51
|
Guo W, He Y, Zhang W, Sun Y, Wang J, Liu S, Ming D. A novel non-invasive brain stimulation technique: "Temporally interfering electrical stimulation". Front Neurosci 2023; 17:1092539. [PMID: 36777641 PMCID: PMC9912300 DOI: 10.3389/fnins.2023.1092539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 01/30/2023] Open
Abstract
For decades, neuromodulation technology has demonstrated tremendous potential in the treatment of neuropsychiatric disorders. However, challenges such as being less intrusive, more concentrated, using less energy, and better public acceptance, must be considered. Several novel and optimized methods are thus urgently desiderated to overcome these barriers. In specific, temporally interfering (TI) electrical stimulation was pioneered in 2017, which used a low-frequency envelope waveform, generated by the superposition of two high-frequency sinusoidal currents of slightly different frequency, to stimulate specific targets inside the brain. TI electrical stimulation holds the advantages of both spatial targeting and non-invasive character. The ability to activate deep pathogenic targets without surgery is intriguing, and it is expected to be employed to treat some neurological or psychiatric disorders. Recently, efforts have been undertaken to investigate the stimulation qualities and translation application of TI electrical stimulation via computational modeling and animal experiments. This review detailed the most recent scientific developments in the field of TI electrical stimulation, with the goal of serving as a reference for future research.
Collapse
Affiliation(s)
- Wanting Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yuchen He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Wenquan Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yiwei Sun
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Junling Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China,*Correspondence: Shuang Liu,
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China,Tianjin International Joint Research Center for Neural Engineering, Tianjin, China,Dong Ming,
| |
Collapse
|
52
|
Khalifa A, Abrishami SM, Zaeimbashi M, Tang AD, Coughlin B, Rodger J, Sun NX, Cash SS. Magnetic temporal interference for noninvasive and focal brain stimulation. J Neural Eng 2023; 20. [PMID: 36651596 DOI: 10.1088/1741-2552/acb015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023]
Abstract
Objective. Noninvasive focal stimulation of deep brain regions has been a major goal for neuroscience and neuromodulation in the past three decades. Transcranial magnetic stimulation (TMS), for instance, cannot target deep regions in the brain without activating the overlying tissues and has poor spatial resolution. In this manuscript, we propose a new concept that relies on the temporal interference (TI) of two high-frequency magnetic fields generated by two electromagnetic solenoids.Approach. To illustrate the concept, custom solenoids were fabricated and optimized to generate temporal interfering electric fields for rodent brain stimulation. C-Fos expression was used to track neuronal activation.Main result. C-Fos expression was not present in regions impacted by only one high-frequency magnetic field indicating ineffective recruitment of neural activity in non-target regions. In contrast, regions impacted by two fields that interfere to create a low-frequency envelope display a strong increase in c-Fos expression.Significance. Therefore, this magnetic temporal interference solenoid-based system provides a framework to perform further stimulation studies that would investigate the advantages it could bring over conventional TMS systems.
Collapse
Affiliation(s)
- Adam Khalifa
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States of America
| | - Seyed Mahdi Abrishami
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States of America
| | - Mohsen Zaeimbashi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, WA, Australia.,Perron Institute for Neurological and Translational, University of Western Australia, WA, Australia
| | - Brian Coughlin
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, WA, Australia.,Perron Institute for Neurological and Translational, University of Western Australia, WA, Australia
| | - Nian X Sun
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States of America
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
53
|
Wang B, Aberra AS, Grill WM, Peterchev AV. Responses of model cortical neurons to temporal interference stimulation and related transcranial alternating current stimulation modalities. J Neural Eng 2023; 19:10.1088/1741-2552/acab30. [PMID: 36594634 PMCID: PMC9942661 DOI: 10.1088/1741-2552/acab30] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Objective.Temporal interference stimulation (TIS) was proposed as a non-invasive, focal, and steerable deep brain stimulation method. However, the mechanisms underlying experimentally-observed suprathreshold TIS effects are unknown, and prior simulation studies had limitations in the representations of the TIS electric field (E-field) and cerebral neurons. We examined the E-field and neural response characteristics for TIS and related transcranial alternating current stimulation modalities.Approach.Using the uniform-field approximation, we simulated a range of stimulation parameters in biophysically realistic model cortical neurons, including different orientations, frequencies, amplitude ratios, amplitude modulation, and phase difference of the E-fields, and obtained thresholds for both activation and conduction block.Main results. For two E-fields with similar amplitudes (representative of E-field distributions at the target region), TIS generated an amplitude-modulated (AM) total E-field. Due to the phase difference of the individual E-fields, the total TIS E-field vector also exhibited rotation where the orientations of the two E-fields were not aligned (generally also at the target region). TIS activation thresholds (75-230 V m-1) were similar to those of high-frequency stimulation with or without modulation and/or rotation. For E-field dominated by the high-frequency carrier and with minimal amplitude modulation and/or rotation (typically outside the target region), TIS was less effective at activation and more effective at block. Unlike AM high-frequency stimulation, TIS generated conduction block with some orientations and amplitude ratios of individual E-fields at very high amplitudes of the total E-field (>1700 V m-1).Significance. The complex 3D properties of the TIS E-fields should be accounted for in computational and experimental studies. The mechanisms of suprathreshold cortical TIS appear to involve neural activity block and periodic activation or onset response, consistent with computational studies of peripheral axons. These phenomena occur at E-field strengths too high to be delivered tolerably through scalp electrodes and may inhibit endogenous activity in off-target regions, suggesting limited significance of suprathreshold TIS.
