51
|
Portell-Buj E, Vergara A, Alejo I, López-Gavín A, Monté MR, San Nicolás L, González-Martín J, Tudó G. In vitro activity of 12 antimicrobial peptides against Mycobacterium tuberculosis and Mycobacterium avium clinical isolates. J Med Microbiol 2018; 68:211-215. [PMID: 30570475 DOI: 10.1099/jmm.0.000912] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) remains a major threat to human health worldwide. The increasing incidence of non-tuberculous mycobacterial infections and particularly those produced by Mycobacterium avium has emphasized the need to develop new drugs. Additionally, high levels of natural drug resistance in non-tuberculous mycobacteria (NTM) and the emergence of multidrug-resistant (MDR) TB is of great concern. Antimicrobial peptides (AMPs) are antibiotics with broad-spectrum antimicrobial activity. The objective was to assess the activity of AMPs against Mycobacterium tuberculosis and M. avium clinical isolates. MICs were determined using microtitre plates and the resazurin assay. Mastoparan and melittin showed the greatest activity against M. tuberculosis, while indolicidin had the lowest MIC against M. avium. In conclusion, AMPs could be alternatives for the treatment of mycobacterial infections. Further investigation of AMPs' activity in combination and associated with conventional antibiotics and their loading into drug-delivery systems could lead to their use in clinical practice.
Collapse
Affiliation(s)
- Elena Portell-Buj
- 1Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Servei de Microbiologia-CDB, Hospital Clínic de Barcelona-ISGlobal, c/ Villarroel 170, 08036 Barcelona, Spain
| | - Andrea Vergara
- 2Servei de Microbiologia-CDB, Hospital Clínic de Barcelona-ISGlobal, Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat deBarcelona, c/ Villarroel 170, 08036 Barcelona, Spain
| | - Izaskun Alejo
- 2Servei de Microbiologia-CDB, Hospital Clínic de Barcelona-ISGlobal, Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat deBarcelona, c/ Villarroel 170, 08036 Barcelona, Spain.,3Servicio de Microbiología, Hospital Universitario de Cruces, Barakaldo, Bizkaia, Spain
| | - Alexandre López-Gavín
- 2Servei de Microbiologia-CDB, Hospital Clínic de Barcelona-ISGlobal, Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat deBarcelona, c/ Villarroel 170, 08036 Barcelona, Spain
| | - Maria Rosa Monté
- 2Servei de Microbiologia-CDB, Hospital Clínic de Barcelona-ISGlobal, Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat deBarcelona, c/ Villarroel 170, 08036 Barcelona, Spain
| | - Lorena San Nicolás
- 2Servei de Microbiologia-CDB, Hospital Clínic de Barcelona-ISGlobal, Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat deBarcelona, c/ Villarroel 170, 08036 Barcelona, Spain
| | - Julian González-Martín
- 2Servei de Microbiologia-CDB, Hospital Clínic de Barcelona-ISGlobal, Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat deBarcelona, c/ Villarroel 170, 08036 Barcelona, Spain
| | - Griselda Tudó
- 2Servei de Microbiologia-CDB, Hospital Clínic de Barcelona-ISGlobal, Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat deBarcelona, c/ Villarroel 170, 08036 Barcelona, Spain
| |
Collapse
|
52
|
Tenland E, Krishnan N, Rönnholm A, Kalsum S, Puthia M, Mörgelin M, Davoudi M, Otrocka M, Alaridah N, Glegola-Madejska I, Sturegård E, Schmidtchen A, Lerm M, Robertson BD, Godaly G. A novel derivative of the fungal antimicrobial peptide plectasin is active against Mycobacterium tuberculosis. Tuberculosis (Edinb) 2018; 113:231-238. [PMID: 30514507 PMCID: PMC6289163 DOI: 10.1016/j.tube.2018.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/25/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
Abstract
Tuberculosis has been reaffirmed as the infectious disease causing most deaths in the world. Co-infection with HIV and the increase in multi-drug resistant Mycobacterium tuberculosis strains complicate treatment and increases mortality rates, making the development of new drugs an urgent priority. In this study we have identified a promising candidate by screening antimicrobial peptides for their capacity to inhibit mycobacterial growth. This non-toxic peptide, NZX, is capable of inhibiting both clinical strains of M. tuberculosis and an MDR strain at therapeutic concentrations. The therapeutic potential of NZX is further supported in vivo where NZX significantly lowered the bacterial load with only five days of treatment, comparable to rifampicin treatment over the same period. NZX possesses intracellular inhibitory capacity and co-localizes with intracellular bacteria in infected murine lungs. In conclusion, the data presented strongly supports the therapeutic potential of NZX in future anti-TB treatment.
