51
|
Constantino J, Gomes C, Falcão A, Neves BM, Cruz MT. Dendritic cell-based immunotherapy: a basic review and recent advances. Immunol Res 2017; 65:798-810. [DOI: 10.1007/s12026-017-8931-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
52
|
Abstract
Immune checkpoint therapy has become the first widely adopted immunotherapy for patients with late stage malignant melanoma, with potential for a wide range of cancers. While some patients can experience long term disease remission, this is limited only to a subset of patients and tumor types. The path forward to expand this therapy to more patients and tumor types is currently thought to be combinatorial treatments, the combination of immunotherapy with other treatments. In this review, the combinatorial approach of immune checkpoint therapy combined with nanoparticle-assisted localized hyperthermia is discussed, starting with an overview of the different nanoparticle hyperthermia approaches in development, an overview of the state of immune checkpoint therapy, recent reports of immune checkpoint therapy and nanoparticle-assisted hyperthermia in a combinatorial approach, and finally a discussion of future research topics and areas to be explored in this new combinatorial approach to cancer treatment.
Collapse
Affiliation(s)
- Austin J Moy
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - James W Tunnell
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
53
|
Naylor MF, Zhou F, Geister BV, Nordquist RE, Li X, Chen WR. Treatment of advanced melanoma with laser immunotherapy and ipilimumab. JOURNAL OF BIOPHOTONICS 2017; 10:618-622. [PMID: 28417565 DOI: 10.1002/jbio.201600271] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/24/2016] [Accepted: 01/31/2017] [Indexed: 06/07/2023]
Abstract
Immunotherapy has become a promising modality for melanoma, especially using checkpoint inhibitors, which revive suppressed T cells against the cancer. Such inhibitors should work better when combined with other treatments which could increase the number and quality of anti-tumor T cells. We treated one patient with advanced (stage IV) melanoma, using the combination of laser immunotherapy (LIT), a novel immunological approach for metastatic cancers that has been shown to stimulate adaptive immunity, and ipilimumab. The patient was treated with LIT, followed with one course of ipilimumab 3 months after the beginning of LIT. After LIT treatment, all treated cutaneous melanoma in head and neck cleared completely. After the application of ipilimumab, all the tumor nodules in the lungs decreased. The patient had remained tumor free for one year. While anecdotal, the responses seen in this patient support the hypothesis that laser immunotherapy increases the number and quality of anti-tumor T cells so that ipilimumab and other checkpoint inhibitors are more effective in enhancing the therapeutic effects. Picture: Schematic of treatment using laser immunotherapy and ipilimumab on a stage IV melanoma patient.
Collapse
Affiliation(s)
- Mark F Naylor
- Baylor Scott & White Healthcare, Waco, Texas, 76712, USA
| | - Feifan Zhou
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, University of Central Oklahoma, Edmond, Oklahoma, 73034, USA
| | - Brian V Geister
- INTEGRIS Cancer Institute, 5915 W. Memorials Rd, Oklahoma City, OK 73142, USA
| | - Robert E Nordquist
- Immunophotonics Inc., 4320 Forest Park Avenue #303, St. Louis, Missouri, 63108, USA
| | - Xiaosong Li
- Department of Oncology, the First Affiliated Hospital of Chinese PLA General Hospital, Beijing, 100048, China
| | - Wei R Chen
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, University of Central Oklahoma, Edmond, Oklahoma, 73034, USA
| |
Collapse
|
54
|
Smith TT, Moffett HF, Stephan SB, Opel CF, Dumigan AG, Jiang X, Pillarisetty VG, Pillai SPS, Wittrup KD, Stephan MT. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors. J Clin Invest 2017; 127:2176-2191. [PMID: 28436934 DOI: 10.1172/jci87624] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 02/23/2017] [Indexed: 01/01/2023] Open
Abstract
Therapies using T cells that are programmed to express chimeric antigen receptors (CAR T cells) consistently produce positive results in patients with hematologic malignancies. However, CAR T cell treatments are less effective in solid tumors for several reasons. First, lymphocytes do not efficiently target CAR T cells; second, solid tumors create an immunosuppressive microenvironment that inactivates T cell responses; and third, solid cancers are typified by phenotypic diversity and thus include cells that do not express proteins targeted by the engineered receptors, enabling the formation of escape variants that elude CAR T cell targeting. Here, we have tested implantable biopolymer devices that deliver CAR T cells directly to the surfaces of solid tumors, thereby exposing them to high concentrations of immune cells for a substantial time period. In immunocompetent orthotopic mouse models of pancreatic cancer and melanoma, we found that CAR T cells can migrate from biopolymer scaffolds and eradicate tumors more effectively than does systemic delivery of the same cells. We have also demonstrated that codelivery of stimulator of IFN genes (STING) agonists stimulates immune responses to eliminate tumor cells that are not recognized by the adoptively transferred lymphocytes. Thus, these devices may improve the effectiveness of CAR T cell therapy in solid tumors and help protect against the emergence of escape variants.