Collapse
Affiliation(s)
- Boshuo Wang
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Aman S. Aberra
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
| | - Warren M. Grill
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, School of Medicine, Duke University, Durham, NC 27710, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Angel V. Peterchev
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC 27710, USA
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
54
|
Bahn S, Lee C, Kang B. A computational study on the optimization of transcranial temporal interfering stimulation with high-definition electrodes using unsupervised neural networks. Hum Brain Mapp 2022; 44:1829-1845. [PMID: 36527707 PMCID: PMC9980883 DOI: 10.1002/hbm.26181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Transcranial temporal interfering stimulation (tTIS) can focally stimulate deep parts of the brain related to specific functions using beats at two high frequencies that do not individually affect the human brain. However, the complexity and nonlinearity of the simulation limit it in terms of calculation time and optimization precision. We propose a method to quickly optimize the interfering current value of high-definition electrodes, which can finely stimulate the deep part of the brain, using an unsupervised neural network (USNN) for tTIS. We linked a network that generates the values of electrode currents to another network, which is constructed to compute the interference exposure, for optimization by comparing the generated stimulus with the target stimulus. Further, a computational study was conducted using 16 realistic head models. We also compared tTIS with transcranial alternating current stimulation (tACS), in terms of performance and characteristics. The proposed method generated the strongest stimulation at the target, even when targeting deep areas or performing multi-target stimulation. The high-definition tTISl was less affected than tACS by target depth, and mis-stimulation was reduced compared with the case of using two-pair inferential stimulation in deep region. The optimization of the electrode currents for the target stimulus could be performed in 3 min. Using the proposed USNN for tTIS, we demonstrated that the electrode currents of tTIS can be optimized quickly and accurately. Moreover, we confirmed the possibility of precisely stimulating the deep parts of the brain via transcranial electrical stimulation.
Collapse
Affiliation(s)
- Sangkyu Bahn
- Cognitive Science Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| | - Chany Lee
- Cognitive Science Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| | - Bo‐Yeong Kang
- School of ConvergenceKyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
55
|
Cerpa E, Courdurier M, Hernández E, Medina LE, Paduro E. A partially averaged system to model neuron responses to interferential current stimulation. J Math Biol 2022; 86:8. [PMID: 36469157 DOI: 10.1007/s00285-022-01839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
The interferential current (IFC) therapy is a noninvasive electrical neurostimulation technique intended to activate deep neurons using surface electrodes. In IFC, two independent kilohertz-frequency currents purportedly intersect where an interference field is generated. However, the effects of IFC on neurons within and outside the interference field are not completely understood, and it is unclear whether this technique can reliable activate deep target neurons without side effects. In recent years, realistic computational models of IFC have been introduced to quantify the effects of IFC on brain cells, but they are often complex and computationally costly. Here, we introduce a simplified model of IFC based on the FitzHugh-Nagumo (FHN) model of a neuron. By considering a modified averaging method, we obtain a non-autonomous approximated system, with explicit representation of relevant IFC parameters. For this approximated system we determine conditions under which it reliably approximates the complete FHN system under IFC stimulation, and we mathematically prove its ability to predict nonspiking states. In addition, we perform numerical simulations that show that the interference effect is observed only for a narrow set of IFC parameters and, in particular, for a beat frequency no higher than about 100 [Hz]. Our novel model tailored to the IFC technique contributes to the understanding of neurostimulation modalities using this type of signals, and can have implications in the design of noninvasive electrical stimulation therapies.