Collapse
Affiliation(s)
- Erik Tenland
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - Nitya Krishnan
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, UK
| | - Anna Rönnholm
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sadaf Kalsum
- Department of Clinical and Experimental Medicine, Faculty Medicine and Health Sciences, Linköping, Sweden
| | - Manoj Puthia
- Department of Dermatology and Venereology, Institution of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Mina Davoudi
- Department of Dermatology and Venereology, Institution of Clinical Sciences, Lund University, Lund, Sweden
| | - Magdalena Otrocka
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Nader Alaridah
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - Izabela Glegola-Madejska
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, UK
| | - Erik Sturegård
- Department of Clinical Microbiology, Institution of Translational Medicine, Lund University, Malmö, Sweden
| | - Artur Schmidtchen
- Department of Dermatology and Venereology, Institution of Clinical Sciences, Lund University, Lund, Sweden
| | - Maria Lerm
- Department of Clinical and Experimental Medicine, Faculty Medicine and Health Sciences, Linköping, Sweden
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, UK
| | - Gabriela Godaly
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
53
|
Antibacterial activity and its mechanisms of a recombinant Funme peptide against Cronobacter sakazakii in powdered infant formula. Food Res Int 2018; 116:258-265. [PMID: 30716944 DOI: 10.1016/j.foodres.2018.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/23/2018] [Accepted: 08/11/2018] [Indexed: 12/30/2022]
Abstract
Cronobacter sakazakii (Cs) is a typical foodborne bacterium that infect powdered infant formula (PIF) worldwide. In this study, a recombinant antimicrobial peptide, branded as Funme peptide (FP)was applied to protect PIF from Cs contamination. The result from the antimicrobial activity assay showed that the minimum inhibitory concentration (MIC) of BMAP-27 peptide, FP and Ampicillin against Cs were 250.0, 125.0 and 15.6 μg/mL, respectively, indicating FP possessed higher MIC than that of Ampicillin, and lower MIC than that of BMAP-27. The minimum biofilm eradication concentration (MBEC) assay showed that FP at 2 × MIC (250.0 μg/mL) could completely eradicated Cs biofilms. The antibacterial activity of FP might be due to the increasing permeability and the release of cytoplasmic β-galactosidase of Cs. The results acquired from transmission electron microscopy and scanning electron microscopy indicated that FP induced the disruption and dysfunction of cell walls and membranes. Moreover, safety assay showed that FP had low cytotoxicity to human erythrocytes. The present study investigated the antibacterial effects and mechanisms of FP against Cs, providing promising evidence to apply this novel antimicrobial agent against Cs contamination in foods and food processing facilities.
Collapse
|
54
|
Liu S, Bao J, Lao X, Zheng H. Novel 3D Structure Based Model for Activity Prediction and Design of Antimicrobial Peptides. Sci Rep 2018; 8:11189. [PMID: 30046138 PMCID: PMC6060096 DOI: 10.1038/s41598-018-29566-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/13/2018] [Indexed: 01/10/2023] Open
Abstract
The emergence and worldwide spread of multi-drug resistant bacteria makes an urgent challenge for the development of novel antibacterial agents. A perspective weapon to fight against severe infections caused by drug-resistant microorganisms is antimicrobial peptides (AMPs). AMPs are a diverse class of naturally occurring molecules that are produced as a first line of defense by all multi-cellular organisms. Limited by the number of experimental determinate 3D structure, most of the prediction or classification methods of AMPs were based on 2D descriptors, including sequence, amino acid composition, peptide net charge, hydrophobicity, amphiphilic, etc. Due to the rapid development of structural simulation methods, predicted models of proteins (or peptides) have been successfully applied in structure based drug design, for example as targets of virtual ligand screening. Here, we establish the activity prediction model based on the predicted 3D structure of AMPs molecule. To our knowledge, it is the first report of prediction method based on 3D descriptors of AMPs. Novel AMPs were designed by using the model, and their antibacterial effect was measured by in vitro experiments.
