Zhao Y, Zhang Q, Peng Y, Peng Y, Li X, Jiang H. Advanced nitrogen elimination from domestic sewage through two stage partial nitrification and denitrification (PND) coupled with simultaneous anaerobic ammonia oxidation and denitrification (SAD).
BIORESOURCE TECHNOLOGY 2022;
343:125986. [PMID:
34653628 DOI:
10.1016/j.biortech.2021.125986]
[Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The start-up, efficient, and secure operation of Anammox treating low ammonia sewage, is an important research focus. In this study, a partial nitrification-denitrification coupled with simultaneous Anammox and denitrification (PND-SAD) process was achieved in sequencing batch reactor/up-flow anaerobic sludge bed (SBR-UASB). The key measures to maintain high efficiency PND were: (i) controlling dissolved oxygen in the SBR below 0.5 mg/L, which is not only conducive to PN, but also promotes the contribution of simultaneous nitrification and denitrification to nitrogen removal; (ii) monitoring the nitrate (NO3--N) of SBR effluent and discharging sludge to wash out nitrate oxidation bacteria when the NO3--N exceeds 1.0 mg/L. The nitrite accumulation rate reached 97.6%. SBR effluent and domestic sewage entered the UASB. Although Candidatus Brocadia only accounted for 0.8%, its contribution to nitrogen removal reached 76.8%. In PND-SAD system, the aerobic HRT was only 3.8 h, nitrogen removal efficiency up to 97.3%.
Collapse