51
|
Li L, Tian H, Zhang Z, Ding N, He K, Lu S, Liu R, Wu P, Wang Y, He B, Luo M, Peng P, Yang M, Nice EC, Huang C, Xie N, Wang D, Gao W. Carrier-Free Nanoplatform via Evoking Pyroptosis and Immune Response against Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:452-468. [PMID: 36538368 DOI: 10.1021/acsami.2c17579] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pyroptosis, as a novel mode of cell death, has been proven to have impressive antitumor effects. Dying cells undergoing pyroptosis can elicit antitumor immunity by the release of tumor-associated antigens (TAAs) and damage-associated molecular patterns (DAMPs). Accordingly, developing an effective, stable, and controllable nanoplatform that can promote these two side effects is a promising option for cancer therapy. In this study, we designed a carrier-free chemo-photodynamic nanoplatform (A-C/NPs) using a co-assembly strategy with cytarabine (Ara-C) and chlorin e6 (Ce6) to induce pyroptosis and a subsequent immune response against breast cancer. Mechanistically, A-C/NPs can trigger GSDME-mediated pyroptosis in a controllable manner through reactive oxygen species (ROS) accumulation, causing immunogenic cell death (ICD), in which dying cells release high-mobility group box 1 (HMGB1), adenosine triphosphate (ATP), and calcitonin (CRT). Additionally, Ara-C can stimulate the maturation of cytotoxic T lymphocytes to act synergistically with Ce6-mediated immunogenic cell death (ICD), collectively augmenting the anticancer effect of A-C/NPs. The A-C/NPs showed excellent suppressive effects on the growth of orthotopic, abscopal, and recurrent tumors in a breast cancer mouse model. The chemo-photodynamic therapy (PDT) using the proposed nanomedicine strategy could be a novel strategy for triggering pyroptosis and improving the global anticancer immune response.
Collapse
Affiliation(s)
- Lei Li
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hailong Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ning Ding
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kai He
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shuaijun Lu
- The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
| | - Ruolan Liu
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peijie Wu
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bo He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Peilan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Mao Yang
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Canhua Huang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Dong Wang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Gao
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China
| |
Collapse
|
52
|
Yu R, Maswikiti EP, Yu Y, Gao L, Ma C, Ma H, Deng X, Wang N, Wang B, Chen H. Advances in the Application of Preclinical Models in Photodynamic Therapy for Tumor: A Narrative Review. Pharmaceutics 2023; 15:pharmaceutics15010197. [PMID: 36678826 PMCID: PMC9867105 DOI: 10.3390/pharmaceutics15010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive laser light local treatment that has been utilized in the management of a wide variety of solid tumors. Moreover, the evaluation of efficacy, adverse reactions, the development of new photosensitizers and the latest therapeutic regimens are inseparable from the preliminary exploration in preclinical studies. Therefore, our aim was to better comprehend the characteristics and limitations of these models and to provide a reference for related research. METHODS We searched the databases, including PubMed, Web of Science and Scopus for the past 25 years of original research articles on the feasibility of PDT in tumor treatment based on preclinical experiments and animal models. We provided insights into inclusion and exclusion criteria and ultimately selected 40 articles for data synthesis. RESULTS After summarizing and comparing the methods and results of these studies, the experimental model selection map was drawn. There are 7 main preclinical models, which are used for different research objectives according to their characteristics. CONCLUSIONS Based on this narrative review, preclinical experimental models are crucial to the development and promotion of PDT for tumors. The traditional animal models have some limitations, and the emergence of organoids may be a promising new insight.