Collapse
Affiliation(s)
- Shicai Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingxiao Bao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xingzhen Lao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
55
|
Man DKW, Kanno T, Manzo G, Robertson BD, Lam JKW, Mason AJ. Rifampin- or Capreomycin-Induced Remodeling of the Mycobacterium smegmatis Mycolic Acid Layer Is Mitigated in Synergistic Combinations with Cationic Antimicrobial Peptides. mSphere 2018; 3:e00218-18. [PMID: 30021876 PMCID: PMC6052339 DOI: 10.1128/msphere.00218-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/24/2018] [Indexed: 01/15/2023] Open
Abstract
The mycobacterial cell wall affords natural resistance to antibiotics. Antimicrobial peptides (AMPs) modify the surface properties of mycobacteria and can act synergistically with antibiotics from differing classes. Here, we investigate the response of Mycobacterium smegmatis to the presence of rifampin or capreomycin, either alone or in combination with two synthetic, cationic, α-helical AMPs that are distinguished by the presence (D-LAK120-HP13) or absence (D-LAK120-A) of a kink-inducing proline. Using a combination of high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) metabolomics, diphenylhexatriene (DPH) fluorescence anisotropy measurements, and laurdan emission spectroscopy, we show that M. smegmatis responds to challenge with rifampin or capreomycin by substantially altering its metabolism and, in particular, by remodeling the cell envelope. Overall, the changes are consistent with a reduction of trehalose dimycolate and an increase of trehalose monomycolate and are associated with increased rigidity of the mycolic acid layer observed following challenge by capreomycin but not rifampin. Challenge with D-LAK120-A or D-LAK120-HP13 induced no or modest changes, respectively, in mycomembrane metabolites and did not induce a significant increase in the rigidity of the mycolic acid layer. Furthermore, the response to rifampin or capreomycin was significantly reduced when these were combined with D-LAK120-HP13 and D-LAK120-A, respectively, suggesting a possible mechanism for the synergy of these combinations. The remodeling of the mycomembrane in M. smegmatis is therefore identified as an important countermeasure deployed against rifampin or capreomycin, but this can be mitigated and the efficacy of rifampin or capreomycin potentiated by combining the drug with AMPs.IMPORTANCE We have used a combined NMR metabolomics/biophysical approach to better understand differences in the mechanisms of two closely related antimicrobial peptides, as well as the response of the model organism Mycobacterium smegmatis to challenge with first- or second-line antibiotics used against mycobacterial pathogens. We show that, in addition to membrane damage, the triggering of oxidative stress may be an important part of the mechanism of action of one AMP. The metabolic shift that accompanied rifampin and, particularly, capreomycin challenge was associated with modest and more dramatic changes, respectively, in the mycomembrane, providing a rationale for how the response to one antibiotic may affect bacterial penetration and, hence, the action of another. This study presents the first insights into how antimicrobial peptides may operate synergistically with existing antibiotics whose efficacy is waning or sensitize MDR mycobacteria and/or latent mycobacterial infections to them, prolonging the useful life of these drugs.
