51
|
Short NJ, Kantarjian HM, Loghavi S, Huang X, Qiao W, Borthakur G, Kadia TM, Daver N, Ohanian M, Dinardo CD, Estrov Z, Kanagal-Shamanna R, Maiti A, Benton CB, Bose P, Alvarado Y, Jabbour E, Kornblau SM, Pemmaraju N, Jain N, Gasior Y, Richie MA, Pierce S, Cortes J, Konopleva M, Garcia-Manero G, Ravandi F. Treatment with a 5-day versus a 10-day schedule of decitabine in older patients with newly diagnosed acute myeloid leukaemia: a randomised phase 2 trial. LANCET HAEMATOLOGY 2018; 6:e29-e37. [PMID: 30545576 DOI: 10.1016/s2352-3026(18)30182-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hypomethylating agents, such as decitabine, are the standard of care for older patients with newly diagnosed acute myeloid leukaemia. Single-arm studies have suggested that a 10-day schedule of decitabine cycles leads to better outcomes than the usual 5-day schedule. We compared the efficacy and safety of these two schedules. METHODS Eligible patients were aged 60 years or older with acute myeloid leukaemia but unsuitable for intensive chemotherapy (or <60 years if unsuitable for intensive chemotherapy with an anthracycline plus cytarabine). The first 40 patients were allocated equally to the two treatment groups by computer-generated block randomisation (block size 40), after which a response-adaptive randomisation algorithm used all previous patients' treatment and response data to decide the allocation of each following patient favouring the group with superior response. Patients were assigned to receive 20 mg/m2 decitabine intravenously for 5 or 10 consecutive days as induction therapy, every 4-8 weeks for up to three cycles. Responding patients received decitabine as consolidation therapy on a 5-day schedule for up to 24 cycles. We assessed a composite primary endpoint of complete remission, complete remission with incomplete platelet recovery (CRp), and complete remission with incomplete haematological recovery (CRi) achieved at any time and assessed by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT01786343. FINDINGS Between Feb 28, 2013, and April 12, 2018, 71 patients were enrolled. 28 received decitabine for 5 days and 43 for 10 days, and all were assessable for efficacy and safety. The primary endpoint was achieved in similar proportions of patients in the two treatment groups (12 [43%] of 28 in the 5-day schedule group, 95% credible interval 26-60, and 17 [40%] of 43 in the 10-day schedule group, 26-54, p=0·78; difference 3%, -21 to 27). Total follow-up was 38·2 months, during which the median duration of overall survival was 5·5 months (IQR 2·1-11·7) in the 5-day group and 6·0 months (1·9-11·7) in the 10-day group. 1-year overall survival was 25% in both groups. Complete remission, CRp, CRi, and overall survival did not differ between groups when stratified by cytogenetics, de-novo versus secondary or therapy-related acute myeloid leukaemia, or TP53mut status. The most common grade 3-4 adverse events were neutropenic fever (seven patients [25%] in the 5-day group and 14 [33%] in the 10-day group) and infection (five [18%] and 16 [37%], respectively). One patient (4%) died from sepsis in the context of neutropenic fever, infection, and haemorrhage in the 5-day group, and in the 10-day group six patients (14%) died from infection. Early mortality was similar in the two groups. INTERPRETATION In older patients with newly diagnosed acute myeloid leukaemia, efficacy and safety did not differ by the 5-day or the 10-day decitabine schedule. FUNDING University of Texas MD Anderson Cancer Center and National Cancer Institute Specialized Programs of Research Excellence.