Collapse
Affiliation(s)
- Rong Yu
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | | | - Yang Yu
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Lei Gao
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Chenhui Ma
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Huanhuan Ma
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Xiaobo Deng
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Na Wang
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Bofang Wang
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Hao Chen
- Department of Surgical Oncology, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumor of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Correspondence: ; Tel.: +86-0931-5190550
| |
Collapse
|
53
|
Zhang ZF. A novel pyroptosis scoring model was associated with the prognosis and immune microenvironment of esophageal squamous cell carcinoma. Front Genet 2023; 13:1034606. [PMID: 36685978 PMCID: PMC9845255 DOI: 10.3389/fgene.2022.1034606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
The phenotype of pyroptosis has been extensively studied in a variety of tumors, but the relationship between pyroptosis and esophageal squamous cell carcinoma (ESCC) remains unclear. Here, 22 pyroptosis genes were downloaded from the website of Gene Set Enrichment Analysis (GSEA), 79 esophageal squamous cell carcinoma samples and GSE53625 containing 179 pairs of esophageal squamous cell carcinoma samples were collected from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO), respectively. Then, pyroptosis subtypes of esophageal squamous cell carcinoma were obtained by cluster analysis according to the expression difference of pyroptosis genes, and a pyroptosis scoring model was constructed by the pyroptosis-related genes screened from different pyroptosis subtypes. Time-dependent receiver operator characteristic (timeROC) curves and the area under the curve (AUC) values were used to evaluate the prognostic predictive accuracy of the pyroptosis scoring model. Kaplan-Meier method with log-rank test were conducted to analyze the impact of the pyroptosis scoring model on overall survival (OS) of patients with esophageal squamous cell carcinoma. Nomogram models and calibration curves were used to further confirm the effect of the pyroptosis scoring model on prognosis. Meanwhile, CIBERSORTx and ESTIMATE algorithm were applied to calculate the influence of the pyroptosis scoring model on esophageal squamous cell carcinoma immune microenvironment. Our findings revealed that the pyroptosis scoring model established by the pyroptosis-related genes was associated with the prognosis and immune microenvironment of esophageal squamous cell carcinoma, which can be used as a biomarker to predict the prognosis and act as a potential target for the treatment of esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Zhan-Fei Zhang
- Department of Cardiothoracic Surgery, Zhongshan People’s Hospital, Zhongshan, China,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China,*Correspondence: Zhan-Fei Zhang,
| |
Collapse
|
54
|
He X, Zhang S, Tian Y, Cheng W, Jing H. Research Progress of Nanomedicine-Based Mild Photothermal Therapy in Tumor. Int J Nanomedicine 2023; 18:1433-1468. [PMID: 36992822 PMCID: PMC10042261 DOI: 10.2147/ijn.s405020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
With the booming development of nanomedicine, mild photothermal therapy (mPTT, 42-45°C) has exhibited promising potential in tumor therapy. Compared with traditional PTT (>50°C), mPTT has less side effects and better biological effects conducive to tumor treatment, such as loosening the dense structure in tumor tissues, enhancing blood perfusion, and improving the immunosuppressive microenvironment. However, such a relatively low temperature cannot allow mPTT to completely eradicate tumors, and therefore, substantial efforts have been conducted to optimize the application of mPTT in tumor therapy. This review extensively summarizes the latest advances of mPTT, including two sections: (1) taking mPTT as a leading role to maximize its effect by blocking the cell defense mechanisms, and (2) regarding mPTT as a supporting role to assist other therapies to achieve synergistic antitumor curative effect. Meanwhile, the special characteristics and imaging capabilities of nanoplatforms applied in various therapies are discussed. At last, this paper puts forward the bottlenecks and challenges in the current research path of mPTT, and possible solutions and research directions in future are proposed correspondingly.
Collapse
Affiliation(s)
- Xiang He
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Shentao Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Correspondence: Hui Jing; Wen Cheng, Department of Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, People’s Republic of China, Tel +86 13304504935; +86 13313677182, Email ;
| |
Collapse
|
55
|
Balance Cell Apoptosis and Pyroptosis of Caspase-3-Activating Chemotherapy for Better Antitumor Therapy. Cancers (Basel) 2022; 15:cancers15010026. [PMID: 36612023 PMCID: PMC9817729 DOI: 10.3390/cancers15010026] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is a standard treatment modality in clinic that exerts an antitumor effect via the activation of the caspase-3 pathway, inducing cell death. While a number of chemotherapeutic drugs have been developed to combat various types of tumors, severe side effects have been their common limitation, due to the nonspecific drug biodistribution, bringing significant pain to cancer patients. Recently, scientists found that, besides apoptosis, chemotherapy could also cause cell pyroptosis, both of which have great influence on the therapeutic index. For example, cell apoptosis is, generally, regarded as the main mechanism of killing tumor cells, while cell pyroptosis in tumors promotes treatment efficacy, but in normal tissue results in toxicity. Therefore, significant research efforts have been paid to exploring the rational modulation mode of cell death induced by chemotherapy. This critical review aims to summarize recent progress in the field, focusing on how to balance cell apoptosis and pyroptosis for better tumor chemotherapy. We first reviewed the mechanisms of chemotherapy-induced cell apoptosis and pyroptosis, in which the activated caspase-3 is the key signaling molecule for regulating both types of cell deaths. Then, we systematically discussed the rationale and methods of switching apoptosis to pyroptosis for enhanced antitumor efficacy, as well as the blockage of pyroptosis to decrease side effects. To balance cell pyroptosis in tumor and normal tissues, the level of GSDME expression and tumor-targeting drug delivery are two important factors. Finally, we proposed potential future research directions, which may provide guidance for researchers in the field.