Collapse
Affiliation(s)
- Tyrel T Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Howell F Moffett
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sirkka B Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Cary F Opel
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, USA
| | - Amy G Dumigan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Xiuyun Jiang
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | | | - Smitha P S Pillai
- Comparative Pathology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - K Dane Wittrup
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, USA.,Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
| | - Matthias T Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington, USA.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
55
|
Aravalli RN, Steer CJ. Immune-Mediated Therapies for Liver Cancer. Genes (Basel) 2017; 8:E76. [PMID: 28218682 PMCID: PMC5333065 DOI: 10.3390/genes8020076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 02/07/2023] Open
Abstract
In recent years, immunotherapy has gained renewed interest as an alternative therapeutic approach for solid tumors. Its premise is based on harnessing the power of the host immune system to destroy tumor cells. Development of immune-mediated therapies, such as vaccines, adoptive transfer of autologous immune cells, and stimulation of host immunity by targeting tumor-evasive mechanisms have advanced cancer immunotherapy. In addition, studies on innate immunity and mechanisms of immune evasion have enhanced our understanding on the immunology of liver cancer. Preclinical and clinical studies with immune-mediated therapies have shown potential benefits in patients with liver cancer. In this review, we summarize current knowledge and recent developments in tumor immunology by focusing on two main primary liver cancers: hepatocellular carcinoma and cholangiocarcinoma.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street S.E., Minneapolis, MN 55455, USA.
| | - Clifford J Steer
- Departments of Medicine and Genetics, Cell Biology and Development, University of Minnesota, 420 Delaware Street S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
56
|
El-Hussein A, Lam SSK, Raker J, Chen WR, Hamblin MR. N-dihydrogalactochitosan as a potent immune activator for dendritic cells. J Biomed Mater Res A 2017; 105:963-972. [PMID: 28028922 DOI: 10.1002/jbm.a.35991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022]
Abstract
Immunotherapy has become one of the fastest growing areas of cancer research. A promising in situ autologous cancer vaccine (inCVAX) uses a novel immune activator, N-dihydrogalactochitosan (GC), that possesses the ability to stimulate dendritic cells (DC). inCVAX is a combination treatment procedure involving treatment of the tumor with a thermal near-infrared laser to liberate whole cell tumor antigens, followed by injection of GC (a glucosamine polymer with galactose attached to the amino groups) into the treated tumor thereby inducing a systemic antitumor immune response. Regression of both the treated tumor and distant untreated metastases has been observed in both nonclinical and clinical settings following inCVAX. We studied the stimulatory action of GC on relatively immature DCs (DC2.4 cell line) in vitro. GC at 1 mg/mL was a potent stimulator for DC with limited toxicity, giving increased expression of major histocompatibility complex class 2, CD80, and CD11c. Confocal imaging also revealed qualitatively increased uptake of antigen (Texas red-labeled ovalbumin) by DCs after the introduction of GC. To visualize cellular uptake, GC was conjugated with FITC-fluorophore revealing its cellular internalization after 8 hours. In some cases GC was more effective than the toxic TLR4 agonist, lipopolysaccharide. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 963-972, 2017.
Collapse
Affiliation(s)
- Ahmed El-Hussein
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115.,The National Institute of Laser Enhanced Science, Cairo University, Cairo, Egypt
| | - Samuel S K Lam
- Immunophotonics, Inc, 4320 Forest Park Ave, Suite #303, St. Louis, Missouri 63108
| | - Joseph Raker
- Immunophotonics, Inc, 4320 Forest Park Ave, Suite #303, St. Louis, Missouri 63108
| | - Wei R Chen
- University of Central Oklahoma, 100 N University Dr, Edmond, Oklahoma 73034
| | - Michael R Hamblin
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
57
|
Abstract
Anticancer immunotherapy has undergone a long evolving journey for decades, and has been dramatically applied to mainstream treatments in oncology in recent 5 years. This progress represents an advanced milestone following cytotoxic medicine and targeted therapy. Cellular immunity plays a pivotal role in the immune responses of hosts to tumor antigens. Such immunity is notably suppressed during neoplastic progression due to immuno-editing processes. Cellular immunity can also be selectively re-activated to combat malignancies while exploiting the advantages of contemporary scientific breakthroughs in molecular immunology and genetic engineering. The rapid advancement of cellular immunity-based therapeutic approaches has achieved high efficacy in certain cancer patients. Consequently, the landscape of oncologic medicine and pharmaceutical innovation has transformed recently. In this regard, we present a comprehensive update on clinically established anti-cancer treatments with cell immunity augmentation as the major mechanism of action.