Collapse
Affiliation(s)
- Eduardo Cerpa
- Facultad de Matemáticas, Instituto de Ingeniería Matemática y Computacional, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile.,Millennium Nucleus for Applied Control and Inverse Problems, Santiago, Chile
| | - Matías Courdurier
- Departamento de Matemática, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile.,Millennium Nucleus for Applied Control and Inverse Problems, Santiago, Chile
| | - Esteban Hernández
- Departamento de Matemática, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso, 2390123, Chile
| | - Leonel E Medina
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Avda. Víctor Jara 3659, Estación Central, Santiago, 9170124, Chile.,Millennium Nucleus for Applied Control and Inverse Problems, Santiago, Chile
| | - Esteban Paduro
- Facultad de Matemáticas, Instituto de Ingeniería Matemática y Computacional, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile. .,Millennium Nucleus for Applied Control and Inverse Problems, Santiago, Chile.
| |
Collapse
|
56
|
Ko H, Yoon SP. Optogenetic neuromodulation with gamma oscillation as a new strategy for Alzheimer disease: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2022; 39:269-277. [PMID: 35152662 PMCID: PMC9580057 DOI: 10.12701/jyms.2021.01683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 12/31/2022]
Abstract
The amyloid hypothesis has been considered a major explanation of the pathogenesis of Alzheimer disease. However, failure of phase III clinical trials with anti-amyloid-beta monoclonal antibodies reveals the need for other therapeutic approaches to treat Alzheimer disease. Compared to its relatively short history, optogenetics has developed considerably. The expression of microbial opsins in cells using genetic engineering allows specific control of cell signals or molecules. The application of optogenetics to Alzheimer disease research or clinical approaches is increasing. When applied with gamma entrainment, optogenetic neuromodulation can improve Alzheimer disease symptoms. Although safety problems exist with optogenetics such as the use of viral vectors, this technique has great potential for use in Alzheimer disease. In this paper, we review the historical applications of optogenetic neuromodulation with gamma entrainment to investigate the mechanisms involved in Alzheimer disease and potential therapeutic strategies.
Collapse
Affiliation(s)
- Haneol Ko
- Medical Course, Jeju National University School of Medicine, Jeju, Korea
| | - Sang-Pil Yoon
- Department of Anatomy, Jeju National University College of Medicine, Jeju, Korea
| |
Collapse
|
57
|
Stoupis D, Samaras T. Non-invasive stimulation with Temporal Interference: Optimization of the electric field deep in the brain with the use of a genetic algorithm. J Neural Eng 2022; 19. [PMID: 35970146 DOI: 10.1088/1741-2552/ac89b3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/15/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Since the introduction of transcranial temporal interference stimulation (tTIS), there has been an ever-growing interest in this novel method, as it theoretically allows non-invasive stimulation of deep brain target regions. To date, attempts have been made to optimize the electrode montages and injected current to achieve personalized area targeting using two electrode pairs. Most of these methods use exhaustive search to find the best match, but faster and, at the same time, reliable solutions are required. In this study, the electrode combinations as well as the injected current for a two-electrode pair stimulation were optimized using a genetic algorithm, considering the right hippocampus as the region of interest (ROI). METHODS Simulations were performed on head models from the Population Head Model (PHM) repository. First, each model was fitted with an electrode array based on the 10-10 international EEG electrode placement system. Following electrode placement, the models were meshed and solved for all single-pair electrode combinations, using an electrode on the left mastoid as a reference (ground). At the optimization stage, different electrode pairs and injection currents were tested using a genetic algorithm to obtain the optimal combination for each model, by setting three different maximum electric field thresholds (0.2, 0.5, and 0.8 V/m) in the ROI. The combinations below the set threshold were given a high penalty. RESULTS Greater focality was achieved with our optimization, specifically in the ROI, with a significant decrease in the surrounding electric field intensity. In the non-optimized case, the mean brain volumes stimulated above 0.2 V/m were 99.9% in the ROI, and 76.4% in the rest of the gray matter. In contrast, the stimulated mean volumes were 91.4% and 29.6%, respectively, for the best optimization case with a threshold of 0.8 V/m. Additionally, the maximum electric field intensity inside the ROI was consistently higher than that outside of the ROI for all optimized cases. SIGNIFICANCE Given that the accomplishment of a globally optimal solution requires a brute-force approach, the use of a genetic algorithm can significantly decrease the optimization time, while achieving personalized deep brain stimulation. The results of this work can be used to facilitate further studies that are more clinically oriented; thus, enabling faster and at the same time accurate treatment planning for the stimulation sessions.