Collapse
Affiliation(s)
- Nicholas J Short
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuelin Huang
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Qiao
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan M Kadia
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maro Ohanian
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney D Dinardo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zeev Estrov
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhishek Maiti
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher B Benton
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yesid Alvarado
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven M Kornblau
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yvonne Gasior
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary Ann Richie
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sherry Pierce
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jorge Cortes
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Farhad Ravandi
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
52
|
Cho H, Shin I, Ju E, Choi S, Hur W, Kim H, Hong E, Kim ND, Choi HG, Gray NS, Sim T. First SAR Study for Overriding NRAS Mutant Driven Acute Myeloid Leukemia. J Med Chem 2018; 61:8353-8373. [PMID: 30153003 DOI: 10.1021/acs.jmedchem.8b00882] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
GNF-7, a multitargeted kinase inhibitor, served as a dual kinase inhibitor of ACK1 and GCK, which provided a novel therapeutic strategy for overriding AML expressing NRAS mutation. This SAR study with GNF-7 derivatives, designed to target NRAS mutant-driven AML, led to identification of the extremely potent inhibitors, 10d, 10g, and 11i, which possess single-digit nanomolar inhibitory activity against both ACK1 and GCK. These substances strongly suppress proliferation of mutant NRAS expressing AML cells via apoptosis and AKT/mTOR signaling blockade. Compound 11i is superior to GNF-7 in terms of kinase inhibitory activity, cellular activity, and differential cytotoxicity. Moreover, 10k possessing a favorable mouse pharmacokinetic profile prolonged life-span of Ba/F3-NRAS-G12D injected mice and significantly delayed tumor growth of OCI-AML3 xenograft model without causing the prominent level of toxicity found with GNF-7. Taken together, this study provides insight into the design of novel ACK1 and GCK dual inhibitors for overriding NRAS mutant-driven AML.
Collapse
Affiliation(s)
- Hanna Cho
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro, Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Injae Shin
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro, Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Eunhye Ju
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro, Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Seunghye Choi
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro, Seongbuk-gu , Seoul 02841 , Republic of Korea
| | - Wooyoung Hur
- Chemical Kinomics Research Center , Korea Institute of Science and Technology (KIST) , 5 Hwarangro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
| | - Haelee Kim
- Daegu-Gyeongbuk Medical Innovation Foundation , 2387 dalgubeol-daero, Suseong-gu , Daegu 42019 , Republic of Korea
| | - Eunmi Hong
- Daegu-Gyeongbuk Medical Innovation Foundation , 2387 dalgubeol-daero, Suseong-gu , Daegu 42019 , Republic of Korea
| | - Nam Doo Kim
- Daegu-Gyeongbuk Medical Innovation Foundation , 2387 dalgubeol-daero, Suseong-gu , Daegu 42019 , Republic of Korea.,NDBio Therapeutics Inc. , 32 Songdogwahak-ro, Yeonsu-gu , Incheon 21984 , Republic of Korea
| | - Hwan Geun Choi
- Daegu-Gyeongbuk Medical Innovation Foundation , 2387 dalgubeol-daero, Suseong-gu , Daegu 42019 , Republic of Korea
| | - Nathanael S Gray
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry & Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro, Seongbuk-gu , Seoul 02841 , Republic of Korea.,Chemical Kinomics Research Center , Korea Institute of Science and Technology (KIST) , 5 Hwarangro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
| |
Collapse
|
53
|
Scharadin TM, Malfatti MA, Haack K, Turteltaub KW, Pan CX, Henderson PT, Jonas BA. Toward Predicting Acute Myeloid Leukemia Patient Response to 7 + 3 Induction Chemotherapy via Diagnostic Microdosing. Chem Res Toxicol 2018; 31:1042-1051. [PMID: 30152692 DOI: 10.1021/acs.chemrestox.8b00107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acute myeloid leukemia (AML) is a rare yet deadly cancer of the blood and bone marrow. Presently, induction chemotherapy with the DNA damaging drugs cytarabine (ARA-C) and idarubicin (IDA), known as 7 + 3, is the standard of care for most AML patients. However, 7 + 3 is a relatively ineffective therapy, particularly in older patients, and has serious therapy-related toxicities. Therefore, a diagnostic test to predict which patients will respond to 7 + 3 is a critical unmet medical need. We hypothesize that a threshold level of therapy-induced 7 + 3 drug-DNA adducts determines cytotoxicity and clinical response. We further hypothesize that in vitro exposure of AML cells to nontoxic diagnostic microdoses enables prediction of the ability of AML cells to achieve that threshold during treatment. Our test involves dosing cells with very low levels of 14C-labeled drug followed by DNA isolation and quantification of drug-DNA adducts via accelerator mass spectrometry. Here, we have shown proof of principle by correlating ARA-C- and DOX-DNA adduct levels with cellular IC50 values of paired sensitive and resistant cancer cell lines and AML cell lines. Moreover, we have completed a pilot retrospective trial of diagnostic microdosing for 10 viably cryopreserved primary AML samples and observed higher ARA-C- and DOX-DNA adducts in the 7 + 3 responders than nonresponders. These initial results suggest that diagnostic microdosing may be a feasible and useful test for predicting patient response to 7 + 3 induction chemotherapy, leading to improved outcomes for AML patients and reduced treatment-related morbidity and mortality.