Collapse
Affiliation(s)
- DeDe Kwun-Wai Man
- Institute of Pharmaceutical Sciences, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Tokuwa Kanno
- Institute of Pharmaceutical Sciences, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Giorgia Manzo
- Institute of Pharmaceutical Sciences, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Jenny K W Lam
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - A James Mason
- Institute of Pharmaceutical Sciences, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
56
|
Sun Y, Yang Z, Wan C, Xu C, Chen L, Xu L, Zhang X, Yan F. Development and validation of the pulmonary tuberculosis scale of the system of Quality of Life Instruments for Chronic Diseases (QLICD-PT). Health Qual Life Outcomes 2018; 16:137. [PMID: 29996931 PMCID: PMC6042382 DOI: 10.1186/s12955-018-0960-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Background Generic assessments are less responsive to subtle changes due to specific diseases, making it challenging to fully understand the impact of pulmonary tuberculosis (TB) on patient’s quality of life (QOL). Methods We applied programmed decision procedures and theories on instrument development to develop the scale. Two hundred patients with pulmonary TB participated in measuring QOL three times before and after treatments. We assessed the validity, reliability, and responsiveness of QLICD-PT using correlation analysis, factor analysis, multi-trait scaling analysis, randomized block analyses of variance with Least Significant Difference post-hoc tests. Results We composed QLICD-PT with 3 domains (28 items) for general QOL and 1 pulmonary TB specific domain (12 items). Correlation and factor analysis confirmed good structure validity and criterion-related validity when using Chinese version of the Medical Outcomes Short-Form Health Survey (SF-36) as a criterion. The internal consistency of α values were higher than 0.70. The score changes after treatment were of statistical significance for the overall scale, physical domain and specific domain with effect size ranging from 0.32 to 0.72. No floor effects but small ceiling effects were observed at domain level. Conclusions As the first pulmonary TB-specific QOL scale developed by a module approach in Chinese, QLICD-PT has an acceptable degree of validity, reliability and responsiveness, and can be used to measure the life quality of PT patients specifically and sufficiently.
Collapse
Affiliation(s)
- Yanchun Sun
- Department of Social Medicine, School of Public Health, National Key Laboratory of Health Technology Assessment (National Health and Family Planning Commission), Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai, 200032, China
| | - Zheng Yang
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Chonghua Wan
- School of Humanities and Management, Research Center for Quality of Life and Applied Psychology, Guangdong Medical University, Dongguan, 523808, China.
| | - Chuanzhi Xu
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Liuping Chen
- Yunnnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Lin Xu
- Yunnnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Xiaoqing Zhang
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Fei Yan
- Department of Social Medicine, School of Public Health, National Key Laboratory of Health Technology Assessment (National Health and Family Planning Commission), Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
57
|
Lee MO, Dobson L, Davis BW, Skow L, Derr J, Womack JE. Genomic Structure and Tissue Expression of the NK-Lysin Gene Family in Bison. J Hered 2018; 109:598-603. [PMID: 29718298 DOI: 10.1093/jhered/esy022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/26/2018] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a class of natural peptides with varying numbers of amino acids. They are principal components of innate immunity in vertebrates, encoding natural antibiotics and providing a protective response against a broad range of microbes including those responsible for tuberculosis, an important disease in bison. NK-lysins are AMPs that have been described in various organisms and are coded by a single gene in several mammalian species, including human. Recently, we described a family of 4 NK-lysin genes in cattle. Here, we examined NK-lysin genes in bison and identified 4 bison paralogs (NK1, NK2A, NK2B, and NK2C), although the current bison genome assembly annotates only 2 (NK1 and NK2). Sequence and phylogenetic analysis support the triplication of NK2 prior to the most recent common ancestor of bison and cattle. Comparative mapping of bison and cattle paralogs indicates that the NK-lysin family is located on bison chromosome 11 with well-conserved synteny of flanking genes relative to cattle. The 3 bison NK-lysin2 genes share high sequence similarity with each other. RNA-seq analysis demonstrates that NK2A, NK2B, and NK2C are expressed primarily in the lung, whereas NK1 is expressed at low levels in all tissues studied. This tissue expression pattern differs from that previously reported for cattle, suggesting some divergence in function since the evolutionary separation of the 2 species.