Collapse
Affiliation(s)
- D Stoupis
- Department of Physics, Aristotle University of Thessaloniki, University Campus, Thessaloniki, Central Macedonia, 54124, GREECE
| | - T Samaras
- Department of Physics, Aristotle University of Thessaloniki, University Campus, Thessaloniki, 54124, GREECE
| |
Collapse
|
58
|
Gibson BC, Claus ED, Sanguinetti J, Witkiewitz K, Clark VP. A review of functional brain differences predicting relapse in substance use disorder: Actionable targets for new methods of noninvasive brain stimulation. Neurosci Biobehav Rev 2022; 141:104821. [PMID: 35970417 DOI: 10.1016/j.neubiorev.2022.104821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Neuroimaging studies have identified a variety of brain regions whose activity predicts substance use (i.e., relapse) in patients with substance use disorder (SUD), suggesting that malfunctioning brain networks may exacerbate relapse. However, this knowledge has not yet led to a marked improvement in treatment outcomes. Noninvasive brain stimulation (NIBS) has shown some potential for treating SUDs, and a new generation of NIBS technologies offers the possibility of selectively altering activity in both superficial and deep brain structures implicated in SUDs. The goal of the current review was to identify deeper brain structures involved in relapse to SUD and give an account of innovative methods of NIBS that might be used to target them. Included studies measured fMRI in currently abstinent SUD patients and tracked treatment outcomes, and fMRI results were organized with the framework of the Addictions Neuroclinical Assessment (ANA). Four brain structures were consistently implicated: the anterior and posterior cingulate cortices, ventral striatum and insula. These four deeper brain structures may be appropriate future targets for the treatment of SUD using these innovative NIBS technologies.
Collapse
Affiliation(s)
- Benjamin C Gibson
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Eric D Claus
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jay Sanguinetti
- The Center for Consciousness Studies, University of Arizona, Tucson, AZ 85719, USA
| | - Katie Witkiewitz
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA.
| |
Collapse
|
59
|
Kricheldorff J, Göke K, Kiebs M, Kasten FH, Herrmann CS, Witt K, Hurlemann R. Evidence of Neuroplastic Changes after Transcranial Magnetic, Electric, and Deep Brain Stimulation. Brain Sci 2022; 12:929. [PMID: 35884734 PMCID: PMC9313265 DOI: 10.3390/brainsci12070929] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Electric and magnetic stimulation of the human brain can be used to excite or inhibit neurons. Numerous methods have been designed over the years for this purpose with various advantages and disadvantages that are the topic of this review. Deep brain stimulation (DBS) is the most direct and focal application of electric impulses to brain tissue. Electrodes are placed in the brain in order to modulate neural activity and to correct parameters of pathological oscillation in brain circuits such as their amplitude or frequency. Transcranial magnetic stimulation (TMS) is a non-invasive alternative with the stimulator generating a magnetic field in a coil over the scalp that induces an electric field in the brain which, in turn, interacts with ongoing brain activity. Depending upon stimulation parameters, excitation and inhibition can be achieved. Transcranial electric stimulation (tES) applies electric fields to the scalp that spread along the skull in order to reach the brain, thus, limiting current strength to avoid skin sensations and cranial muscle pain. Therefore, tES can only modulate brain activity and is considered subthreshold, i.e., it does not directly elicit neuronal action potentials. In this review, we collect hints for neuroplastic changes such as modulation of behavior, the electric activity of the brain, or the evolution of clinical signs and symptoms in response to stimulation. Possible mechanisms are discussed, and future paradigms are suggested.
Collapse
Affiliation(s)
- Julius Kricheldorff
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany; (J.K.); (K.W.)
| | - Katharina Göke
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Maximilian Kiebs
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
| | - Florian H. Kasten
- Experimental Psychology Lab, Carl von Ossietzky University, 26129 Oldenburg, Germany; (F.H.K.); (C.S.H.)
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Carl von Ossietzky University, 26129 Oldenburg, Germany; (F.H.K.); (C.S.H.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany; (J.K.); (K.W.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Rene Hurlemann
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
- Department of Psychiatry and Psychotherapy, Carl von Ossietzky University, 26129 Oldenburg, Germany
| |
Collapse
|
60
|
Plovie T, Schoeters R, Tarnaud T, Martens L, Joseph W, Tanghe E. Influence of Temporal Interference Stimulation Parameters on Point Neuron Excitability. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2365-2368. [PMID: 36085979 DOI: 10.1109/embc48229.2022.9871641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Temporal interference (TI) stimulation is a technique in which two high frequency sinusoidal electric fields, oscillating at a slightly different frequency are sent into the brain. The goal is to achieve stimulation at the place where both fields interfere. This study uses a simplified version of the Hodgkin - Huxley model to analyse the different parameters of the TI-waveform and how the neuron reacts to this waveform. In this manner, the underlying mechanism of the reaction of the neuron to a TI -signal is investigated. Clinical relevance- This study shows the importance of the parameter choice of the temporal interference waveform and provides insights into the underlying mechanism of the neuronal response to a beating sine for the application of temporal interference stimulation.
