51
|
Zhao C, Shang D, Zou Y, Du Y, Wang Q, Xu F, Ren L, Kong Q. Changes in electricity production and microbial community evolution in constructed wetland-microbial fuel cell exposed to wastewater containing Pb(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139127. [PMID: 32438162 DOI: 10.1016/j.scitotenv.2020.139127] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Two constructed wetland microbial fuel cell (CW-MFC) devices, experimental group (EG, with 5 mg/L Pb(II) addition) and control group (CG) were built to explore the changes in power generation, wastewater purification and microbial community structure under Pb(II) stress. The voltage of EG (343.16 ± 12.14 mV) was significantly higher (p < 0.01) than that of CG (295.49 ± 13.91 mV), and the highest power density of the EG and CG were 7.432 mW·m-2 and 3.873 mW·m-2, respectively. There was no significant difference in the removal of common pollutants between these groups except for the NH4+-N removal efficiency, which was probably caused by the inhibition of the bioactivity of Comamonas (AOB) in the anode of the experimental group by Pb(II). Pb(II) was effectively removed by CW-MFC (84.86 ± 3%), and the abundant amount of fulvic acid-like matter in the extracellular polymeric substance (EPS) of the EG contributed to its removal. The presence of Pb(II) had a negative effect on both microbial community diversity and species richness. The abundance of a lead resistance gene, pbrT, decreased with long-term Pb(II) pressure. This is evidence of microbial adaptation to Pb(II).
Collapse
Affiliation(s)
- CongCong Zhao
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - DaWei Shang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; Institute of Environment and Ecology, Shandong Normal University, Jinan 255014, PR China
| | - YanLing Zou
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; Institute of Environment and Ecology, Shandong Normal University, Jinan 255014, PR China
| | - YuanDa Du
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - Qian Wang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - Fei Xu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - Liang Ren
- Jiangsu CRRC Environment CO. LTD, Jiangsu Province 215557, China
| | - Qiang Kong
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
52
|
Zhong F, Yu C, Chen Y, Wu X, Wu J, Liu G, Zhang J, Deng Z, Cheng S. Nutrient Removal Process and Cathodic Microbial Community Composition in Integrated Vertical-Flow Constructed Wetland - Microbial Fuel Cells Filled With Different Substrates. Front Microbiol 2020; 11:1896. [PMID: 32849471 PMCID: PMC7419476 DOI: 10.3389/fmicb.2020.01896] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022] Open
Abstract
An integrated vertical-flow constructed wetland-microbial fuel cell system (CW-MFC), consisting of an up-flow chamber and a down-flow chamber, was constructed to treat synthetic sewage wastewater. The performance of CW-MFCs filled with different substrates [i.e., ceramsite (CM-A), quartz (CM-B), and zeolite (CM-C) granules] under various hydraulic retention times (HRTs, 7.6, 4.0, and 2.8 d) was evaluated. Efficient and stable nitrogen (N) and phosphorus (P) removals were observed in CM-A under different HRTs, while the voltage outputs of the CW-MFCs was greatly reduced as the HRTs decreased. With an HRT of 2.8 d, the ammonium (NH4 +-N) and orthophosphate (PO4 3--P) removal efficiencies in CM-A were as high as 93.8 and 99.6%, respectively. Bacterial community analysis indicates that the N removal in the cathode area of CM-A could potentially benefit from the appearance of nitrifying bacteria (e.g., Nitrosomonas and Nitrospira) and relatively high abundance of denitrifiers involved in simultaneous nitrification and denitrification (e.g., Hydrogenophaga, Zoogloea, and Dechloromonas) and denitrifying sulfide removal (e.g., Thauera). Additionally, the difference in N removal efficiency among the CW-MFCs could be partly explained by higher iron (Fe) content in milled ceramsite granules and higher abundance of denitrifiers with nitrate reduction and ferrous ions oxidation capabilities in CM-A compared with that in CM-B and CM-C. Efficient PO4 3--P removal in CM-A was mainly ascribed to substrate adsorption and denitrifying phosphorus (P) removal. Concerning the substantial purification performance in CM-A, ceramsite granules could be used to improve the nutrient removal efficiency in integrated vertical-flow CW-MFC.
