coating characteristics, and specific sensing applications of CD/polymer composites. This review aimed to highlight and summarize the current progress of CD/polymer composites in the last five years (2017–2021). First, we overview the precursors used for deriving CDs and CD/polymer composites, synthesis methods for preparing CDs and CD/polymer composites, and the optical properties (absorbance, FL, emission color, and quantum yield) and coating characteristics of the composites. Most carbon and polymer precursors were dominated by synthetic precursors, with citric acid and polyvinyl alcohol widely utilized as carbon and polymer precursors, respectively. Hydrothermal treatment for CDs and interfacial polymerization for CDs/polymers were frequently performed. The optical properties of CDs and CD/polymer composites were almost identical, denoting that the optical characters of CDs were well-maintained in the composites. Then, the chemical, biological, and physical sensing applications of CD/polymer composites are categorized and discussed. The CD/polymer composites showed good performance as chemical, biological, and physical sensors for numerous targets based on FL quenching efficiency. Finally, remaining challenges and future perspectives for CD/polymer composites are provided.
Collapse
|
90
|
Gour A, Ramteke S, Jain NK. Pharmaceutical Applications of Quantum Dots. AAPS PharmSciTech 2021; 22:233. [PMID: 34476619 DOI: 10.1208/s12249-021-02103-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology has been utilized in developing novel drug formulations with minimal adverse effects. Nanoparticles in a lower size range with great surface area, increased potency, and easy permeability could be an approach for the treatment of cancer and other diseases. Unlike other nanoparticles, quantum dots have specific functional groups, have charges over their surface, and are extremely small in size (2-10nm), which makes them more permeable through tight junctions. Quantum dots are interesting materials that offer diagnosis and treatment concurrently. Quantum dots are reported to have several applications in pharmaceuticals as well as drug delivery, diagnosis, immunolabeling, and cell labeling tools. However, the existence of heavy metals in quantum dots such as cadmium poses a potential challenge for future medical applications, where quantum dots may be deliberately injected into the body. In this review, we are focusing on various pharmaceutical applications of quantum dots. Graphical Abstract.
Collapse
|
91
|
Narayanan M, Vigneshwari P, Natarajan D, Kandasamy S, Alsehli M, Elfasakhany A, Pugazhendhi A. Synthesis and characterization of TiO 2 NPs by aqueous leaf extract of Coleus aromaticus and assess their antibacterial, larvicidal, and anticancer potential. ENVIRONMENTAL RESEARCH 2021; 200:111335. [PMID: 34051200 DOI: 10.1016/j.envres.2021.111335] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/10/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
The frequent applications of synthetic chemical insecticides and drugs create resistance among insects and microbes, creating a new threat to human and environmental welfare. This investigation focused on evaluating the possibilities of fabricating and characterizing the titanium dioxide nanoparticles (TiO2 NPs) from titanium dioxide (TiO2) through the aqueous leaf extract of Coleus aromaticus. Their biological applications were studied against the larvae of Aedes aegypti human pathogenic bacteria, and cancer cell line. The results revealed that the aqueous leaf extract had the metal reducing proficiency to produce nanoparticles from TiO2. The synthesized TiO2 NPs were initially confirmed by visible color changes and Ultraviolet-Visible Spectrophotometer analysis that showed a predominant peak at 332 nm. Furthermore, the nanocrystals, structural alignment, functional groups and elemental compositions were studied by following standard operating protocol in XRD (X-ray Powder Diffraction), FTIR (Fourier Transform Infrared Spectroscopy), TEM (Transmission Electron Microscopy), and EDX (Energy-Dispersive X-ray Spectroscopy) techniques, respectively. The results attained from these techniques confirmed that the plant mediated and fabricated particles were in the nanoscale range (12-33 nm) with a hexagonal shape. The synthesized TiO2 NPs had an outstanding (1000 μg mL-1) larvicidal activity against the four stages of instars larvae of Ae. aegypti at 1000 μg mL-1. It also had an excellent antibacterial potential against E. faecalis (33 mm), followed by S. boydii (30 mm) at 30 mg L-1 concentration. The green fabricated TiO2 NPs had a fabulous (92.37%) cytotoxic activity on the HeLa cell line at 100 μg mL-1 dosage within one day of exposure. The entire results concluded that the C. aromaticus mediated TiO2 NPs have excellent biological applications and thus, could be considered for the welfare of human beings.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamil Nadu, India
| | - Paramasivam Vigneshwari
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India
| | - Devarajan Natarajan
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India
| | | | - Mishal Alsehli
- Mechanical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ashraf Elfasakhany
- Mechanical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
92
|
Nanotechnology-Based Strategies to Overcome Current Barriers in Gene Delivery. Int J Mol Sci 2021; 22:ijms22168537. [PMID: 34445243 PMCID: PMC8395193 DOI: 10.3390/ijms22168537] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials are currently being developed for the specific cell/tissue/organ delivery of genetic material. Nanomaterials are considered as non-viral vectors for gene therapy use. However, there are several requirements for developing a device small enough to become an efficient gene-delivery tool. Considering that the non-viral vectors tested so far show very low efficiency of gene delivery, there is a need to develop nanotechnology-based strategies to overcome current barriers in gene delivery. Selected nanostructures can incorporate several genetic materials, such as plasmid DNA, mRNA, and siRNA. In the field of nanotechnologies, there are still some limitations yet to be resolved for their use as gene delivery systems, such as potential toxicity and low transfection efficiency. Undeniably, novel properties at the nanoscale are essential to overcome these limitations. In this paper, we will explore the latest advances in nanotechnology in the gene delivery field.