Collapse
|
61
|
Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. Neurosci Biobehav Rev 2022; 138:104702. [PMID: 35595071 DOI: 10.1016/j.neubiorev.2022.104702] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/12/2022] [Accepted: 05/13/2022] [Indexed: 12/22/2022]
Abstract
Van der Groen, O., Potok, W., Wenderoth, N., Edwards, G., Mattingley, J.B. and Edwards, D. Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. NEUROSCI BIOBEHAV REV X (X) XXX-XXX 2021.- Transcranial random noise stimulation (tRNS) is a non-invasive electrical brain stimulation method that is increasingly employed in studies of human brain function and behavior, in health and disease. tRNS is effective in modulating perception acutely and can improve learning. By contrast, its effectiveness for modulating higher cognitive processes is variable. Prolonged stimulation with tRNS, either as one longer application, or multiple shorter applications, may engage plasticity mechanisms that can result in long-term benefits. Here we provide an overview of the current understanding of the effects of tRNS on the brain and behavior and provide some specific recommendations for future research.
Collapse
|
62
|
Jabban L, Ribeiro M, Andreis FR, Dos Santos Nielsen TGN, Metcalfe BW. Pig Ulnar Nerve Recording with Sinusoidal and Temporal Interference Stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:5084-5088. [PMID: 36086016 DOI: 10.1109/embc48229.2022.9871603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Temporal interference stimulation has been suggested as a method to reach deep targets during transcutaneous electrical stimulation. Despite its growing use in transcutaneous stimulation therapies, the mechanism of its operation is not fully understood. Recent efforts to fill that gap have focused on computational modelling, in vitro and in vivo experiments relying on physical observations - e.g., sensation or movement. This paper expands the current range of experimental methods by demonstrating in vivo extraneural recordings from the ulnar nerve of a pig while applying temporal interference stimulation at a location targeting a distal part of the nerve. The main aim of the experiment was to compare neural activation using sinusoidal stimulation (100 Hz, 2 kHz, 4 kHz) and temporal interference stimulation (2 kHz and 4 kHz). The recordings showed a significant increase in the magnitude of stimulation artefacts at higher frequencies. While those artefacts could be removed and provided an indication of the depth of modulation, they resulted in the saturation of the amplifiers, limiting the stimulation currents and amplifier gains used. The results of the 100 Hz sine wave stimulation showed clear neural activity correlated to the stimulation waveform. However, this was not observed with temporal interference stimulation. The results suggest that, despite its greater penetration, higher currents might be required to observe a neural response with temporal interference stimulation, and more complex artefact rejection techniques may be required to validate the method.
Collapse
|
63
|
Nasr K, Haslacher D, Dayan E, Censor N, Cohen LG, Soekadar SR. Breaking the boundaries of interacting with the human brain using adaptive closed-loop stimulation. Prog Neurobiol 2022; 216:102311. [PMID: 35750290 DOI: 10.1016/j.pneurobio.2022.102311] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022]
Abstract
The human brain is arguably one of the most complex systems in nature. To understand how it operates, it is essential to understand the link between neural activity and behavior. Experimental investigation of that link requires tools to interact with neural activity during behavior. Human neuroscience, however, has been severely bottlenecked by the limitations of these tools. While invasive methods can support highly specific interaction with brain activity during behavior, their applicability in human neuroscience is limited. Despite extensive development in the last decades, noninvasive alternatives have lacked spatial specificity and yielded results that are commonly fraught with variability and replicability issues, along with relatively limited understanding of the neural mechanisms involved. Here we provide a comprehensive review of the state-of-the-art in interacting with human brain activity and highlight current limitations and recent efforts to overcome these limitations. Beyond crucial technical and scientific advancements in electromagnetic brain stimulation, new frontiers in interacting with human brain activity such as task-irrelevant sensory stimulation and focal ultrasound stimulation are introduced. Finally, we argue that, along with technological improvements and breakthroughs in noninvasive methods, a paradigm shift towards adaptive closed-loop stimulation will be a critical step for advancing human neuroscience.
