51
|
A new method for the preconcentrations of U(VI) and Th(IV) by magnetized thermophilic bacteria as a novel biosorbent. Anal Bioanal Chem 2021; 413:1107-1116. [PMID: 33388846 DOI: 10.1007/s00216-020-03074-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
This paper proposes the use of Anoxybacillus flavithermus SO-15 immobilized on iron oxide nanoparticles (NPs) as a novel magnetized biosorbent for the preconcentrations of uranium (U) and thorium (Th). The SPE procedure was based on biosorption of U(VI) and Th(IV) on a column of iron oxide NPs loaded with dead and dried thermophilic bacterial biomass prior to U(VI) and Th(IV) measurements by ICP-OES. The biosorbent characteristicswere explored using FT-IR, SEM, and EDX. Significant operational factors such as solution pH, volume and flow rate of the sample solution, amounts of dead bacteria and iron oxide nanoparticles, matrix interference effect, eluent type, and repeating use of the biosorbent on process yield were studied. The biosorption capacities were found as 62.7 and 56.4 mg g-1 for U(VI) and Th(IV), respectively. The novel extraction process has been successfullyapplied to the tap, river, and lake water samples for preconcentrations of U(VI) and Th(IV).
Collapse
|
52
|
Narindri Rara Winayu B, Tung Lai K, Ta Hsueh H, Chu H. Production of phycobiliprotein and carotenoid by efficient extraction from Thermosynechococcus sp. CL-1 cultivation in swine wastewater. BIORESOURCE TECHNOLOGY 2021; 319:124125. [PMID: 32977095 DOI: 10.1016/j.biortech.2020.124125] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
In this study, the performance of TCL-1 cultivation in swine wastewater was observed under various light intensity, treatment type of swine wastewater, and initial biomass concentration. Furthermore, pigments production (phycobiliprotein and carotenoid), was the main target in this study along with optimum extraction method. Under the cultivation in the anoxic treated swine wastewater (ATSW), highest biomass increment (1.001 ± 0.104 g/L) was achieved with 2 g/L initial biomass concentration and 1,000 µE/m2/s light intensity whereas cultivation in the anoxic and aerobic treated swine wastewater (AATSW) presented better performance on pigments production with the highest production in allophycocyanin which reached 12.07 ± 0.3% dwc. Extraction time and ultrasonication have significant influence on the phycobiliprotein extraction, yet different temperature and incubation time give similar extraction result for β-carotene. Carotenoids production with AATSW cultivation were two times higher than the cultivation in ATSW. However, ammonium-N degradation was performed better in the ATSW cultivation.
Collapse
Affiliation(s)
| | - Ko Tung Lai
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin Ta Hsueh
- Sustainable Environment Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin Chu
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
53
|
The role of microalgae in the bioeconomy. N Biotechnol 2020; 61:99-107. [PMID: 33249179 DOI: 10.1016/j.nbt.2020.11.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022]
Abstract
The bioeconomy is a new and essential paradigm for reducing our dependence on natural resources and responding to the environmental threats that the Earth is currently facing. In this regard, microalgae offer almost unlimited possibilities for developing a modern bioeconomy given their metabolic flexibility and high biomass output rates, even when produced under harsh conditions, such as when treating wastewaters or using flue gases. In this article, the microalgal contribution to important economic activities such as the production of food and feed, cosmetics and health-related compounds is reviewed. Moreover, potential contributions of microalgae to emerging sectors are discussed, as in the production of biomaterials, agriculture-related products, biofuels and provision of services such as wastewater treatment and the clean-up of industrial gases. The different microalgal production technologies have also been analyzed to identify the main bottlenecks affecting microalgal use in different applications. Finally, the major challenges facing microalgal biotechnology in enlarging its contribution to the bioeconomy are evaluated, and future trends discussed.