Collapse
Affiliation(s)
- Fei Zhong
- School of Life Sciences, Nantong University, Nantong, China
| | - Chunmei Yu
- School of Life Sciences, Nantong University, Nantong, China
| | - Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, China
| | - Xue Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Juan Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Guoyuan Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Zifa Deng
- School of Life Sciences, Nantong University, Nantong, China
| | - Shuiping Cheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| |
Collapse
|
53
|
Di L, Li Y, Nie L, Wang S, Kong F. Influence of plant radial oxygen loss in constructed wetland combined with microbial fuel cell on nitrobenzene removal from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122542. [PMID: 32240899 DOI: 10.1016/j.jhazmat.2020.122542] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the effects of radial oxygen loss (ROL) of three different plants on nitrobenzene (NB) wastewater treatment and bioelectricity generation performance in constructed wetland-microbial fuel cell (CW-MFC). ROL and root biomass from wetland plants showed positive effects on NB wastewater compared to unplanted CW-MFC. Scirpus validus exhibited higher tolerance to NB than Typha orientalis and Iris pseudacorus at 20-200 mg/L NB. As NB concentration reached 200 mg/L, the CW-MFC with Scirpus validus had relatively high DO (2.57 ± 0.17 mg/L) and root biomass (16.42 ± 0.18 g/m2), which resulted in the highest power density and voltage (19.5 mW/m2, 590 mV) as well as NB removal efficiency (93.9 %) among four reactors. High-throughput sequencing results suggested that electrochemically active bacteria (EAB) (e.g., Geobacter, Ferruginibacter) and dominant NB-degrading bacteria (e.g., Comamonas, Pseudomonas) could be enhanced by wetland plants, especially in CW-MFC with Scirpus validus. Therefore, Scirpus validus was a good option for simultaneously treating NB wastewater and producing bioelectricity.
Collapse
Affiliation(s)
- Liyan Di
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Yue Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Likai Nie
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Sen Wang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Fanlong Kong
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
54
|
Wei D, Singh RP, Li Y, Fu D. Nitrogen removal efficiency of surface flow constructed wetland for treating slightly polluted river water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24902-24913. [PMID: 32342414 DOI: 10.1007/s11356-020-08393-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Restoration and water quality improvement of malodorous as well as slightly polluted rivers have been the global focus for environmental protection research and the development and construction of sponge cities. To date, constructed wetlands have been proven to be one of efficient methods to improve water quality. Nitrogen removal efficiency is a crucial indicator for the performance evaluation in slightly polluted river water treatment. Therefore, current study aimed to investigate the N removal efficiency of 3-stage surface flow constructed wetlands for water treatment. Results show that after a prolonged operation period, constructed wetlands were able to remove NH4+-N, NO3--N, and TN by 38.4%, 22.3%, and 29.1%, respectively. Further investigations were carried out to investigate the removal efficiency of various N species in the 3-stage wetlands. Findings reveal that NH4+-N was mainly treated in wetland #1 (W1) and wetland #2 (W2), while NO3--N and TN were in wetland #2 (W2) and wetland #3 (W3). Results also reveal that the influencing factors such as hydraulic retention time (HRT), water temperature (WT), and additional carbon source have significant effect on the removal performance of constructed wetlands.
Collapse
Affiliation(s)
- Dingbing Wei
- School of Civil Engineering, Southeast University, Nanjing, China
- Southeast University - Monash University Joint Research Centre for Future Cities, Nanjing, China
| | - Rajendra Prasad Singh
- School of Civil Engineering, Southeast University, Nanjing, China
- Southeast University - Monash University Joint Research Centre for Future Cities, Nanjing, China
| | - Yangke Li
- School of Civil Engineering, Southeast University, Nanjing, China
- Southeast University - Monash University Joint Research Centre for Future Cities, Nanjing, China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing, China.
- Southeast University - Monash University Joint Research Centre for Future Cities, Nanjing, China.
| |
Collapse
|
55
|
Mu C, Wang L, Wang L. Performance of lab-scale microbial fuel cell coupled with unplanted constructed wetland for hexavalent chromium removal and electricity production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25140-25148. [PMID: 32347498 DOI: 10.1007/s11356-020-08982-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
The microbial fuel cell coupled constructed wetland (CW-MFC) was used for treatment sewage and simultaneously generating electricity. The main aim of this study was to explore the optimal conditions for the treatment of hexavalent chromium (Cr (VI)) wastewater by the CW-MFC system. The performance of CW-MFC in removing Cr (VI) and chemical oxygen demands (COD) contained in wastewater and its electricity generation were studied. Electrode spacing, Cr (VI) and COD concentration, and hydraulic retention time (HRT) had certain effects on the performance of CW-MFC. For the electrode spacing of 10 cm, the highest power density of 458.2 mW/m3 could be obtained with the influent concentration of Cr (VI) (60 mg/L) and COD (500 mg/L). The highest Cr (VI) and COD removal rate were obtained with the HRT of 3 days. Compared with CW system, the electrical energy generated in CW-MFC was beneficial to improving the removal efficiency of COD and Cr (VI). Thus, the results confirmed that CW-MFC is a promising technology to remove Cr (VI) from wastewater and achieve bioelectricity production simultaneously.
