54
|
Smigielski L, Papiol S, Theodoridou A, Heekeren K, Gerstenberg M, Wotruba D, Buechler R, Hoffmann P, Herms S, Adorjan K, Anderson-Schmidt H, Budde M, Comes AL, Gade K, Heilbronner M, Heilbronner U, Kalman JL, Klöhn-Saghatolislam F, Reich-Erkelenz D, Schaupp SK, Schulte EC, Senner F, Anghelescu IG, Arolt V, Baune BT, Dannlowski U, Dietrich DE, Fallgatter AJ, Figge C, Jäger M, Juckel G, Konrad C, Nieratschker V, Reimer J, Reininghaus E, Schmauß M, Spitzer C, von Hagen M, Wiltfang J, Zimmermann J, Gryaznova A, Flatau-Nagel L, Reitt M, Meyers M, Emons B, Haußleiter IS, Lang FU, Becker T, Wigand ME, Witt SH, Degenhardt F, Forstner AJ, Rietschel M, Nöthen MM, Andlauer TFM, Rössler W, Walitza S, Falkai P, Schulze TG, Grünblatt E. Polygenic risk scores across the extended psychosis spectrum. Transl Psychiatry 2021; 11:600. [PMID: 34836939 PMCID: PMC8626446 DOI: 10.1038/s41398-021-01720-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
As early detection of symptoms in the subclinical to clinical psychosis spectrum may improve health outcomes, knowing the probabilistic susceptibility of developing a disorder could guide mitigation measures and clinical intervention. In this context, polygenic risk scores (PRSs) quantifying the additive effects of multiple common genetic variants hold the potential to predict complex diseases and index severity gradients. PRSs for schizophrenia (SZ) and bipolar disorder (BD) were computed using Bayesian regression and continuous shrinkage priors based on the latest SZ and BD genome-wide association studies (Psychiatric Genomics Consortium, third release). Eight well-phenotyped groups (n = 1580; 56% males) were assessed: control (n = 305), lower (n = 117) and higher (n = 113) schizotypy (both groups of healthy individuals), at-risk for psychosis (n = 120), BD type-I (n = 359), BD type-II (n = 96), schizoaffective disorder (n = 86), and SZ groups (n = 384). PRS differences were investigated for binary traits and the quantitative Positive and Negative Syndrome Scale. Both BD-PRS and SZ-PRS significantly differentiated controls from at-risk and clinical groups (Nagelkerke's pseudo-R2: 1.3-7.7%), except for BD type-II for SZ-PRS. Out of 28 pairwise comparisons for SZ-PRS and BD-PRS, 9 and 12, respectively, reached the Bonferroni-corrected significance. BD-PRS differed between control and at-risk groups, but not between at-risk and BD type-I groups. There was no difference between controls and schizotypy. SZ-PRSs, but not BD-PRSs, were positively associated with transdiagnostic symptomology. Overall, PRSs support the continuum model across the psychosis spectrum at the genomic level with possible irregularities for schizotypy. The at-risk state demands heightened clinical attention and research addressing symptom course specifiers. Continued efforts are needed to refine the diagnostic and prognostic accuracy of PRSs in mental healthcare.
Collapse
Affiliation(s)
- Lukasz Smigielski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, Zurich, Switzerland.
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Anastasia Theodoridou
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Karsten Heekeren
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychiatry and Psychotherapy I, LVR-Hospital, Cologne, Germany
| | - Miriam Gerstenberg
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Diana Wotruba
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Roman Buechler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, Zurich, Switzerland
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Per Hoffmann
- Department of Biomedicine, Human Genomics Research Group, University Hospital and University of Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stefan Herms
- Department of Biomedicine, Human Genomics Research Group, University Hospital and University of Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Kristina Adorjan
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Heike Anderson-Schmidt
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Monika Budde
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Ashley L Comes
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Katrin Gade
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Maria Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Janos L Kalman
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Daniela Reich-Erkelenz
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Sabrina K Schaupp
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Fanny Senner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ion-George Anghelescu
- Department of Psychiatry and Psychotherapy, Mental Health Institute, Berlin, Germany
| | - Volker Arolt
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Detlef E Dietrich
- AMEOS Clinical Center Hildesheim, Hildesheim, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| | - Christian Figge
- Karl-Jaspers Clinic, European Medical School Oldenburg-Groningen, Oldenburg, Germany
| | - Markus Jäger
- Department of Psychiatry II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Carsten Konrad
- Department of Psychiatry and Psychotherapy, Agaplesion Diakonieklinikum, Rotenburg, Germany
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| | - Jens Reimer
- Department of Psychiatry, Klinikum Bremen-Ost, Bremen, Germany
- Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Max Schmauß
- Clinic for Psychiatry, Psychotherapy and Psychosomatics, Augsburg University, Medical Faculty, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - Carsten Spitzer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | - Martin von Hagen
- Clinic for Psychiatry and Psychotherapy, Clinical Center Werra-Meißner, Eschwege, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Jörg Zimmermann
- Psychiatrieverbund Oldenburger Land gGmbH, Karl-Jaspers-Klinik, Bad Zwischenahn, Germany
| | - Anna Gryaznova
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Laura Flatau-Nagel
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Markus Reitt
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Milena Meyers
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Barbara Emons
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Ida Sybille Haußleiter
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Fabian U Lang
- Department of Psychiatry II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Thomas Becker
- Department of Psychiatry II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Moritz E Wigand
- Department of Psychiatry II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Till F M Andlauer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, Zurich, Switzerland
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
- Laboratory of Neuroscience (LIM 27), Institute of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
58
|