Collapse
|
93
|
Ardestani MS, Zaheri Z, Mohammadzadeh P, Bitarafan-Rajabi A, Ghoreishi SM. Novel manganese carbon quantum dots as a nano-probe: Facile synthesis, characterization and their application in naproxen delivery (Mn/CQD/SiO 2@naproxen). Bioorg Chem 2021; 115:105211. [PMID: 34364048 DOI: 10.1016/j.bioorg.2021.105211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 01/09/2023]
Abstract
This study for the first time pursues two crucial aims of using Naproxen as a non-steroidal anti-inflammatory drug in a better, non-invasive setting and introducing a simple and biocompatible nano-carrier (Mn/CQD/SiO2) which is a magneto carbon quantum dots modified with mesoporous silica probe which can be served as a drug delivery and tracer system. SiO2modification was doneby mesoporous silica which improves biocompatibility and provideslow cytotoxicity. Naproxen was conjugated to the nano-probe to form Mn/CQD/SiO2@naproxen and biodistribution was investigated. Physicochemical characteristics of the Mn/CQD/SiO2@naproxen were investigated using FT-IR, SEM, TEM, UV-Vis and BET. Antiproliferation assay using MTT assay was performed on HEK-293 cells to determine the cytotoxity of Mn/CQD/SiO2@naproxen. Relaxivity of Mn/CQD/SiO2 was examined thereafter. To investigate the imaging capability of Mn/CQD/SiO2@naproxen and biodistribution of Naproxen, fluorescent imaging was done. To confirm the data, then the levels of COX Gene expression was determined. The specific surface area, pore volume, and pore radius were 44.4 m2/g, 10.23 cm3/g, and 25.9 nm respectively. MTT assay showed no cytotoxicity. Relaxivity of Mn/CQD/SiO2 was higher than conventional Gd-based contrast agent. Fluorescence imaging of Mn/CQD/SiO2@naproxen showed the biodistribution of naproxen. COX Gene expression confirmed the biodistribution data. By increasing the accumulation in liver COX production reduced. All in all, unique features of Mn/CQD/SiO2 including biocompatibility, low toxicity, magnetic and fluorescence properties showed that it can be used in biomedical sciences.
Collapse
Affiliation(s)
- Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zaheri
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pardis Mohammadzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Ahmad Bitarafan-Rajabi
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran; Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Masoumeh Ghoreishi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
94
|
Lin X, Li Z, Qiu J, Wang Q, Wang J, Zhang H, Chen T. Fascinating MXene nanomaterials: emerging opportunities in the biomedical field. Biomater Sci 2021; 9:5437-5471. [PMID: 34296233 DOI: 10.1039/d1bm00526j] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent years, there has been rapid progress in MXene research due to its distinctive two-dimensional structure and outstanding properties. Especially in biomedical applications, MXenes have attracted widespread favor with numerous studies on biosafety, bioimaging, therapy, and biosensing, although their development is still in the experimental stage. A comprehensive understanding of the current status of MXenes in biomedicine will promote their use in clinical applications. Here, we review advances in MXene research. First, we introduce the methods of synthesis, surface modification and functionalization of MXenes. Then, we summarize the biosafety and biocompatibility, paving the way for specific biomedical applications. On this basis, MXene nanostructures are described with respect to their use in antibacterial, bioimaging, cancer therapy, tissue regeneration and biosensor applications. Finally, we discuss MXene as a promising candidate material for further applications in biomedicine.