Collapse
|
54
|
Ito S, Iwazumi K, Sukigara H, Osanai T. Fumarase From Cyanidioschyzon merolae Stably Shows High Catalytic Activity for Fumarate Hydration Under High Temperature Conditions. Front Microbiol 2020; 11:2190. [PMID: 33042040 PMCID: PMC7525151 DOI: 10.3389/fmicb.2020.560894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023] Open
Abstract
Fumarases (Fums) catalyze the reversible reaction converting fumarate to l-malate. There are two kinds of Fums: Class І and ІІ. Thermostable Class ІІ Fums, from mesophilic microorganisms, are utilized for industrial l-malate production. However, the low thermostability of these Fums is a limitation in industrial l-malate production. Therefore, an alternative Class ІІ Fum that shows high activity and thermostability is required to overcome this drawback. Thermophilic microalgae and cyanobacteria can use carbon dioxide as a carbon source and are easy to cultivate. Among them, Cyanidioschyzon merolae and Thermosynechococcus elongatus are model organisms to study cell biology and structural biology, respectively. We biochemically analyzed Class ІІ Fums from C. merolae (CmFUM) and T. elongatus (TeFum). Both CmFUM and TeFum preferentially catalyzed fumarate hydration. The catalytic activity of CmFUM for fumarate hydration in the optimum conditions (52°C and pH 7.5) is higher compared to those of Class ІІ Fums from other organisms and TeFum. Thermostability tests of CmFUM revealed that CmFUM showed higher thermostability than those of Class ІІ Fums from other microorganisms. The yield of l-malate obtained from fumarate hydration catalyzed by CmFUM was 75-81%. In summary, CmFum has suitable properties for efficient l-malate production.
Collapse
Affiliation(s)
- Shoki Ito
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kaori Iwazumi
- School of Agriculture, Meiji University, Kawasaki, Japan
| | | | - Takashi Osanai
- School of Agriculture, Meiji University, Kawasaki, Japan
| |
Collapse
|
55
|
Jo SW, Do JM, Na H, Hong JW, Kim IS, Yoon HS. Assessment of biomass potentials of microalgal communities in open pond raceways using mass cultivation. PeerJ 2020; 8:e9418. [PMID: 32742771 PMCID: PMC7369025 DOI: 10.7717/peerj.9418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Metagenome studies have provided us with insights into the complex interactions of microorganisms with their environments and hosts. Few studies have focused on microalgae-associated metagenomes, and no study has addressed aquatic microalgae and their bacterial communities in open pond raceways (OPRs). This study explored the possibility of using microalgal biomasses from OPRs for biodiesel and biofertilizer production. The fatty acid profiles of the biomasses and the physical and chemical properties of derived fuels were evaluated. In addition, the phenotype-based environmental adaptation ability of soybean plants was assessed. The growth rate, biomass, and lipid productivity of microalgae were also examined during mass cultivation from April to November 2017. Metagenomics analysis using MiSeq identified ∼127 eukaryotic phylotypes following mass cultivation with (OPR 1) or without (OPR 3) a semitransparent film. Of these, ∼80 phylotypes were found in both OPRs, while 23 and 24 phylotypes were identified in OPRs 1 and 3, respectively. The phylotypes belonged to various genera, such as Desmodesmus, Pseudopediastrum, Tetradesmus, and Chlorella, of which, the dominant microalgal species was Desmodesmus sp. On average, OPRs 1 and 3 produced ∼8.6 and 9.9 g m−2 d−1 (0.307 and 0.309 DW L−1) of total biomass, respectively, of which 14.0 and 13.3 wt% respectively, was lipid content. Fatty acid profiling revealed that total saturated fatty acids (mainly C16:0) of biodiesel obtained from the microalgal biomasses in OPRs 1 and 3 were 34.93% and 32.85%, respectively; total monounsaturated fatty acids (C16:1 and C18:1) were 32.40% and 31.64%, respectively; and polyunsaturated fatty acids (including C18:3) were 32.68% and 35.50%, respectively. Fuel properties determined by empirical equations were within the limits of biodiesel standards ASTM D6751 and EN 14214. Culture solutions with or without microalgal biomasses enhanced the environmental adaptation ability of soybean plants, increasing their seed production. Therefore, microalgal biomass produced through mass cultivation is excellent feedstock for producing high-quality biodiesel and biofertilizer.