Bray MJC, Sharma B, Cottrelle's J, Peters ME, Bayley M, Green REA. Hippocampal atrophy is associated with psychotic symptom severity following traumatic brain injury. Brain Commun 2021; 3:fcab026. [PMID: 33977261 PMCID: PMC8098106 DOI: 10.1093/braincomms/fcab026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Psychosis is a rare, but particularly serious sequela of traumatic brain injury. However, little is known as to the neurobiological processes that may contribute to its onset. Early evidence suggests that psychotic symptom development after traumatic brain injury may co-occur with hippocampal degeneration, invoking the possibility of a relationship. Particularly regarding the hippocampal head, these degenerative changes may lead to dysregulation in dopaminergic circuits, as is reported in psychoses due to schizophrenia, resulting in the positive symptom profile typically seen in post-injury psychosis. The objective of this study was to examine change in hippocampal volume and psychotic symptoms across time in a sample of moderate-to-severe traumatic brain injury patients. We hypothesized that hippocampal volume loss would be associated with increased psychotic symptom severity. From a database of n = 137 adult patients with prospectively collected, longitudinal imaging and neuropsychiatric outcomes, n = 24 had complete data at time points of interest (5 and 12 months post-traumatic brain injury) and showed increasing psychotic symptom severity on the Personality Assessment Inventory psychotic experiences subscale of the schizophrenia clinical scale across time. Secondary analysis employing stepwise regression with hippocampal volume change (independent variable) and Personality Assessment Inventory psychotic symptom change (dependent variable) from 5 to 12 months post-injury was conducted including age, sex, marijuana use, family history of schizophrenia, years of education and injury severity as control variables. Total right hippocampal volume loss predicted an increase in the Personality Assessment Inventory psychotic experiences subscale (F(1, 22) = 5.396, adjusted R2 = 0.161, P = 0.030; β = −0.017, 95% confidence interval = −0.018, −0.016) as did volume of the right hippocampal head (F(1, 22) = 5.764, adjusted R2 = 0.172, P = 0.025; β = −0.019, 95% confidence interval = −0.021, −0.017). Final model goodness-of-fit was confirmed using k-fold (k = 5) cross-validation. Consistent with our hypotheses, the current findings suggest that hippocampal degeneration in the chronic stages of moderate-to-severe traumatic brain injury may play a role in the delayed onset of psychotic symptoms after traumatic brain injury. These findings localized to the right hippocampal head are supportive of a proposed aetiological mechanism whereby atrophy of the hippocampal head may lead to the dysregulation of dopaminergic networks following traumatic brain injury; possibly accounting for observed clinical features of psychotic disorder after traumatic brain injury (including prolonged latency period to symptom onset and predominance of positive symptoms). If further validated, these findings may bear important clinical implications for neurorehabilitative therapies following traumatic brain injury.
Collapse
Affiliation(s)
- Michael J C Bray
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.,The KITE Research Institute-University Health Network, Toronto, ON M5G 2A2, Canada
| | - Bhanu Sharma
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada.,The KITE Research Institute-University Health Network, Toronto, ON M5G 2A2, Canada.,Department of Medical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Julia Cottrelle's
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada
| | - Matthew E Peters
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Mark Bayley
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada.,The KITE Research Institute-University Health Network, Toronto, ON M5G 2A2, Canada
| | - Robin E A Green
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada.,The KITE Research Institute-University Health Network, Toronto, ON M5G 2A2, Canada
| |
Collapse
|
61
|
Tuominen L, DeCross SN, Boeke E, Cassidy CM, Freudenreich O, Shinn AK, Tootell RBH, Holt DJ. Neural Abnormalities in Fear Generalization in Schizophrenia and Associations With Negative Symptoms. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:1165-1175. [PMID: 33524600 DOI: 10.1016/j.bpsc.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Associative learning and memory processes, including the generalization of previously learned associations, may be altered in schizophrenia. Deficits in schizophrenia in stimulus generalization, one of the simplest forms of memory, could interfere with the ability to efficiently categorize related, similar information, potentially leading to impairments in daily functioning. METHODS To measure generalization in schizophrenia, 37 individuals with a nonaffective psychotic disorder and 32 demographically matched healthy control subjects underwent a Pavlovian fear conditioning and generalization procedure, which accounted for variation in perceptual ability across participants, while undergoing functional magnetic resonance imaging. Skin conductance and neural responses to conditioned (CS+), neutral (CS-), and generalization stimuli were measured. Explicit memory ratings reflecting successful generalization were also collected after the scanning, as well as measures of symptom severity. RESULTS Compared with healthy control subjects, individuals with nonaffective psychotic disorders showed significant deficits in fear generalization across multiple measurements, with impairments in memory ratings and reductions in activation and deactivation of the salience and default networks, respectively, during fear generalization. Moreover, in the psychotic disorder group, greater behavioral and neural abnormalities in generalization were associated with higher levels of negative symptoms. CONCLUSIONS Fear generalization is impaired in psychotic illness. Given that successful generalization relies on a dynamic balance between excitatory and inhibitory neurotransmission, these results reveal a potentially quantifiable mechanism linked to negative symptoms that can be investigated further in future human and experimental animal studies.
Collapse
Affiliation(s)
- Lauri Tuominen
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Stephanie N DeCross
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Emily Boeke
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Clifford M Cassidy
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Oliver Freudenreich
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Ann K Shinn
- Harvard Medical School, Boston, Massachusetts; Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts
| | - Roger B H Tootell
- Harvard Medical School, Boston, Massachusetts; Department of Radiology, Harvard Medical School, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts; Harvard Medical School, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|