Collapse
Affiliation(s)
- Chunxia Mu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Lin Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Li Wang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
56
|
Wang Q, Lv R, Rene ER, Qi X, Hao Q, Du Y, Zhao C, Xu F, Kong Q. Characterization of microbial community and resistance gene (CzcA) shifts in up-flow constructed wetlands-microbial fuel cell treating Zn (II) contaminated wastewater. BIORESOURCE TECHNOLOGY 2020; 302:122867. [PMID: 32007853 DOI: 10.1016/j.biortech.2020.122867] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
The main aim of this work was to characterize the microbial community structure and resistance gene (CzcA) shifts in up-flow constructed wetlands-microbial fuel cell (CW-MFC) treating Zn (II) contaminated wastewater. Two CW-MFC devices were operated, i.e. the experimental group (EG) treating Zn (II) wastewater, and the control group (CG) treating Zn (II)-free wastewater. The results showed the CW-MFC combination exhibited good removal efficiency on Zn (II), while the average voltage, the power density and the removal rates (TP, TN, NH4+-N and COD) significantly reduced (p < 0.05). The microbial community structure showed that the Zn (II) significantly reduced the abundance of some functional genus (p < 0.05), such as Ochrobactrum, Nitrosomonas, Pseudomonas and Dechloromonas. Zn (II) inhibited the microbial richness in the anode, but it played a positive role in the cathode. Anew, the expression of the CzcA in the CW-MFC was promoted by Zn (II), particularly in the cathode.
Collapse
Affiliation(s)
- Qian Wang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - Ruiyuan Lv
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; Institute of Environment and Ecology, Shandong Normal University, Jinan 250014, PR China
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands
| | - Xiaoyu Qi
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - Qiang Hao
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, Sydney, NSW, Australia
| | - Yuanda Du
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - Congcong Zhao
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - Fei Xu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - Qiang Kong
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
57
|
Tao M, Guan L, Jing Z, Tao Z, Wang Y, Luo H, Wang Y. Enhanced denitrification and power generation of municipal wastewater treatment plants (WWTPs) effluents with biomass in microbial fuel cell coupled with constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136159. [PMID: 31887514 DOI: 10.1016/j.scitotenv.2019.136159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
A microbial fuel cell-constructed wetland (MFC-CW) with water hyacinth is established to remove the nitrogen and organics from municipal wastewater treatment plants (WWTPs) effluents. Because insufficient carbon sources in influent might decrease pollutants removal efficiency and electricity generation, this research aimed to select high-quality and low-cost biomass as additional carbon source to improve the performance of MFC-CW. Cellulose and hemicellulose (xylan) were chosen as the biomass. Results indicated that xylan displayed a higher nitrate removal (above 92%) compared with cellulose (10.9%). With xylan as carbon source, the anode packing removed nitrate above 80%, while the cathode packing only removed around 50%. With glucose as sole carbon source, the maximum total nitrogen (TN) removal of MFC-CW was 87.66 ± 4.23%, which was higher than that of MFC (85.58 ± 4.14%). The chemical oxygen demand (COD) and TN in the effluent of MFC-CW were maintained below 25 mg/L and 1.5 mg/L, respectively, with the COD/TN ratio around 5.4 and hydraulic retention time (HRT) at 48 h. The TN removal reached the maximum efficiency of 88.78 ± 3.98% when glucose and xylan ratio was in 40%:60% as composite carbon sources, and COD and TN in the effluent were below 20 mg/L and 1.5 mg/L, respectively. In addition, xylan as the additional carbon source significantly promoted the power density compared with sole glucose. Microbial community diversity in the MFC-CW was significantly higher than that in the single MFC or CW. Proteobacteria and Cyanobacteria_norank were relatively more dominant in the MFC-CW than those in the single MFC or CW, which accounted for high nitrogen removal and power generation. Findings in this study proved that MFC-CW with biomass addition enhanced nitrogen removal and power generation.