Collapse
Affiliation(s)
- Mi Ok Lee
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A & M University, College Station, TX
| | - Lauren Dobson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A & M University, College Station, TX
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX
| | - Loren Skow
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX
| | - James Derr
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A & M University, College Station, TX
| | - James E Womack
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A & M University, College Station, TX
| |
Collapse
|
58
|
Dong N, Wang Z, Chou S, Zhang L, Shan A, Jiang J. Antibacterial activities and molecular mechanism of amino-terminal fragments from pig nematode antimicrobial peptide CP-1. Chem Biol Drug Des 2018; 91:1017-1029. [PMID: 29266746 DOI: 10.1111/cbdd.13165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/18/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022]
Abstract
High manufacturing costs and weak cell selectivity have limited the clinical application of naturally occurring peptides when faced with an outbreak of drug resistance. To overcome these limitations, a set of antimicrobial peptides was synthesized with the general sequence of (WL)n, where n = 1, 2, 3, and WL was truncated from the N-terminus of Cecropin P1 without initial serine residues. The antimicrobial peptide WL3 exhibited stronger antimicrobial activity against both Gram-negative and Gram-positive microbes than the parental peptide CP-1. WL3 showed no hemolysis even at the highest test concentrations compared to the parental peptide CP-1. The condition sensitivity assays (salts, serum, and trypsin) demonstrated that WL3 had high stability in vitro. Fluorescence spectroscopy and electron microscopy indicated that WL3 killed microbes by means of penetrating the membrane and causing cell lysis. In a mouse model, WL3 was able to significantly reduce the bacteria load in major organs and cytokines (TNF-α, IL-6, and IL-1β) levels in serum. In summary, these findings suggest that WL3, which was modified from a natural antimicrobial peptide, has enormous potential for application as a novel antibacterial agent.
Collapse
Affiliation(s)
- Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Zhihua Wang
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Shuli Chou
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Licong Zhang
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Junguang Jiang
- The State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
59
|
Wan M, Tang X, Rekha RS, Muvva SSVJR, Brighenti S, Agerberth B, Haeggström JZ. Prostaglandin E 2 suppresses hCAP18/LL-37 expression in human macrophages via EP2/EP4: implications for treatment of Mycobacterium tuberculosis infection. FASEB J 2018; 32:2827-2840. [PMID: 29401596 DOI: 10.1096/fj.201701308] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Prostaglandin (PG)E2 is an arachidonic acid-derived lipid mediator that plays an important role in inflammation and immunity. In this study, we demonstrate that PGE2 suppresses basal and 1,25-dihydroxy vitamin D3 (VD3)-induced expression of hCAP18/LL-37 via E prostanoid (EP)2 and EP4 receptors. In humans, VD3 up-regulates vitamin D receptor (VDR) expression and promotes transcription of the cathelicidin hCAP18/LL-37 gene, whereas PGE2 counteracts this effect. We find that PGE2 induces the cAMP/PKA-signaling pathway and enhances the expression of the inhibitory transcription factor cAMP-responsive modulator/inducible cAMP early repressor, which prevents VDR expression and induction of hCAP18/LL-37 in human macrophages. The negative regulation by PGE2 was evident in M1- and M2-polarized human macrophages, although PGE2 displayed more profound inhibitory effects in M2 cells. PGE2 impaired VD3-induced expression of cathelicidin and concomitant activation of autophagy during Mycobacterium tuberculosis (Mtb) infection and facilitated intracellular Mtb growth in human macrophages. An EP4 agonist also significantly promoted Mtb survival in human macrophages. Our results indicate that PGE2 inhibits hCAP18/LL-37 expression, especially VD3-induced cathelicidin and autophagy, which may reduce host defense against Mtb. Accordingly, antagonists of EP4 may constitute a novel adjunctive therapy in Mtb infection.-Wan, M., Tang, X., Rekha, R. S., Muvva, S. S. V. J. R., Brighenti, S., Agerberth, B., Haeggström, J. Z. Prostaglandin E2 suppresses hCAP18/LL-37 expression in human macrophages via EP2/EP4: implications for treatment of Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Min Wan