Collapse
Affiliation(s)
- Tiffany M Scharadin
- Department of Internal Medicine, Division of Hematology and Oncology , University of California Davis School of Medicine , Sacramento , California 95817 , United States
| | - Michael A Malfatti
- Lawrence Livermore National Laboratory , Livermore , California 94551 , United States
| | - Kurt Haack
- Lawrence Livermore National Laboratory , Livermore , California 94551 , United States
| | - Kenneth W Turteltaub
- Lawrence Livermore National Laboratory , Livermore , California 94551 , United States
| | - Chong-Xian Pan
- Department of Internal Medicine, Division of Hematology and Oncology , University of California Davis School of Medicine , Sacramento , California 95817 , United States.,Accelerated Medical Diagnostics Incorporated , Berkeley , California 95618 , United States.,VA Northern California Health Care System , 10535 Hospital Way , Mather , California 95655 , United States
| | - Paul T Henderson
- Department of Internal Medicine, Division of Hematology and Oncology , University of California Davis School of Medicine , Sacramento , California 95817 , United States.,Accelerated Medical Diagnostics Incorporated , Berkeley , California 95618 , United States
| | - Brian A Jonas
- Department of Internal Medicine, Division of Hematology and Oncology , University of California Davis School of Medicine , Sacramento , California 95817 , United States.,VA Northern California Health Care System , 10535 Hospital Way , Mather , California 95655 , United States
| |
Collapse
|
54
|
Abstract
For several decades, few substantial therapeutic advances have been made for patients with acute myeloid leukaemia. However, since 2017 unprecedented growth has been seen in the number of drugs available for the treatment of acute myeloid leukaemia, with several new drugs receiving regulatory approval. In addition to advancing our therapeutic armamentarium, an increased understanding of the biology and genomic architecture of acute myeloid leukaemia has led to refined risk assessment of this disease, with consensus risk stratification guidelines now incorporating a growing number of recurrent molecular aberrations that aid in the selection of risk-adapted management strategies. Despite this promising recent progress, the outcomes of patients with acute myeloid leukaemia remain unsatisfactory, with more than half of patients ultimately dying from their disease. Enrolment of patients into clinical trials that evaluate novel drugs and rational combination therapies is imperative to continuing this progress and further improving the outcomes of patients with acute myeloid leukaemia.
Collapse
MESH Headings
- Aminoglycosides/therapeutic use
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Consolidation Chemotherapy
- Cytarabine/administration & dosage
- Gemtuzumab
- Genomics
- Hematopoietic Stem Cell Transplantation
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Patient Selection
- Recurrence
- Remission Induction
- Risk Assessment
- Risk Factors
- Staurosporine/analogs & derivatives
- Staurosporine/therapeutic use
Collapse
Affiliation(s)
- Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael E Rytting
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Pediatrics-Patient Care, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jorge E Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
55
|
Chen J, Yang N, Liu H, Yao H, Wang J, Yang Y, Zhang W. Immunological effects of a low-dose cytarabine, aclarubicin and granulocyte-colony stimulating factor priming regimen on a mouse leukemia model. Oncol Lett 2018; 16:3022-3028. [PMID: 30127892 PMCID: PMC6096276 DOI: 10.3892/ol.2018.9018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/09/2018] [Indexed: 01/11/2023] Open
Abstract
The low-dose cytarabine, aclarubicin and granulocyte-colony stimulating factor (G-CSF) (CAG) priming regimen is an effective treatment for patients with relapsed or refractory acute myeloid leukemia (AML) and advanced myelodysplastic syndrome (MDS). G-CSF influences the bone marrow microenvironment (BMM) by mobilizing regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), as well as by reducing the expression of stromal cell-derived factor-1α (SDF-1α). In the present study, a WEHI-3-grafted BALB/c mouse AML model (AML-M4) was employed to determine how the BMM was altered by different treatment regimens. It was evident that CAG regimen decreased and increased the proportion of Tregs and MDSCs in the bone marrow and spleen, respectively. Furthermore, the CAG regimen downregulated SDF-1α levels in the bone marrow and peripheral blood. However, hematoxylin and eosin staining of the main organs revealed that leukemic cells infiltrated the liver following treatment with the CAG regimen. The present study indicates that the CAG regimen has a positive effect on the immunosuppressive microenvironment in AML and relieves AML-associated BMM immune suppression by decreasing Tregs and MDSCs in the bone marrow and downregulating the SDF-1α/CXCR4 axis in the bone marrow and peripheral blood.