Collapse
Affiliation(s)
- Seung-Woo Jo
- Department of Energy Science, Kyungpook National University, Daegu, South Korea
| | - Jeong-Mi Do
- Department of Biology, Kyungpook National University, Daegu, South Korea.,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Ho Na
- Department of Biology, Kyungpook National University, Daegu, South Korea.,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Ji Won Hong
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu, South Korea
| | - Il-Sup Kim
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu, South Korea
| | - Ho-Sung Yoon
- Department of Energy Science, Kyungpook National University, Daegu, South Korea.,Department of Biology, Kyungpook National University, Daegu, South Korea.,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea.,Advanced Bio-resource Research Center, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
56
|
Malavasi V, Soru S, Cao G. Extremophile Microalgae: the potential for biotechnological application. JOURNAL OF PHYCOLOGY 2020; 56:559-573. [PMID: 31917871 DOI: 10.1111/jpy.12965] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/26/2019] [Indexed: 05/18/2023]
Abstract
Microalgae are photosynthetic microorganisms that use sunlight as an energy source, and convert water, carbon dioxide, and inorganic salts into algal biomass. The isolation and selection of microalgae, which allow one to obtain large amounts of biomass and valuable compounds, is a prerequisite for their successful industrial production. This work provides an overview of extremophile algae, where their ability to grow under harsh conditions and the corresponding accumulation of metabolites are addressed. Emphasis is placed on the high-value products of some prominent algae. Moreover, the most recent applications of these microorganisms and their potential exploitation in the context of astrobiology are taken into account.
Collapse
Affiliation(s)
- Veronica Malavasi
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Santina Soru
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Giacomo Cao
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy
| |
Collapse
|
57
|
Sacko O, Barnes CL, Greene LH, Lee JW. Survivability of Wild-Type and Genetically Engineered Thermosynechococcus elongatus BP1 with Different Temperature Conditions. APPLIED BIOSAFETY 2020; 25:104-117. [PMID: 36035080 PMCID: PMC9387736 DOI: 10.1177/1535676019896640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
INTRODUCTION Thermosynechococcus elongatus BP1 is a thermophilic strain of cyanobacteria that has an optimum growth at 57°C, and according to previous analysis by Yamaoka et al, T elongatus BP1 cannot survive at a temperature below 30°C. This suggests that the thermophilic property of this strain may be used as a natural biosafety feature to limit the spread of genetically engineered (GE) organisms in the environment if physical containment fails. OBJECTIVE To further explore the growth and survivability range of T elongatus BP1, we report a growth and survivability assay of wild-type and GE T elongatus BP1 strains under different conditions. METHODS Wild-type and GE T elongatus BP1 cultures were prepared and incubated in the laboratory (high temperatures and constant light source) and greenhouse conditions (lower/varied temperatures and sunlight) for 4 weeks. The cell density was monitored weekly by measuring the optical density at 730 nm (OD730). To assess the survivability, a sample of each culture was added to fresh media, placed in laboratory conditions (42.2°C and 30 µE m-2 s-1) in multi-well plates and observed for growth for up to three weeks. Lastly, the number of viable cells were determined by plating a diluted sample of the culture on solid media and counting colony-forming units (CFU) after 1 day, 2 weeks and 4 weeks of incubation in laboratory or greenhouse conditions. RESULTS Our experimental results demonstrated that growth was hindered but that the cells did not entirely die within 2 to 4 weeks at warm temperatures (31.42°C-36.27°C). The study also showed that 2 weeks of exposure to cool temperature conditions (15.44°C-25.30°C) was enough to cause complete death of GE T elongatus BP1. However, it took 2 to 4 weeks for the wild-type T elongatus BP1 cells to die. CONCLUSION This study revealed that the thermophilic feature of the T elongatus BP1 may be used as an effective biosafety mechanism at a cool temperature between 15.44°C and 25.30°C but may not be able to serve as a biosafety mechanism at warmer temperatures.