Collapse
Affiliation(s)
- Khaled Nasr
- Clinical Neurotechnology Laboratory & Center for Translational Neuromodulation, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Haslacher
- Clinical Neurotechnology Laboratory & Center for Translational Neuromodulation, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eran Dayan
- Department of Radiology and Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nitzan Censor
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institutes of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Surjo R Soekadar
- Clinical Neurotechnology Laboratory & Center for Translational Neuromodulation, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
64
|
von Conta J, Kasten FH, Schellhorn K, Curcic-Blake B, Aleman A, Herrmann CS. Benchmarking the Effects of Transcranial Temporal Interference Stimulation (tTIS) in Humans. Cortex 2022; 154:299-310. [DOI: 10.1016/j.cortex.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
|
65
|
Liu X, Qiu F, Hou L, Wang X. Review of Noninvasive or Minimally Invasive Deep Brain Stimulation. Front Behav Neurosci 2022; 15:820017. [PMID: 35145384 PMCID: PMC8823253 DOI: 10.3389/fnbeh.2021.820017] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Brain stimulation is a critical technique in neuroscience research and clinical application. Traditional transcranial brain stimulation techniques, such as transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS) have been widely investigated in neuroscience for decades. However, TMS and tDCS have poor spatial resolution and penetration depth, and DBS requires electrode implantation in deep brain structures. These disadvantages have limited the clinical applications of these techniques. Owing to developments in science and technology, substantial advances in noninvasive and precise deep stimulation have been achieved by neuromodulation studies. Second-generation brain stimulation techniques that mainly rely on acoustic, electronic, optical, and magnetic signals, such as focused ultrasound, temporal interference, near-infrared optogenetic, and nanomaterial-enabled magnetic stimulation, offer great prospects for neuromodulation. This review summarized the mechanisms, development, applications, and strengths of these techniques and the prospects and challenges in their development. We believe that these second-generation brain stimulation techniques pave the way for brain disorder therapy.
Collapse
Affiliation(s)
- Xiaodong Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Fang Qiu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lijuan Hou
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
- *Correspondence: Lijuan Hou Xiaohui Wang
| | - Xiaohui Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Lijuan Hou Xiaohui Wang
| |
Collapse
|
66
|
Földi T, Lőrincz ML, Berényi A. Temporally Targeted Interactions With Pathologic Oscillations as Therapeutical Targets in Epilepsy and Beyond. Front Neural Circuits 2021; 15:784085. [PMID: 34955760 PMCID: PMC8693222 DOI: 10.3389/fncir.2021.784085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Self-organized neuronal oscillations rely on precisely orchestrated ensemble activity in reverberating neuronal networks. Chronic, non-malignant disorders of the brain are often coupled to pathological neuronal activity patterns. In addition to the characteristic behavioral symptoms, these disturbances are giving rise to both transient and persistent changes of various brain rhythms. Increasing evidence support the causal role of these "oscillopathies" in the phenotypic emergence of the disease symptoms, identifying neuronal network oscillations as potential therapeutic targets. While the kinetics of pharmacological therapy is not suitable to compensate the disease related fine-scale disturbances of network oscillations, external biophysical modalities (e.g., electrical stimulation) can alter spike timing in a temporally precise manner. These perturbations can warp rhythmic oscillatory patterns via resonance or entrainment. Properly timed phasic stimuli can even switch between the stable states of networks acting as multistable oscillators, substantially changing the emergent oscillatory patterns. Novel transcranial electric stimulation (TES) approaches offer more reliable neuronal control by allowing higher intensities with tolerable side-effect profiles. This precise temporal steerability combined with the non- or minimally invasive nature of these novel TES interventions make them promising therapeutic candidates for functional disorders of the brain. Here we review the key experimental findings and theoretical background concerning various pathological aspects of neuronal network activity leading to the generation of epileptic seizures. The conceptual and practical state of the art of temporally targeted brain stimulation is discussed focusing on the prevention and early termination of epileptic seizures.
Collapse
Affiliation(s)
- Tamás Földi
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary.,Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary.,HCEMM-USZ Magnetotherapeutics Research Group, University of Szeged, Szeged, Hungary.,Child and Adolescent Psychiatry, Department of the Child Health Center, University of Szeged, Szeged, Hungary
| | - Magor L Lőrincz
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary.,Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary.,Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, Szeged, Hungary.,Neuroscience Division, Cardiff University, Cardiff, United Kingdom
| | - Antal Berényi
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary.,Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary.,HCEMM-USZ Magnetotherapeutics Research Group, University of Szeged, Szeged, Hungary.,Neuroscience Institute, New York University, New York, NY, United States
| |
Collapse
|
67
|
Amplitude modulated transcranial alternating current stimulation (AM-TACS) efficacy evaluation via phosphene induction. Sci Rep 2021; 11:22245. [PMID: 34782626 PMCID: PMC8593032 DOI: 10.1038/s41598-021-01482-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022] Open
Abstract
Amplitude modulated transcranial alternating current stimulation (AM-tACS) is a novel method of electrostimulation which enables the recording of electrophysiological signals during stimulation, thanks to an easier removable stimulation artefact compared to classical electrostimulation methods. To gauge the neuromodulatory potential of AM-tACS, we tested its capacity to induce phosphenes as an indicator of stimulation efficacy. AM-tACS was applied via a two-electrode setup, attached on FpZ and below the right eye. AM-tACS waveforms comprised of different carrier (50 Hz, 200 Hz, 1000 Hz) and modulation frequencies (8 Hz, 16 Hz, 28 Hz) were administered with at maximum 2 mA peak-to-peak stimulation strength. TACS conditions in the same frequencies were used as a benchmark for phosphene induction. AM-tACS conditions using a 50 Hz carrier frequency were able to induce phosphenes, but with no difference in phosphene thresholds between modulation frequencies. AM-tACS using a 200 Hz or 1000 Hz carrier frequency did not induce phosphenes. TACS conditions induced phosphenes in line with previous studies. Stimulation effects of AM-tACS conditions were independent of amplitude modulation and instead relied solely on the carrier frequency. A possible explanation may be that AM-tACS needs higher stimulation intensities for its amplitude modulation to have a neuromodulatory effect.