Collapse
Affiliation(s)
- Mengni Tao
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lin Guan
- Nanjing Municipal Design and Research Institute Co., Ltd., Nanjing 210008, China
| | - Zhaoqian Jing
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhengkai Tao
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yue Wang
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Luo
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yin Wang
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
58
|
Biotreatment of high-salinity wastewater: current methods and future directions. World J Microbiol Biotechnol 2020; 36:37. [DOI: 10.1007/s11274-020-02815-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
|
59
|
Srivastava P, Yadav AK, Garaniya V, Lewis T, Abbassi R, Khan SJ. Electrode dependent anaerobic ammonium oxidation in microbial fuel cell integrated hybrid constructed wetlands: A new process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134248. [PMID: 31494423 DOI: 10.1016/j.scitotenv.2019.134248] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
This study provides a new approach of electrode dependent anaerobic ammonium oxidation (electroanammox) in microbial fuel cell (MFC) integrated hybrid constructed wetlands (CWs). The study was carried out in three CWs, each with a horizontal flow (HF) followed by a vertical upflow (VUF). Two of the CWs were integrated with MFC, one was operated in closed circuit (CL) mode and the other in open circuit (OP) mode to determine the influence of electron transfer through an external electrical circuit. The initial nitrogen and carbon concentration were 40 mg/l and 880 mg/l respectively. The total nitrogen (TN), NH4+-N, TOC and COD removal achieved in CW-MFC-CL were 90.0 ± 1.15%, 94.4 ± 0.75%, 64.8 ± 3.0% and up to 99.5 ± 3.4%, respectively. The TN and NH4+-N removal in CW-MFC-CL was 20.0% and 13.6% higher than normal CW. Maximum current density achieved in CW-MFC-HF was of 75 mA/m3 and in CW-MFC-VUF was 156 mA/m3. Furthermore, the study revealed that even at low microbiological biomass, an MFC integrated CW operating in closed circuit gave higher removal of NH4+-N and COD than the normal CW and open circuit CW-MFC. Microbiological analysis shows the presence of already known nitrifier and denitrifer which indicates their role in electrode dependent nitrogen removal.
Collapse
Affiliation(s)
- Pratiksha Srivastava
- Australian Maritime College, College of Sciences and Engineering, University of Tasmania, Launceston 7248, Australia
| | - Asheesh Kumar Yadav
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | - Vikram Garaniya
- Australian Maritime College, College of Sciences and Engineering, University of Tasmania, Launceston 7248, Australia
| | - Trevor Lewis
- School of Natural Sciences, College of Sciences and Engineering, University of Tasmania, Launceston 7250, Tasmania, Australia
| | - Rouzbeh Abbassi
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, NSW, Australia.
| | - Stuart J Khan
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
60
|
Dai M, Zhou G, Ng HY, Zhang J, Wang Y, Li N, Qi X, Miao M, Liu Q, Kong Q. Diversity evolution of functional bacteria and resistance genes (CzcA) in aerobic activated sludge under Cd(II) stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109519. [PMID: 31514000 DOI: 10.1016/j.jenvman.2019.109519] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/17/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
An activated sludge sequencing batch reactor (SBR) was used to treat divalent cadmium (Cd(II)) wastewater for 60 d to investigate the overall treatment performance, evolution of the bacterial community, and abundance of the Cd(II) resistance gene CzcA and shifts in its potential host bacteria. During stable operation with a Cd(II) concentration of 20 mg/L, the average removal efficiencies of Cd(II) and chemical oxygen demand (COD) were more than 85% and that of total phosphorus was greater than 70%, while the total nitrogen (TN) was only about 45%. The protein (PN) content in the extracellular polymeric substances (EPS) increased significantly after Cd(II) addition, while polysaccharides displayed a decreasing trend (p < 0.05), indicating that EPS prefer to release PN to adsorb Cd(II) and protect bacteria from damage. Three-dimensional fluorescence spectral analysis showed that fulvic acid-like substances were the most abundant chemical components of EPS. The addition of Cd(II) adversely affected most denitrifying bacteria (p < 0.05), which is consistent with the low TN removal. In addition, quantitative polymerase chain reaction analysis revealed that CzcA gene abundance decreased as the Cd(II) concentration increased, possibly because expression of the CzcA gene was inhibited by Cd(II) stress. The majority of CzcA gene sequences were carried by Pseudomonas, making it the dominant genus among Cd(II)-resistant bacteria.
Collapse
Affiliation(s)
- Meixue Dai
- College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Guangqing Zhou
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China; College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - How Yong Ng
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Jinyong Zhang
- Shandong Huankeyuan Environmental Engineering Co., Ltd, 50 Lishan Road, Jinan, 250013, Shandong, PR China
| | - Yan Wang
- Dongying Customs, 101 Fuqian Dajie, Dongying, 257091, Shandong, PR China
| | - Ning Li
- Dongying Customs, 101 Fuqian Dajie, Dongying, 257091, Shandong, PR China
| | - Xiaoyu Qi
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China
| | - Mingsheng Miao
- College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Qi Liu
- College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Qiang Kong
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250014, PR China; Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|