Collapse
Affiliation(s)
- Oumar Sacko
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
- Authors Oumar Sacko and Cherrelle L. Barnes contributed equally to this article
| | - Cherrelle L. Barnes
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
- Authors Oumar Sacko and Cherrelle L. Barnes contributed equally to this article
| | - Lesley H. Greene
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - James W. Lee
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
58
|
Khan S, Fu P. Biotechnological perspectives on algae: a viable option for next generation biofuels. Curr Opin Biotechnol 2020; 62:146-152. [DOI: 10.1016/j.copbio.2019.09.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
|
59
|
Cheng YI, Chou L, Chiu YF, Hsueh HT, Kuo CH, Chu HA. Comparative Genomic Analysis of a Novel Strain of Taiwan Hot-Spring Cyanobacterium Thermosynechococcus sp. CL-1. Front Microbiol 2020; 11:82. [PMID: 32082292 PMCID: PMC7005997 DOI: 10.3389/fmicb.2020.00082] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/15/2020] [Indexed: 11/22/2022] Open
Abstract
Thermosynechococcus is a genus of thermophilic unicellular cyanobacteria that are dominant in microbial mats at about 50–65°C in alkaline hot springs of eastern Asia. We used PacBio SMRT Sequencing to sequence the complete genome of a novel strain of thermophilic cyanobacterium, Thermosynechococcus sp. CL-1, isolated from the Chin-Lun hot spring (pH 9.3, 62°C) in Taiwan. Genome-scale phylogenetic analysis and average nucleotide identity (ANI) results suggested that CL-1 is a new species in the genus Thermosynechococcus. Comparative genome analysis revealed divergent genome structures of Thermosynechococcus strains. In addition, the distinct genetic differences between CL-1 and the other Thermosynechococcus strains are related to photosynthesis, transporters, signal transduction, the chaperone/usher system, nitric oxide protection, antibiotic resistance, prokaryotic immunity systems, and other physiological processes. This study suggests that Thermosynechococcus strains have actively acquired many putative horizontally transferred genes from other bacteria that enabled them to adapt to different ecological niches and stressful conditions in hot springs.
Collapse
Affiliation(s)
- Yen-I Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Lin Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Fang Chiu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hsin-Ta Hsueh
- Sustainable Environment Research Laboratories, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hsiu-An Chu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
60
|
Passos LF, Berneira LM, Poletti T, Mariotti KDC, Carreño NLV, Hartwig CA, Pereira CMP. Evaluation and characterization of algal biomass applied to the development of fingermarks on glass surfaces. AUST J FORENSIC SCI 2020. [DOI: 10.1080/00450618.2020.1715478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Luan F. Passos
- Center of Chemical, Pharmaceutical and Food Sciences, Lipidomic and Bio-Organic Laboratory, Bioforensic Research Group, Federal University of Pelotas, Pelotas, Brazil
| | - Lucas M. Berneira
- Center of Chemical, Pharmaceutical and Food Sciences, Lipidomic and Bio-Organic Laboratory, Bioforensic Research Group, Federal University of Pelotas, Pelotas, Brazil
| | - Tais Poletti
- Center of Chemical, Pharmaceutical and Food Sciences, Lipidomic and Bio-Organic Laboratory, Bioforensic Research Group, Federal University of Pelotas, Pelotas, Brazil
| | | | - Neftali L. V. Carreño
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Carla A. Hartwig
- Center of Chemical, Pharmaceutical and Food Sciences, Lipidomic and Bio-Organic Laboratory, Bioforensic Research Group, Federal University of Pelotas, Pelotas, Brazil
| | - Claudio M. P. Pereira
- Center of Chemical, Pharmaceutical and Food Sciences, Lipidomic and Bio-Organic Laboratory, Bioforensic Research Group, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
61
|
Chakravarty D, Banerjee M, Ballal A. Facile generation of a biotechnologically-relevant catalase showcases the efficacy of a blue-green algal biomass as a suitable bioresource for protein overproduction. BIORESOURCE TECHNOLOGY 2019; 293:122013. [PMID: 31494434 DOI: 10.1016/j.biortech.2019.122013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Here, we show the utility of a cyanobacterial biomass for overproduction and easy downstream processing of the thermostable protein KatB (a Mn-catalase). The nitrogen-fixing blue-green alga, Anabaena, was bioengineered to overexpress the KatB protein (An-KatB). Interestingly, pure An-KatB could be isolated from Anabaena by a simple physical process, obviating the need of expensive resins or chromatographic steps. An-KatB was an efficient H2O2-detoxifying protein that retained all the properties of Mn-catalases. Surprisingly, the purified An-KatB showed improved characteristics than the corresponding KatB (Ec-KatB) protein purified after over-expression in E. coli. An-KatB was unaffected by exposure to high temperature (85 °C), whereas a commercially procured heme-catalase showed an appreciable drop in activity beyond 50 °C. These data convincingly demonstrate the utility of Anabaena as a competent microbial bioresource for overproduction of proteins and further highlight the advantage of An-KatB over heme-catalases in bioprocesses where H2O2 is to be decomposed at elevated temperatures.