- Division of Physiology Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xiao Tang
- Division of Physiology Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rokeya Sultana Rekha
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska University Hospital, Huddinge, Stockholm, Sweden; and
| | | | - Susanna Brighenti
- Center for Infectious Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Birgitta Agerberth
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska University Hospital, Huddinge, Stockholm, Sweden; and
| | - Jesper Z Haeggström
- Division of Physiology Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
60
|
Arranz-Trullén J, Lu L, Pulido D, Bhakta S, Boix E. Host Antimicrobial Peptides: The Promise of New Treatment Strategies against Tuberculosis. Front Immunol 2017; 8:1499. [PMID: 29163551 PMCID: PMC5681943 DOI: 10.3389/fimmu.2017.01499] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) continues to be a devastating infectious disease and remerges as a global health emergency due to an alarming rise of antimicrobial resistance to its treatment. Despite of the serious effort that has been applied to develop effective antitubercular chemotherapies, the potential of antimicrobial peptides (AMPs) remains underexploited. A large amount of literature is now accessible on the AMP mechanisms of action against a diversity of pathogens; nevertheless, research on their activity on mycobacteria is still scarce. In particular, there is an urgent need to integrate all available interdisciplinary strategies to eradicate extensively drug-resistant Mycobacterium tuberculosis strains. In this context, we should not underestimate our endogenous antimicrobial proteins and peptides as ancient players of the human host defense system. We are confident that novel antibiotics based on human AMPs displaying a rapid and multifaceted mechanism, with reduced toxicity, should significantly contribute to reverse the tide of antimycobacterial drug resistance. In this review, we have provided an up to date perspective of the current research on AMPs to be applied in the fight against TB. A better understanding on the mechanisms of action of human endogenous peptides should ensure the basis for the best guided design of novel antitubercular chemotherapeutics.
Collapse
Affiliation(s)
- Javier Arranz-Trullén
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, United Kingdom
| | - Lu Lu
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - David Pulido
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, United Kingdom
| | - Ester Boix
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
61
|
Heightened circulating levels of antimicrobial peptides in tuberculosis-Diabetes co-morbidity and reversal upon treatment. PLoS One 2017; 12:e0184753. [PMID: 28910369 PMCID: PMC5599016 DOI: 10.1371/journal.pone.0184753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The association of antimicrobial peptides (AMPs) with tuberculosis-diabetes comorbidity (PTB-DM) is not well understood. METHODS To study the association of AMPs with PTB-DM, we examined the systemic levels of cathelicidin (LL37), human beta defensin- 2 (HBD2), human neutrophil peptides 1-3, (HNP1-3) and granulysin in individuals with either PTB-DM, PTB, latent TB (LTB) or no TB infection (NTB). RESULTS Circulating levels of cathelicidin and HBD2 were significantly higher and granulysin levels were significantly lower in PTB-DM compared to PTB, LTB or NTB, while the levels of HNP1-3 were significantly higher in PTB-DM compared to LTB or NTB individuals. Moreover, the levels of cathelicidin and/or HBD2 were significantly higher in PTB-DM or PTB individuals with bilateral and cavitary disease and also exhibited a significant positive relationship with bacterial burden. Cathelidin, HBD2 and HNP1-3 levels exhibited a positive relationship with HbA1c and/or fasting blood glucose levels. Finally, anti-tuberculosis therapy resulted in significantly diminished levels of cathelicidin, HBD2, granulysin and significantly enhanced levels of HNP1-3 and granulysin in PTB-DM and/or PTB individuals. CONCLUSION Therefore, our data demonstrate that PTB-DM is associated with markedly enhanced levels of AMPs and diminished levels of granulysin.