Collapse
Affiliation(s)
- Jinqiu Chen
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Nan Yang
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hailing Liu
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Huan Yao
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jin Wang
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yun Yang
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wanggang Zhang
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
56
|
Lipof JJ, Loh KP, O'Dwyer K, Liesveld JL. Allogeneic Hematopoietic Cell Transplantation for Older Adults with Acute Myeloid Leukemia. Cancers (Basel) 2018; 10:cancers10060179. [PMID: 29866998 PMCID: PMC6025016 DOI: 10.3390/cancers10060179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a disease that affects adults aged 65 years and above, and survival in this population is poor. Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative therapy for these patients but is underutilized due to frequent comorbidities and perceived higher risk of treatment-related mortality and non-relapse mortality. Increasing data supports the utility of allo-HCT in fit older patients after intensive chemotherapy resulting in improvement of outcomes. With the development of reduced intensity and non-myeloablative conditioning regimens that are associated with lower rates of treatment-related toxicity and mortality, this has allowed more older patients with AML to receive allo-HCT. In this review, we provide some guidance on appropriate selection of older patients as transplant candidates, benefits and risks associated with allo-HCT, conditioning regimen choice, and stem cell transplant sources as they relate to the conduct of stem cell transplantation in older patients.
Collapse
Affiliation(s)
- Jodi J Lipof
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, P.O. Box 704, Rochester, NY 14642, USA.
| | - Kah Poh Loh
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, P.O. Box 704, Rochester, NY 14642, USA.
| | - Kristen O'Dwyer
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, P.O. Box 704, Rochester, NY 14642, USA.
| | - Jane L Liesveld
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, P.O. Box 704, Rochester, NY 14642, USA.
| |
Collapse
|
57
|
Kubasch AS, Platzbecker U. Beyond the Edge of Hypomethylating Agents: Novel Combination Strategies for Older Adults with Advanced MDS and AML. Cancers (Basel) 2018; 10:E158. [PMID: 29795051 PMCID: PMC6025349 DOI: 10.3390/cancers10060158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022] Open
Abstract
Higher-risk myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) of the elderly exhibit several commonalities, including first line treatment with hypomethylating agents (HMA) like azacitidine (AZA) or decitabine (DAC). Until today, response to treatment occurs in less than 50 percent of patients, and is often short-lived. Moreover, patients failing HMA have a dismal prognosis. Current developments include combinations of HMA with novel drugs targeting epigenetic or immunomodulatory pathways. Other efforts focus on the prevention of resistance to HMA using checkpoint inhibitors to enhance immune attack. This review focuses on recent advances in the field of HMA-based front-line therapies in elderly patients with myeloid diseases.
Collapse
Affiliation(s)
- Anne Sophie Kubasch
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany.
| | - Uwe Platzbecker
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany.
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), 01307 Dresden, Germany.
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
58
|
Abstract
Acute myeloid leukemia (AML) is one of the best studied malignancies, and significant progress has been made in understanding the clinical implications of its disease biology. Unfortunately, drug development has not kept pace, as the '7+3' induction regimen remains the standard of care for patients fit for intensive therapy 40 years after its first use. Temporal improvements in overall survival were mostly confined to younger patients and driven by improvements in supportive care and use of hematopoietic stem cell transplantation. Multiple forms of novel therapy are currently in clinical trials and are attempting to bring bench discoveries to the bedside to benefit patients. These novel therapies include improved chemotherapeutic agents, targeted molecular inhibitors, cell cycle regulators, pro-apoptotic agents, epigenetic modifiers, and metabolic therapies. Immunotherapies in the form of vaccines; naked, conjugated and bispecific monoclonal antibodies; cell-based therapy; and immune checkpoint inhibitors are also being evaluated in an effort to replicate the success seen in other malignancies. Herein, we review the scientific basis of these novel therapeutic approaches, summarize the currently available evidence, and look into the future of AML therapy by highlighting key clinical studies and the challenges the field continues to face.