Collapse
Affiliation(s)
- Daohong Chen
- Research Institute of Biomedicine, Yiling Pharmacy, Shijiazhuang 050035, China
| | - Xiaoshi Zhang
- Research Institute of Biomedicine, Yiling Pharmacy, Shijiazhuang 050035, China
| |
Collapse
|
58
|
Qi X, Lam SS, Liu D, Kim DY, Ma L, Alleruzzo L, Chen W, Hode T, Henry CJ, Kaifi J, Kimchi ET, Li G, Staveley-O'Carroll KF. Development of inCVAX, In situ Cancer Vaccine, and Its Immune Response in Mice with Hepatocellular Cancer. ACTA ACUST UNITED AC 2016; 7. [PMID: 27656328 PMCID: PMC5027967 DOI: 10.4172/2155-9899.1000438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Manipulation of immune system toward the rejection of established cancers has become the standard of care in some patients. Here we propose the development of an in situ autologous cancer vaccine, inCVAX, for the treatment of hepatocellular cancer (HCC). inCVAX is based on the induction of local immunogenic cancer cell death combined with local dendritic cell stimulation by intratumoral injection of the immune-activator N-dihydro-galacto-chitosan (GC). In a first set of experiments, cellular and molecular studies were performed to investigate the effect of inCVAX on immune activation in a murine model of HCC that we previously developed. Once large tumors were formed in mice, the tumor is surgically exposed and a laser fiber was inserted into the center of an individual tumor mass. Using a 10 mm diffuser tip, laser irradiation of 1.5 W was applied to heat the tumor at different durations (6-10 min) to assess tolerability of photothermal application at different temperatures. The laser application was followed by immediate injection of GC, and each mouse received one laser treatment and one GC injection. ELISA was used to assess the level of cytokines; immunohistochemical staining was conducted to analyze the effect of inCVAX on immune cell tumor-filtration and expression of tumor-specific antigens (TSAs) and tumor-associated antigens (TAAs). Results indicate that survival correlated to thermal exposure. At lower temperatures the photothermal effect was sufficient to induce tumor necrosis, but without obvious complication to the mice, although at these temperatures the treatment didn’t alter the level of TSAs and TAAs, so further optimization is suggested. Nevertheless, in response to the inCVAX treatment, cytotoxic cytokine IFN-γ was significantly increased, but suppressive cytokine TGF-β was dramatically reduced. Furthermore, inCVAX prompted tumor infiltration of CD3+, CD4+, and CD8+ T cells; but modulated macrophage subsets differently. In conclusion, while the protocol needs further optimization, it would appear that inCVAX for the treatment of HCC activates an immune response in tumor-bearing mice, which in turn may have potential for the treatment of HCC.
Collapse
Affiliation(s)
- Xiaoqiang Qi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA ; Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Samuel Sk Lam
- Immunophotonics Inc., 4320 Forest Park Avenue #303, St. Louis, Missouri 63108, USA
| | - Dai Liu
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA ; Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Dae Young Kim
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Lixin Ma
- Department of Radiology, University of Missouri, Columbia, MO 65212; Harry S. Truman Memorial VA Hospital Biomolecular Imaging Center, USA
| | - Lu Alleruzzo
- Immunophotonics Inc., 4320 Forest Park Avenue #303, St. Louis, Missouri 63108, USA
| | - Wei Chen
- Veterinary Medical and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Tomas Hode
- Immunophotonics Inc., 4320 Forest Park Avenue #303, St. Louis, Missouri 63108, USA
| | - Carolyn J Henry
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| | - Jussuf Kaifi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA ; Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Eric T Kimchi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA ; Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA ; Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA ; Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA ; Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
59
|
Zou L, Wang H, He B, Zeng L, Tan T, Cao H, He X, Zhang Z, Guo S, Li Y. Current Approaches of Photothermal Therapy in Treating Cancer Metastasis with Nanotherapeutics. Theranostics 2016; 6:762-72. [PMID: 27162548 PMCID: PMC4860886 DOI: 10.7150/thno.14988] [Citation(s) in RCA: 595] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/06/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer metastasis accounts for the high mortality of many types of cancer. Owing to the unique advantages of high specificity and minimal invasiveness, photothermal therapy (PTT) has been evidenced with great potential in treating cancer metastasis. In this review, we outline the current approaches of PTT with respect to its application in treating metastatic cancer. PTT can be used alone, guided with multimodal imaging, or combined with the current available therapies for effective treatment of cancer metastasis. Numerous types of photothermal nanotherapeutics (PTN) have been developed with encouraging therapeutic efficacy on metastatic cancer in many preclinical animal experiments. We summarize the design and performance of various PTN in PTT alone and their combinational therapy. We also point out the lacking area and the most promising approaches in this challenging field. In conclusion, PTT or their combinational therapy can provide an essential promising therapeutic modality against cancer metastasis.
Collapse
|