Collapse
Affiliation(s)
- Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
62
|
Brenes-Guillén L, Fuentes-Schweizer P, García-Piñeres A, Uribe-Lorío L. Tolerance and sorption of Bromacil and Paraquat by thermophilic cyanobacteria Leptolyngbya 7M from Costa Rican thermal springs. JOURNAL OF CONTAMINANT HYDROLOGY 2019; 226:103539. [PMID: 31408829 DOI: 10.1016/j.jconhyd.2019.103539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
We studied the adsorption ability and tolerance of the thermophilic filamentous cyanobacteria Letolyngbya 7M towards Paraquat and Bromacil. Adsorption isotherms at pH = 7.0 showed an adsorption capacity of 24.4 mg/g and 66.8 mg/g, respectively, and a good fit to the Langmuir model (R2 = 0.97 and 0.99, respectively). To evaluate the effect of both herbicides on photosynthetic pigments and viability of cyanobacteria, cell autoflorescence and esterase activity was determined using flow cytometry. Autofluorescence was less sensitive to changes in cell viability, as it was only slightly reduced at high Paraquat and Bromacil concentrations. Herbicide effect on esterase activity is dose-dependent. Bromacil did not cause a significant effect on either chlorophyll a content or cell viability. This study demonstrates the potential of Leptolyngbya 7M to remove Paraquat and Bromacil herbicides from aqueous solution under laboratory conditions.
Collapse
Affiliation(s)
- Laura Brenes-Guillén
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, Costa Rica.
| | - Paola Fuentes-Schweizer
- Centro de Investigación en Electroquímica y Energía Química, Universidad de Costa Rica, Costa Rica; Escuela de Química, Universidad de Costa Rica, Costa Rica
| | - Alfonso García-Piñeres
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, Costa Rica; Escuela de Química, Universidad de Costa Rica, Costa Rica
| | - Lorena Uribe-Lorío
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, Costa Rica
| |
Collapse
|
63
|
Wei Z, Yu S, Huang Z, Xiao X, Tang M, Li B, Zhang X. Simultaneous removal of elemental mercury and NO by mercury induced thermophilic community in membrane biofilm reactor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:170-177. [PMID: 30927638 DOI: 10.1016/j.ecoenv.2019.03.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Thermophilic membrane biofilm reactor (TMBR) for elemental mercury (Hg0) and NO removal in simulated flue gas was investigated at oxygen content of 6% and 60 °C. The performance, the microbial community structures, gene function and the mechanism for Hg0 and NO removal in the TMBR were evaluated. TMBR achieved effective simultaneous Hg0 and NO removal in 210 days of operation, Hg0 and NO removal efficiency were up to 88.9% and 85.3%, respectively. Mercury induced thermophilic community had been formed significantly. Comamonas, Pseudomonas, Desulfomicrobium, Burkholderia and Halomonas were thermophilic mercury resistant bacteria. Brucella, Paracoccus, Tepidiphilus, Proteobacteria, Pseudomonas and Symbiobacterium were nitrifying/denitrifying genera, and had functional genes of mercury and nitrogen metabolism, as shown by16S rDNA and metagenomic sequencing. The biofilm in TMBR was characterized by XPS, HPLC. XPS and HPLC spectra indicate the formation of a mercuric species (Hg2+) from mercury oxidation. TMBR used oxygen as electron acceptor, NO and Hg0 as electron donor in nitrification; O2, NO and NO3- could be used as electron acceptor and Hg0 as electron donor in denitrification.