Collapse
|
59
|
Kovtun Y, Noordhuis P, Whiteman KR, Watkins K, Jones GE, Harvey L, Lai KC, Portwood S, Adams S, Sloss CM, Schuurhuis GJ, Ossenkoppele G, Wang ES, Pinkas J. IMGN779, a Novel CD33-Targeting Antibody-Drug Conjugate with DNA-Alkylating Activity, Exhibits Potent Antitumor Activity in Models of AML. Mol Cancer Ther 2018; 17:1271-1279. [PMID: 29588393 DOI: 10.1158/1535-7163.mct-17-1077] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/18/2018] [Accepted: 03/23/2018] [Indexed: 11/16/2022]
Abstract
The myeloid differentiation antigen CD33 has long been exploited as a target for antibody-based therapeutic approaches in acute myeloid leukemia (AML). Validation of this strategy was provided with the approval of the CD33-targeting antibody-drug conjugate (ADC) gemtuzumab ozogamicin in 2000; the clinical utility of this agent, however, has been hampered by safety concerns. Thus, the full potential of CD33-directed therapy in AML remains to be realized, and considerable interest exists in the design and development of more effective ADCs that confer high therapeutic indices and favorable tolerability profiles. Here, we describe the preclinical characterization of a novel CD33-targeting ADC, IMGN779, which utilizes a unique DNA-alkylating payload to achieve potent antitumor effects with good tolerability. The payload, DGN462, is prototypical of a novel class of purpose-created indolinobenzodiazeprine pseudodimers, termed IGNs. With low picomolar potency, IMGN779 reduced viability in a panel of AML cell lines in vitro Mechanistically, the cytotoxic activity of IMGN779 involved DNA damage, cell-cycle arrest, and apoptosis consistent with the mode of action of DGN462. Moreover, IMGN779 was highly active against patient-derived AML cells, including those with adverse molecular abnormalities, and sensitivity correlated to CD33 expression levels. In vivo, IMGN779 displayed robust antitumor efficacy in multiple AML xenograft and disseminated disease models, as evidenced by durable tumor regressions and prolonged survival. Taken together, these findings identify IMGN779 as a promising new candidate for evaluation as a novel therapeutic in AML. Mol Cancer Ther; 17(6); 1271-9. ©2018 AACR.
Collapse
Affiliation(s)
| | - Paul Noordhuis
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | | | - Scott Portwood
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | | | | | | | - Gert Ossenkoppele
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Eunice S Wang
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | | |
Collapse
|
60
|
Thomas X, Paubelle E. Grb2 inhibition: a new potential targeted therapy for myeloid malignancies? LANCET HAEMATOLOGY 2018; 5:e128-e129. [PMID: 29550385 DOI: 10.1016/s2352-3026(18)30031-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/20/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Xavier Thomas
- Department of Hematology, Lyon-Sud Hospital, 69495 Pierre Bénite, France.
| | - Etienne Paubelle
- Department of Hematology, Lyon-Sud Hospital, 69495 Pierre Bénite, France
| |
Collapse
|
61
|
Shen Y, He A, Wang F, Bai J, Wang J, Zhao W, Zhang W, Cao X, Chen Y, Liu J, Ma X, Chen H, Feng Y, Yang Y. Granulocyte colony stimulating factor priming chemotherapy is more effective than standard chemotherapy as salvage therapy in relapsed acute myeloid leukemia. Med Clin (Barc) 2017; 151:339-344. [PMID: 29292108 DOI: 10.1016/j.medcli.2017.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/07/2017] [Accepted: 11/02/2017] [Indexed: 01/02/2023]
Abstract
INTRODUCTION AND OBJECTIVE To improve the complete remission (CR) rate of newly diagnosed acute myeloid leukemia (AML) patients and alleviate the severe side effects of double induction chemotherapy, we combined a standard regimen with granulocyte colony-stimulating factor (G-CSF) priming chemotherapy to compose a new double induction regimen for AML patients who failed to achieve CR after the first course. PATIENTS AND METHODS Ninety-seven patients with AML who did not achieve CR after the first course of standard chemotherapy were enrolled. Among them, 45 patients received G-CSF priming combined with low-dose chemotherapy during days 20-22 of the first course of chemotherapy, serving as priming group, 52 patients were administered standard chemotherapy again, serving as control group. RESULTS Between the two groups there were no differences in the French-American-British (FAB) classification, risk status, the first course of chemotherapy, blood cell count or blasts percentage of bone marrow before the second course. But the CR rate was significantly higher and the adverse effect was much lower in the priming group than the control group. Cox multivariate regression analysis showed that WBC level before the second course and the selection of the second chemotherapy regimen were two independent factors for long survival of patients. DISCUSSION These results elucidate that standard chemotherapy followed by G-CSF priming new double induction chemotherapy is an effective method for AML patients to improve CR rate and reduce adverse effects.