Collapse
|
62
|
Alumasa JN, Manzanillo PS, Peterson ND, Lundrigan T, Baughn AD, Cox JS, Keiler KC. Ribosome Rescue Inhibitors Kill Actively Growing and Nonreplicating Persister Mycobacterium tuberculosis Cells. ACS Infect Dis 2017; 3:634-644. [PMID: 28762275 PMCID: PMC5594445 DOI: 10.1021/acsinfecdis.7b00028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The
emergence of Mycobacterium tuberculosis (MTB) strains
that are resistant to most or all available antibiotics has created
a severe problem for treating tuberculosis and has spurred a quest
for new antibiotic targets. Here, we demonstrate that trans-translation is essential for growth of MTB and is a viable target
for development of antituberculosis drugs. We also show that an inhibitor
of trans-translation, KKL-35, is bactericidal against
MTB under both aerobic and anoxic conditions. Biochemical experiments
show that this compound targets helix 89 of the 23S rRNA. In silico molecular docking predicts a binding pocket for
KKL-35 adjacent to the peptidyl-transfer center in a region not targeted
by conventional antibiotics. Computational solvent mapping suggests
that this pocket is a druggable hot spot for small molecule binding.
Collectively, our findings reveal a new target for antituberculosis
drug development and provide critical insight on the mechanism of
antibacterial action for KKL-35 and related 1,3,4-oxadiazole benzamides.
Collapse
Affiliation(s)
- John N. Alumasa
- Department of Biochemistry
and Molecular Biology, The Pennsylvania State University, 401 Althouse Laboratory, University Park, Pennsylvania 16802, United States
| | - Paolo S. Manzanillo
- Department
of Molecular and Cell Biology, University of California, Berkeley, #3370, 375E Li Ka Shing Center, Berkeley, California 94720, United States
| | - Nicholas D. Peterson
- Department of Microbiology and Immunology,
Microbiology Research Facility, University of Minnesota, Rm4-115, 689 23rd Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Tricia Lundrigan
- Department
of Molecular and Cell Biology, University of California, Berkeley, #3370, 375E Li Ka Shing Center, Berkeley, California 94720, United States
| | - Anthony D. Baughn
- Department of Microbiology and Immunology,
Microbiology Research Facility, University of Minnesota, Rm4-115, 689 23rd Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Jeffery S. Cox
- Department
of Molecular and Cell Biology, University of California, Berkeley, #3370, 375E Li Ka Shing Center, Berkeley, California 94720, United States
| | - Kenneth C. Keiler
- Department of Biochemistry
and Molecular Biology, The Pennsylvania State University, 401 Althouse Laboratory, University Park, Pennsylvania 16802, United States
| |
Collapse
|
63
|
Sharifi-Rad J, Salehi B, Stojanović-Radić ZZ, Fokou PVT, Sharifi-Rad M, Mahady GB, Sharifi-Rad M, Masjedi MR, Lawal TO, Ayatollahi SA, Masjedi J, Sharifi-Rad R, Setzer WN, Sharifi-Rad M, Kobarfard F, Rahman AU, Choudhary MI, Ata A, Iriti M. RETRACTED: Medicinal plants used in the treatment of tuberculosis - Ethnobotanical and ethnopharmacological approaches. Biotechnol Adv 2017:S0734-9750(17)30077-0. [PMID: 28694178 DOI: 10.1016/j.biotechadv.2017.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/22/2017] [Accepted: 07/05/2017] [Indexed: 12/30/2022]
Abstract
Tuberculosis is a highly infectious disease declared a global health emergency by the World Health Organization, with approximately one third of the world's population being latently infected with Mycobacterium tuberculosis. Tuberculosis treatment consists in an intensive phase and a continuation phase. Unfortunately, the appearance of multi drug-resistant tuberculosis, mainly due to low adherence to prescribed therapies or inefficient healthcare structures, requires at least 20months of treatment with second-line, more toxic and less efficient drugs, i.e., capreomycin, kanamycin, amikacin and fluoroquinolones. Therefore, there exists an urgent need for discovery and development of new drugs to reduce the global burden of this disease, including the multi-drug-resistant tuberculosis. To this end, many plant species, as well as marine organisms and fungi have been and continue to be used in various traditional healing systems around the world to treat tuberculosis, thus representing a nearly unlimited source of active ingredients. Besides their antimycobacterial activity, natural products can be useful in adjuvant therapy to improve the efficacy of conventional antimycobacterial therapies, to decrease their adverse effects and to reverse mycobacterial multi-drug resistance due to the genetic plasticity and environmental adaptability of Mycobacterium. However, even if some natural products have still been investigated in preclinical and clinical studies, the validation of their efficacy and safety as antituberculosis agents is far from being reached, and, therefore, according to an evidence-based approach, more high-level randomized clinical trials are urgently needed.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zorica Z Stojanović-Radić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Višegradska 33, Niš, Serbia