Collapse
Affiliation(s)
- Xiangping Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Zhongjun Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Jinmei Qiu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jianxin Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China. and Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
95
|
Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:1238. [PMID: 34207139 PMCID: PMC8234206 DOI: 10.3390/plants10061238] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Plants constitute a rich source of diverse classes of valuable phytochemicals (e.g., phenolic acids, flavonoids, carotenoids, alkaloids) with proven biological activity (e.g., antioxidant, anti-inflammatory, antimicrobial, etc.). However, factors such as low stability, poor solubility and bioavailability limit their food, cosmetics and pharmaceutical applications. In this regard, a wide range of delivery systems have been developed to increase the stability of plant-derived bioactive compounds upon processing, storage or under gastrointestinal digestion conditions, to enhance their solubility, to mask undesirable flavors as well as to efficiently deliver them to the target tissues where they can exert their biological activity and promote human health. In the present review, the latest advances regarding the design of innovative delivery systems for pure plant bioactive compounds, extracts or essential oils, in order to overcome the above-mentioned challenges, are presented. Moreover, a broad spectrum of applications along with future trends are critically discussed.
Collapse
Affiliation(s)
- Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece;
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | | |
Collapse
|
96
|
An Overview of the Recent Developments in Carbon Quantum Dots—Promising Nanomaterials for Metal Ion Detection and (Bio)Molecule Sensing. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fluorescent carbon quantum dots (CQDs) represent an emerging subset of carbonaceous nanomaterials, recently becoming a powerful tool for biosensing, bioimaging, and drug and gene delivery. In general, carbon dots are defined as zero-dimensional (0D), spherical-like nanoparticles with <10 nm in size. Their unique chemical, optical, and electronic properties make CQDs versatile materials for a wide spectrum of applications, mainly for the sensing and biomedical purposes. Due to their good biocompatibility, water solubility, and relatively facile modification, these novel materials have attracted tremendous interest in recent years, which is especially important for nanotechnology and nanoscience expertise. The preparation of the biomass-derived CQDs has attracted growing interest recently due to their low-cost, renewable, and green biomass resources, presenting also the variability of possible modification for the enhancement of CQDs’ properties. This review is primarily focused on the recent developments in carbon dots and their application in the sensing of different chemical species within the last five years. Furthermore, special emphasis has been made regarding the green approaches for obtaining CQDs and nanomaterial characterization toward better understanding the mechanisms of photoluminescent behavior and sensing performance. In addition, some of the challenges and future outlooks in CQDs research have been briefly outlined.
Collapse
|
97
|
Chen Y, Cheng H, Wang W, Jin Z, Liu Q, Yang H, Cao Y, Li W, Fakhri A, Gupta VK. Preparation of carbon dots-hematite quantum dots-loaded hydroxypropyl cellulose-chitosan nanocomposites for drug delivery, sunlight catalytic and antimicrobial application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 219:112201. [PMID: 33962112 DOI: 10.1016/j.jphotobiol.2021.112201] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022]
Abstract
In this project, we studied the thermal and chemical method for the synthesis of carbon dots (CDs)/Hematite (α-Fe2O3) quantum dots and the preparation of hydroxypropyl cellulose cross-linked chitosan (HPCCS) and ulvan (UN) was performed by chemical method. Carbon dots/α-Fe2O3 quantum dots with size distribution of 3-5 nm were completely encapsulated in the HPCCS/UN NPs to obtain composites, which indicated unique characteristics with respect to antimicrobial, pH-responsive and optical properties. The CDs-HQDs/HPCCS/UN nanocomposites exhibited a single-excitation (440 nm), dual-emission fluorescence property (505 nm and 628 nm for green and red light from CDs-HQDs and HPCCS/UN NPs). The nanocomposites played as a pH-responsive drug delivery process to release ulvan at a fast rate in pH 7.4 buffer solution but at a slow rate in low pH solutions. The CDs-HQDs/HPCCS/UN nanocomposites gained the highest photocatalytic activity for degrading 4-chlorophenol (4-CPh) as a pollutant (>98% during 70 min under sunlight irradiation). Moreover, the nanocomposites indicated great inhibitory influences towards bacterial and fungal.