Collapse
Affiliation(s)
- Ying Shen
- Department of Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi, China
| | - Aili He
- Department of Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi, China; National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, 710004 Xi'an, Shaanxi, China
| | - Fangxia Wang
- Department of Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi, China
| | - Ju Bai
- Department of Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi, China
| | - Jianli Wang
- Department of Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi, China
| | - Wanhong Zhao
- Department of Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi, China
| | - Wanggang Zhang
- Department of Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi, China
| | - Xingmei Cao
- Department of Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi, China
| | - Yinxia Chen
- Department of Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi, China
| | - Jie Liu
- Department of Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi, China
| | - Xiaorong Ma
- Department of Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi, China
| | - Hongli Chen
- Department of Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi, China
| | - Yuandong Feng
- Department of Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi, China
| | - Yun Yang
- Department of Hematology, Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi, China.
| |
Collapse
|
62
|
Ali AM, Weisel D, Gao F, Uy GL, Cashen AF, Jacoby MA, Wartman LD, Ghobadi A, Pusic I, Romee R, Fehniger TA, Stockerl‐Goldstein KE, Vij R, Oh ST, Abboud CN, Schroeder MA, Westervelt P, DiPersio JF, Welch JS. Patterns of infectious complications in acute myeloid leukemia and myelodysplastic syndromes patients treated with 10-day decitabine regimen. Cancer Med 2017; 6:2814-2821. [PMID: 29058375 PMCID: PMC5727246 DOI: 10.1002/cam4.1231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/18/2017] [Accepted: 09/23/2017] [Indexed: 12/22/2022] Open
Abstract
Decitabine has been explored as a reduced-intensity therapy for older or unfit patients with acute myeloid leukemia (AML). To better understand the risk of infections during decitabine treatment, we retrospectively examined the culture results from each infection-related serious adverse event that occurred among 85 AML and myelodysplastic syndromes (MDS) patients treated in a prospective clinical study using 10-day cycles of decitabine at Washington University School of Medicine. Culture results were available for 163 infection-related complications that occurred in 70 patients: 90 (55.2%) events were culture-negative, 32 (19.6%) were gram-positive bacteria, 20 (12.3%) were gram-negative bacteria, 12 (7.4%) were mixed, 6 (3.7%) were viral, 2 (1.2%) were fungal, and 1 (0.6%) was mycobacterial. Infection-related mortality occurred in 3/24 (13%) of gram-negative events, and 0/51 gram-positive events. On average, nearly one third of patients experienced an infection-related complication with each cycle, and the incidence did not decrease during later cycles. In summary, in patients receiving 10-day decitabine, infectious complications are common and may occur during any cycle of therapy. Although febrile events are commonly culture-negative, gram-positive infections are the most frequent source of culture-positive infections, but gram-negative infections represent a significant risk of mortality in AML and MDS patients treated with decitabine.