| | - Patrick Valere Tsouh Fokou
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra LG 581, Ghana; Antimicrobial Agents Unit, LPMPS, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé 812, Cameroon
| | - Marzieh Sharifi-Rad
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Gail B Mahady
- Department of Pharmacy Practice, Clinical Pharmacognosy Laboratories, University of Illinois at Chicago, USA
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Natural Resources, University of Zabol, Zabol, Iran
| | - Mohammad-Reza Masjedi
- Tobacco Control Strategic Research Center, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Temitope O Lawal
- Department of Pharmacy Practice, Clinical Pharmacognosy Laboratories, University of Illinois at Chicago, USA; Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Javid Masjedi
- Tobacco Control Strategic Research Center, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Razieh Sharifi-Rad
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, 61663335 Zabol, Iran.
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Iran
| | - Atta-Ur Rahman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Athar Ata
- Department of Chemistry, Richardson College for the Environmental Science Complex The University of Winnipeg, Winnipeg, Canada
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, Milan 20133, Italy.
| |
Collapse
|
64
|
Kumar Nathella P, Babu S. Influence of diabetes mellitus on immunity to human tuberculosis. Immunology 2017; 152:13-24. [PMID: 28543817 DOI: 10.1111/imm.12762] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus(DM) is a major risk factor for the development of active pulmonary tuberculosis (TB), with development of DM pandemic in countries where TB is also endemic. Understanding the impact of DM on TB and the determinants of co-morbidity is essential in responding to this growing public health problem with improved therapeutic approaches. Despite the clinical and public health significance posed by the dual burden of TB and DM, little is known about the immunological and biochemical mechanisms of susceptibility. One possible mechanism is that an impaired immune response in patients with DM facilitates either primary infection with Mycobacterium tuberculosis or reactivation of latent TB. Diabetes is associated with immune dysfunction and alterations in the components of the immune system, including altered levels of specific cytokines and chemokines. Some effects of DM on adaptive immunity that are potentially relevant to TB defence have been identified in humans. In this review, we summarize current findings regarding the alterations in the innate and adaptive immune responses and immunological mechanisms of susceptibility of patients with DM to M. tuberculosis infection and disease.
Collapse
Affiliation(s)
- Pavan Kumar Nathella
- National Institutes of Health-International Centre for Excellence in Research, Chennai, India.,National Institute for Research in Tuberculosis, Chennai, India
| | - Subash Babu
- National Institutes of Health-International Centre for Excellence in Research, Chennai, India.,Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
65
|
Dumas F, Haanappel E. Lipids in infectious diseases - The case of AIDS and tuberculosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1636-1647. [PMID: 28535936 DOI: 10.1016/j.bbamem.2017.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 02/07/2023]
Abstract
Lipids play a central role in many infectious diseases. AIDS (Acquired Immune Deficiency Syndrome) and tuberculosis are two of the deadliest infectious diseases to have struck mankind. The pathogens responsible for these diseases, Human Immunodeficiency Virus-1 and Mycobacterium tuberculosis, rely on lipids and on lipid membrane properties to gain access to their host cells, to persist in them and ultimately to egress from their hosts. In this Review, we discuss the life cycles of these pathogens and the roles played by lipids and membranes. We then give an overview of therapies that target lipid metabolism, modulate host membrane properties or implement lipid-based drug delivery systems. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Fabrice Dumas
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.
| | - Evert Haanappel
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|