Collapse
|
68
|
Xin Z, Kuwahata A, Liu S, Sekino M. Magnetically Induced Temporal Interference for Focal and Deep-Brain Stimulation. Front Hum Neurosci 2021; 15:693207. [PMID: 34646125 PMCID: PMC8502936 DOI: 10.3389/fnhum.2021.693207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique that has been clinically applied for neural modulation. Conventional TMS systems are restricted by the trade-off between depth penetration and the focality of the induced electric field. In this study, we integrated the concept of temporal interference (TI) stimulation, which has been demonstrated as a non-invasive deep-brain stimulation method, with magnetic stimulation in a four-coil configuration. The attenuation depth and spread of the electric field were obtained by performing numerical simulation. Consequently, the proposed temporally interfered magnetic stimulation scheme was demonstrated to be capable of stimulating deeper regions of the brain model while maintaining a relatively narrow spread of the electric field, in comparison to conventional TMS systems. These results demonstrate that TI magnetic stimulation could be a potential candidate to recruit brain regions underneath the cortex. Additionally, by controlling the geometry of the coil array, an analogous relationship between the field depth and focality was observed, in the case of the newly proposed method. The major limitations of the methods, however, would be the considerable intensity and frequency of the input current, followed by the frustration in the thermal management of the hardware.
Collapse
Affiliation(s)
- Zonghao Xin
- Laboratory Sekino, Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Akihiro Kuwahata
- Laboratory Sekino, Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Shuang Liu
- Laboratory Sekino, Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masaki Sekino
- Laboratory Sekino, Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
69
|
von Conta J, Kasten FH, Ćurčić-Blake B, Aleman A, Thielscher A, Herrmann CS. Interindividual variability of electric fields during transcranial temporal interference stimulation (tTIS). Sci Rep 2021; 11:20357. [PMID: 34645895 PMCID: PMC8514596 DOI: 10.1038/s41598-021-99749-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Transcranial temporal interference stimulation (tTIS) is a novel non-invasive brain stimulation technique for electrical stimulation of neurons at depth. Deep brain regions are generally small in size, making precise targeting a necessity. The variability of electric fields across individual subjects resulting from the same tTIS montages is unknown so far and may be of major concern for precise tTIS targeting. Therefore, the aim of the current study is to investigate the variability of the electric fields due to tTIS across 25 subjects. To this end, the electric fields of different electrode montages consisting of two electrode pairs with different center frequencies were simulated in order to target selected regions-of-interest (ROIs) with tTIS. Moreover, we set out to compare the electric fields of tTIS with the electric fields of conventional tACS. The latter were also based on two electrode pairs, which, however, were driven in phase at a common frequency. Our results showed that the electric field strengths inside the ROIs (left hippocampus, left motor area and thalamus) during tTIS are variable on single subject level. In addition, tTIS stimulates more focally as compared to tACS with much weaker co-stimulation of cortical areas close to the stimulation electrodes. Electric fields inside the ROI were, however, comparable for both methods. Overall, our results emphasize the potential benefits of tTIS for the stimulation of deep targets, over conventional tACS. However, they also indicate a need for individualized stimulation montages to leverage the method to its fullest potential.
Collapse
Affiliation(s)
- Jill von Conta
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence "Hearing4All", Carl Von Ossietzky University, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
| | - Florian H Kasten
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence "Hearing4All", Carl Von Ossietzky University, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany.,Neuroimaging Unit, European Medical School, Carl Von Ossietzky University, Oldenburg, Germany
| | - Branislava Ćurčić-Blake
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.,Center for Magnetic Resonance, DTU Health Tech, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence "Hearing4All", Carl Von Ossietzky University, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany. .,Neuroimaging Unit, European Medical School, Carl Von Ossietzky University, Oldenburg, Germany. .,Research Center Neurosensory Science, Carl Von Ossietzky University, Oldenburg, Germany.