Collapse
Affiliation(s)
- Zaishan Wei
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China.
| | - Shan Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - Zaishan Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - Xiaoliang Xiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - Meiru Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - Bailong Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - Xiao Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| |
Collapse
|
64
|
Farrokh P, Sheikhpour M, Kasaeian A, Asadi H, Bavandi R. Cyanobacteria as an eco-friendly resource for biofuel production: A critical review. Biotechnol Prog 2019; 35:e2835. [PMID: 31063628 DOI: 10.1002/btpr.2835] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/07/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022]
Abstract
Cyanobacteria are photosynthetic microorganisms which can be found in various environmental habitats. These photosynthetic bacteria are considered as promising feedstock for the production of the third- and the fourth-generation biofuels. The main subject of this review is highlighting the significant aspects of the biofuel production from cyanobacteria. The most recent investigations about the extraction or separation of the bio-oil from cyanobacteria are also adduced in the present review. Moreover, the genetic engineering of cyanobacteria for improving biofuel production and the impact of bioinformatics studies on the designing better-engineered strains are mentioned. The large-scale biofuel production is challenging, so the economic considerations to provide inexpensive biofuels are also cited. It seems that the future of biofuels is strongly dependent to the following items; understanding the metabolic pathways of the cyanobacterial species, progression in the construction of the engineered cyanobacteria, and inexpensive large-scale cultivation of them.
Collapse
Affiliation(s)
- Parisa Farrokh
- Department of cell and molecular biology, School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Alibakhsh Kasaeian
- Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Hassan Asadi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Roya Bavandi
- Branch-Marine Science and Technology Faculty, Islamic Azad University North Tehran, Tehran, Iran
| |
Collapse
|
65
|
Lusk BG. Thermophiles; or, the Modern Prometheus: The Importance of Extreme Microorganisms for Understanding and Applying Extracellular Electron Transfer. Front Microbiol 2019; 10:818. [PMID: 31080440 PMCID: PMC6497744 DOI: 10.3389/fmicb.2019.00818] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/01/2019] [Indexed: 11/30/2022] Open
Abstract
Approximately four billion years ago, the first microorganisms to thrive on earth were anaerobic chemoautotrophic thermophiles, a specific group of extremophiles that survive and operate at temperatures ∼50 - 125°C and do not use molecular oxygen (O2) for respiration. Instead, these microorganisms performed respiration via dissimilatory metal reduction by transferring their electrons extracellularly to insoluble electron acceptors. Genetic evidence suggests that Gram-positive thermophilic bacteria capable of extracellular electron transfer (EET) are positioned close to the root of the Bacteria kingdom on the tree of life. On the contrary, EET in Gram-negative mesophilic bacteria is a relatively new phenomenon that is evolutionarily distinct from Gram-positive bacteria. This suggests that EET evolved separately in Gram-positive thermophiles and Gram-negative mesophiles, and that EET in these bacterial types is a result of a convergent evolutionary process leading to homoplasy. Thus, the study of dissimilatory metal reducing thermophiles provides a glimpse into some of Earth's earliest forms of respiration. This will provide new insights for understanding biogeochemistry and the development of early Earth in addition to providing unique avenues for exploration and discovery in astrobiology. Lastly, the physiological composition of Gram-positive thermophiles, coupled with the kinetic and thermodynamic consequences of surviving at elevated temperatures, makes them ideal candidates for developing new mathematical models and designing innovative next-generation biotechnologies. KEY CONCEPTS Anaerobe: organism that does not require oxygen for growth. Chemoautotroph: organism that obtains energy by oxidizing inorganic electron donors. Convergent Evolution: process in which organisms which are not closely related independently evolve similar traits due to adapting to similar ecological niches and/or environments. Dissimilatory Metal Reduction: reduction of a metal or metalloid that uses electrons from oxidized organic or inorganic electron donors. Exoelectrogen: microorganism that performs dissimilatory metal reduction via extracellular electron transfer. Extremophiles: organisms that thrive in physical or geochemical conditions that are considered detrimental to most life on Earth. Homoplasy: a character shared by a set of species that is not shared by a common ancestor Non-synonymous Substitutions (K a ): a substitution of a nucleotide that changes a codon sequence resulting in a change in the amino acid sequence of a protein. Synonymous Substitutions (K s ): a substitution of a nucleotide that may change a codon sequence, but results in no change in the amino acid sequence of a protein. Thermophiles: a specific group of extremophiles that survive and operate at temperatures ∼50-125°C.
Collapse
|