Collapse
Affiliation(s)
- Alaa M. Ali
- Department of Internal MedicineDivision of OncologyWashington UniversitySaint LouisMissouri
| | - Daniel Weisel
- Department of Internal MedicineDivision of OncologyWashington UniversitySaint LouisMissouri
| | - Feng Gao
- Division of Public Health SciencesDepartment of SurgeryWashington UniversitySt. LouisMissouri
| | - Geoffrey L. Uy
- Department of Internal MedicineDivision of OncologyWashington UniversitySaint LouisMissouri
| | - Amanda F. Cashen
- Department of Internal MedicineDivision of OncologyWashington UniversitySaint LouisMissouri
| | - Meagan A. Jacoby
- Department of Internal MedicineDivision of OncologyWashington UniversitySaint LouisMissouri
| | - Lukas D. Wartman
- Department of Internal MedicineDivision of OncologyWashington UniversitySaint LouisMissouri
| | - Armin Ghobadi
- Department of Internal MedicineDivision of OncologyWashington UniversitySaint LouisMissouri
| | - Iskra Pusic
- Department of Internal MedicineDivision of OncologyWashington UniversitySaint LouisMissouri
| | - Rizwan Romee
- Department of Internal MedicineDivision of OncologyWashington UniversitySaint LouisMissouri
| | - Todd A. Fehniger
- Department of Internal MedicineDivision of OncologyWashington UniversitySaint LouisMissouri
| | | | - Ravi Vij
- Department of Internal MedicineDivision of OncologyWashington UniversitySaint LouisMissouri
| | - Stephen T. Oh
- Department of Internal MedicineDivision of OncologyWashington UniversitySaint LouisMissouri
| | - Camille N. Abboud
- Department of Internal MedicineDivision of OncologyWashington UniversitySaint LouisMissouri
| | - Mark A. Schroeder
- Department of Internal MedicineDivision of OncologyWashington UniversitySaint LouisMissouri
| | - Peter Westervelt
- Department of Internal MedicineDivision of OncologyWashington UniversitySaint LouisMissouri
| | - John F. DiPersio
- Department of Internal MedicineDivision of OncologyWashington UniversitySaint LouisMissouri
| | - John S. Welch
- Department of Internal MedicineDivision of OncologyWashington UniversitySaint LouisMissouri
| |
Collapse
|
63
|
Gruszka AM, Valli D, Alcalay M. Understanding the molecular basis of acute myeloid leukemias: where are we now? Int J Hematol Oncol 2017; 6:43-53. [PMID: 30302223 DOI: 10.2217/ijh-2017-0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022] Open
Abstract
Although the treatment modalities for acute myeloid leukemia (AML) have not changed much over the past 40 years, distinct progress has been made in deciphering the basic biology underlying the pathogenesis of this group of hematological disorders. Studies show that AML development is a multicause, multistep and multipathway process. Accordingly, AMLs constitute a heterogeneous group of diseases. The thorough understanding of the molecular basis of AML is paving the way for better therapeutic approaches. Multiple novel drugs are being introduced and new, more efficient and less toxic formulations of conventional therapeutics are becoming available. Here, we review the recent advances in the comprehension of the molecular processes that lead to the onset of AML and its translation into clinical practice.
Collapse
Affiliation(s)
- Alicja M Gruszka
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milano, Italy.,Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milano, Italy
| | - Debora Valli
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milano, Italy.,Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milano, Italy
| | - Myriam Alcalay
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milano, Italy.,Department of Oncology & Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy.,Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milano, Italy.,Department of Oncology & Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| |
Collapse
|
64
|
Ferrara F. Guadecitabine: a new therapeutic option for acute myeloid leukaemia? Lancet Oncol 2017; 18:1287-1288. [PMID: 28844818 DOI: 10.1016/s1470-2045(17)30614-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 12/25/2022]
|
65
|
Gbolahan OB, Zeidan AM, Stahl M, Abu Zaid M, Farag S, Paczesny S, Konig H. Immunotherapeutic Concepts to Target Acute Myeloid Leukemia: Focusing on the Role of Monoclonal Antibodies, Hypomethylating Agents and the Leukemic Microenvironment. Int J Mol Sci 2017; 18:E1660. [PMID: 28758974 PMCID: PMC5578050 DOI: 10.3390/ijms18081660] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022] Open
Abstract
Intensive chemotherapeutic protocols and allogeneic stem cell transplantation continue to represent the mainstay of acute myeloid leukemia (AML) treatment. Although this approach leads to remissions in the majority of patients, long-term disease control remains unsatisfactory as mirrored by overall survival rates of approximately 30%. The reason for this poor outcome is, in part, due to various toxicities associated with traditional AML therapy and the limited ability of most patients to tolerate such treatment. More effective and less toxic therapies therefore represent an unmet need in the management of AML, a disease for which therapeutic progress has been traditionally slow when compared to other cancers. Several studies have shown that leukemic blasts elicit immune responses that could be exploited for the development of novel treatment concepts. To this end, early phase studies of immune-based therapies in AML have delivered encouraging results and demonstrated safety and feasibility. In this review, we discuss opportunities for immunotherapeutic interventions to enhance the potential to achieve a cure in AML, thereby focusing on the role of monoclonal antibodies, hypomethylating agents and the leukemic microenvironment.