Collapse
Affiliation(s)
- Yanuo Chen
- Polytechnic Institute of Qianjiang College, Hangzhou Normal University, Hangzhou, Zhejiang 310018, China
| | - Haixiang Cheng
- School of Chemical and Material Engineering, Quzhou College, Quzhou, Zhejiang 324000, China
| | - Weina Wang
- Anji Branch of Huzhou Ecological & Environment Bureau, Huzhou, Zhejiang 313300, China
| | - Zhe Jin
- Anji Branch of Huzhou Ecological & Environment Bureau, Huzhou, Zhejiang 313300, China
| | - Qi Liu
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Huayun Yang
- Polytechnic Institute of Qianjiang College, Hangzhou Normal University, Hangzhou, Zhejiang 310018, China
| | - Yong Cao
- Polytechnic Institute of Qianjiang College, Hangzhou Normal University, Hangzhou, Zhejiang 310018, China.
| | - Weidong Li
- Polytechnic Institute of Qianjiang College, Hangzhou Normal University, Hangzhou, Zhejiang 310018, China.
| | - Ali Fakhri
- Department of Chemistry, Nano Smart Science Institute (NSSI), Tehran, Iran; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vinod Kumar Gupta
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
98
|
One-pot bioinspired synthesis of fluorescent metal chalcogenide and carbon quantum dots: Applications and potential biotoxicity. Colloids Surf B Biointerfaces 2021; 200:111578. [DOI: 10.1016/j.colsurfb.2021.111578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
|
99
|
Liu L, Zhang S, Zheng X, Li H, Chen Q, Qin K, Ding Y, Wei Y. Carbon dots derived from Fusobacterium nucleatum for intracellular determination of Fe 3+ and bioimaging both in vitro and in vivo. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1121-1131. [PMID: 33591301 DOI: 10.1039/d1ay00020a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Intracellular Fe3+ amount is one of the critical determinants of human health. The development of simple and effective probes for the quantitative detection of Fe3+in vivo is of great significance for the early diagnosis of disease or disorder associated with iron deficiency or overload. In this study, remarkable carbon dots, which can serve as a biosensor for efficient intracellular Fe3+ detection, were synthesized by hydrothermal carbonization of Fusobacterium nucleatum, an anaerobic bacterium. The achieved F. nucleatum-carbon dots (Fn-CDs) possessed the features of strong fluorescence, high stability and excellent biocompatibility. The obtained Fn-CDs could easily internalize into both plant cells and human cells with excellent ability for cell tracking and biomedical labeling. The fluorescence of Fn-CDs could still remain for another 24 hours after penetrating into cells. Furthermore, the fluorescent Fn-CDs were very sensitive to the presence of Fe3+ ions even in cells, exhibiting great promising applications in in vivo detection of Fe3+ ions. In addition, the Fn-CDs posed no harm to the mice, being circulated and excreted within a short time, making the Fn-CDs an excellent candidate for bioimaging and biosensing in vivo.
Collapse
Affiliation(s)
- Lijuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Shengting Zhang
- Department of Education, Yunnan Minzu University, Kunming 650500, China
| | - Xiaodan Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Hongmei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qi Chen
- Department of Hematology, The Second People's Hospital of Yunnan Province, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Kunhao Qin
- Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Yafang Ding
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
100
|
Javan Nikkhah S, Thompson D. Molecular Modelling Guided Modulation of Molecular Shape and Charge for Design of Smart Self-Assembled Polymeric Drug Transporters. Pharmaceutics 2021; 13:141. [PMID: 33499130 PMCID: PMC7912381 DOI: 10.3390/pharmaceutics13020141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Nanomedicine employs molecular materials for prevention and treatment of disease. Recently, smart nanoparticle (NP)-based drug delivery systems were developed for the advanced transport of drug molecules. Rationally engineered organic and inorganic NP platforms hold the promise of improving drug targeting, solubility, prolonged circulation, and tissue penetration. However, despite great progress in the synthesis of NP building blocks, more interdisciplinary research is needed to understand their self-assembly and optimize their performance as smart nanocarriers. Multi-scale modeling and simulations provide a valuable ally to experiment by mapping the potential energy landscape of self-assembly, translocation, and delivery of smart drug-loaded NPs. Here, we highlight key recent advances to illustrate the concepts, methods, and applications of smart polymer-based NP drug delivery. We summarize the key design principles emerging for advanced multifunctional polymer topologies, illustrating how the unusual architecture and chemistry of dendritic polymers, self-assembling polyelectrolytes and cyclic polymers can provide exceptional drug delivery platforms. We provide a roadmap outlining the opportunities and challenges for the effective use of predictive multiscale molecular modeling techniques to accelerate the development of smart polymer-based drug delivery systems.
Collapse
Affiliation(s)
- Sousa Javan Nikkhah
- Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland;
| | | |
Collapse
|