| |
Collapse
|
70
|
Predictive models for response to non-invasive brain stimulation in stroke: A critical review of opportunities and pitfalls. Brain Stimul 2021; 14:1456-1466. [PMID: 34560317 DOI: 10.1016/j.brs.2021.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Noninvasive brain stimulation has been successfully applied to improve stroke-related impairments in different behavioral domains. Yet, clinical translation is limited by heterogenous outcomes within and across studies. It has been proposed to develop and apply noninvasive brain stimulation in a patient-tailored, precision medicine-guided fashion to maximize response rates and effect magnitude. An important prerequisite for this task is the ability to accurately predict the expected response of the individual patient. OBJECTIVE This review aims to discuss current approaches studying noninvasive brain stimulation in stroke and challenges associated with the development of predictive models of responsiveness to noninvasive brain stimulation. METHODS Narrative review. RESULTS Currently, the field largely relies on in-sample associational studies to assess the impact of different influencing factors. However, the associational approach is not valid for making claims of prediction, which generalize out-of-sample. We will discuss crucial requirements for valid predictive modeling in particular the presence of sufficiently large sample sizes. CONCLUSION Modern predictive models are powerful tools that must be wielded with great care. Open science, including data sharing across research units to obtain sufficiently large and unbiased samples, could provide a solid framework for addressing the task of building robust predictive models for noninvasive brain stimulation responsiveness.
Collapse
|
71
|
Gomez-Tames J, Asai A, Hirata A. Multiscale Computational Model Reveals Nerve Response in a Mouse Model for Temporal Interference Brain Stimulation. Front Neurosci 2021; 15:684465. [PMID: 34276293 PMCID: PMC8277927 DOI: 10.3389/fnins.2021.684465] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
There has been a growing interest in the non-invasive stimulation of specific brain tissues, while reducing unintended stimulation in surrounding regions, for the medical treatment of brain disorders. Traditional methods for non-invasive brain stimulation, such as transcranial direct current stimulation (tDCS) or transcranial magnetic stimulation (TMS), can stimulate brain regions, but they also simultaneously stimulate the brain and non-brain regions that lie between the target and the stimulation site of the source. Temporal interference (TI) stimulation has been suggested to selectively stimulate brain regions by superposing two alternating currents with slightly different frequencies injected through electrodes attached to the scalp. Previous studies have reported promising results for TI applied to the motor area in mice, but the mechanisms are yet to be clarified. As computational techniques can help reveal different aspects of TI, in this study, we computationally investigated TI stimulation using a multiscale model that computes the generated interference current pattern effects in a neural cortical model of a mouse head. The results indicated that the threshold increased with the carrier frequency and that the beat frequency did not influence the threshold. It was also found that the intensity ratio between the alternating currents changed the location of the responding nerve, which is in agreement with previous experiments. Moreover, particular characteristics of the envelope were investigated to predict the stimulation region intuitively. It was found that regions with high modulation depth (| maximum| − | minimum| values of the envelope) and low minimum envelope (near zero) corresponded with the activation region obtained via neural computation.
Collapse
Affiliation(s)
- Jose Gomez-Tames
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan.,Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
| | - Akihiro Asai
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan.,Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
72
|
Limited Sensitivity of Hippocampal Synaptic Function or Network Oscillations to Unmodulated Kilohertz Electric Fields. eNeuro 2020; 7:ENEURO.0368-20.2020. [PMID: 33328248 PMCID: PMC7773889 DOI: 10.1523/eneuro.0368-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 11/21/2022] Open
Abstract
Understanding the cellular mechanisms of kilohertz (kHz) electrical stimulation is of broad interest in neuromodulation including forms of transcranial electrical stimulation, interferential stimulation, and high-rate spinal cord stimulation (SCS). Yet, the well-established low-pass filtering by neuronal membranes suggests minimal neuronal polarization in respond to charge-balanced kHz stimulation. The hippocampal brain slice model is among the most studied systems in neuroscience and exhaustively characterized in screening the effects of electrical stimulation. High-frequency electric fields of varied amplitudes (1–150 V/m), waveforms (sinusoidal, symmetrical pule, asymmetrical pulse) and frequencies (1 and10 kHz) were tested. Changes in single or paired-pulse field EPSPs (fEPSP) in CA1 were measured in response to radial-directed and tangential-directed electric fields, with brief (30 s) or long (30 min) application times. The effects of kHz stimulation on ongoing endogenous network activity were tested in carbachol-induced γ oscillation of CA3a and CA3c. Across 23 conditions evaluated, no significant changes in fEPSP were resolved, while responses were detected for within-slice control direct current (DC) fields; 1-kHz sinusoidal and pulse stimulation (≥60 V/m), but not 10 kHz, induced changes in oscillating neuronal network. We thus report no responses to low-amplitude 1-kHz or any 10-kHz fields, suggesting that any brain sensitivity to these fields is via yet to be-determined mechanism(s) of action which were not identified in our experimental preparation.
Collapse
|