Collapse
Affiliation(s)
- Olumide Babajide Gbolahan
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Amer M Zeidan
- Department of Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Maximilian Stahl
- Department of Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Mohammad Abu Zaid
- Department of Medicine, Bone Marrow and Stem Cell Transplantation, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Sherif Farag
- Department of Medicine, Bone Marrow and Stem Cell Transplantation, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Sophie Paczesny
- Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Heiko Konig
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
66
|
Abstract
Acute myeloid leukemia (AML) is characterized by clinical and biological heterogeneity. Despite the advances in our understanding of its pathobiology, the chemotherapy-directed management has remained largely unchanged in the past 40 years. However, various novel agents have demonstrated clinical activity, either as single agents (e.g., isocitrate dehydrogenase (IDH) inhibitors, vadastuximab) or in combination with standard induction/consolidation at diagnosis and with salvage regimens at relapse. The classes of agents described in this review include novel cytotoxic chemotherapies (CPX-351 and vosaroxin), epigenetic modifiers (guadecitabine, IDH inhibitors, histone deacetylase (HDAC) inhibitors, bromodomain and extraterminal (BET) inhibitors), FMS-like tyrosine kinase receptor 3 (FLT3) inhibitors, and antibody-drug conjugates (vadastuximab), as well as cell cycle inhibitors (volasertib), B-cell lymphoma 2 (BCL-2) inhibitors, and aminopeptidase inhibitors. These agents are actively undergoing clinical investigation alone or in combination with available chemotherapy.
Collapse
Affiliation(s)
- Caner Saygin
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Hetty E. Carraway
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Department of Hematology and Oncology, Leukemia Program, Taussig Cancer Institute, Cleveland Clinic, Desk R30, Cleveland, OH 44195 USA
| |
Collapse
|
67
|
Cañete A, Cano E, Muñoz-Chápuli R, Carmona R. Role of Vitamin A/Retinoic Acid in Regulation of Embryonic and Adult Hematopoiesis. Nutrients 2017; 9:E159. [PMID: 28230720 PMCID: PMC5331590 DOI: 10.3390/nu9020159] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/05/2017] [Accepted: 02/16/2017] [Indexed: 12/11/2022] Open
Abstract
Vitamin A is an essential micronutrient throughout life. Its physiologically active metabolite retinoic acid (RA), acting through nuclear retinoic acid receptors (RARs), is a potent regulator of patterning during embryonic development, as well as being necessary for adult tissue homeostasis. Vitamin A deficiency during pregnancy increases risk of maternal night blindness and anemia and may be a cause of congenital malformations. Childhood Vitamin A deficiency can cause xerophthalmia, lower resistance to infection and increased risk of mortality. RA signaling appears to be essential for expression of genes involved in developmental hematopoiesis, regulating the endothelial/blood cells balance in the yolk sac, promoting the hemogenic program in the aorta-gonad-mesonephros area and stimulating eryrthropoiesis in fetal liver by activating the expression of erythropoietin. In adults, RA signaling regulates differentiation of granulocytes and enhances erythropoiesis. Vitamin A may facilitate iron absorption and metabolism to prevent anemia and plays a key role in mucosal immune responses, modulating the function of regulatory T cells. Furthermore, defective RA/RARα signaling is involved in the pathogenesis of acute promyelocytic leukemia due to a failure in differentiation of promyelocytes. This review focuses on the different roles played by vitamin A/RA signaling in physiological and pathological mouse hematopoiesis duddurring both, embryonic and adult life, and the consequences of vitamin A deficiency for the blood system.
Collapse
Affiliation(s)
- Ana Cañete
- Department of Animal Biology, Faculty of Science, University of Malaga, Campus de Teatinos s/n Malaga 29071, Spain and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Severo Ochoa 25, Campanillas 29590, Spain.
| | - Elena Cano
- Max-Delbruck Center for Molecular Medicine, Robert Roessle-Strasse 10, 13125 Berlin, Germany.
| | - Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, University of Malaga, Campus de Teatinos s/n Malaga 29071, Spain and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Severo Ochoa 25, Campanillas 29590, Spain.
| | - Rita Carmona
- Department of Animal Biology, Faculty of Science, University of Malaga, Campus de Teatinos s/n Malaga 29071, Spain and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Severo Ochoa 25, Campanillas 29590, Spain.
| |
Collapse
|