Collapse
|
56
|
Ding Y, Ye B, Sun Z, Mao Z, Wang W. Reactive Oxygen Species‐Mediated Pyroptosis with the Help of Nanotechnology: Prospects for Cancer Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310009 China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| |
Collapse
|
57
|
Wang H, Jing G, Niu J, Yang L, Li Y, Gao Y, Wang H, Xu X, Qian Y, Wang S. A mitochondria-anchored supramolecular photosensitizer as a pyroptosis inducer for potent photodynamic therapy and enhanced antitumor immunity. J Nanobiotechnology 2022; 20:513. [PMID: 36463229 PMCID: PMC9719646 DOI: 10.1186/s12951-022-01719-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The discovery of a potent photosensitizer with desirable immunogenic cell death (ICD) ability can prominently enhance antitumor immunity in photodynamic therapy (PDT). However, majority of commercially-available photosensitizers suffer from serious aggregation and fail to elicit sufficient ICD. Pyroptosis as a newly identified pattern for potent ICD generation is rarely disclosed in reported photosensitizers. In addition, the photosensitizer with excellent mitochondria-anchored ability evokes prominent mitochondria oxidative stress, and consequently induces ICD. RESULTS Herein, a novel supramolecular photosensitizer LDH@ZnPc is reported, without complicated preparation, but reveals desirable pyroptosis-triggered ability with mitochondria anchoring feature. LDH@ZnPc is obtained through isolation of ZnPc using positive charged layered double hydroxides (LDH), and excellent mitochondria-anchored ability is achieved. More importantly, LDH@ZnPc-mediated PDT can effectively initiate gasdermin D (GSDMD)-dependent pyroptosis of tumor cells. In vitro and in vivo results verify robust ICD ability and potent tumor inhibition efficacy, and antitumor immunity towards distant tumor inhibition. CONCLUSIONS This study reveals that LDH@ZnPc can act as an excellent pyroptosis inducer with simultaneous mitochondria anchoring ability for enhancing photodynamic therapy and boosting antitumor immunity.
Collapse
Affiliation(s)
- Hong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Guoxin Jing
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Jintong Niu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Li Yang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Youyuan Li
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yi Gao
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Huichao Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Xiaorong Xu
- Department of Gastroenterology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, People's Republic of China
| | - Yechang Qian
- Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 201900, People's Republic of China.
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
58
|
Liu Z, Su R, Ahsan A, Liu C, Liao X, Tian D, Su M. Esophageal Squamous Cancer from 4NQO-Induced Mice Model: CNV Alterations. Int J Mol Sci 2022; 23:ijms232214304. [PMID: 36430789 PMCID: PMC9698903 DOI: 10.3390/ijms232214304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Squamous esophageal carcinoma is a common pathological type of esophageal carcinoma around the world. The prognosis of esophageal carcinoma is usually poor and diagnosed at late stages. Recently, research suggested that genomic instability occurred in esophageal cells during the development of esophageal squamous cell carcinoma (ESCC). Identifying prognostic and specific genomic characteristics, especially at the early hyperplasia stage, is critical. Mice were given 4-nitroquinoline 1-oxide (4NQO) with drinking water to induce esophageal cancer. The immortalized human esophageal epithelial cell line (NE2) was also treated with 4NQO. We performed histologic analyses, immunofluorescence, and immunohistochemical staining to detect DNA damage at different time points. Whole-exome sequencing was accomplished on the esophagus tissues at different pathological stages to detect single-nucleotide variants and copy number variation (CNV) in the genome. Our findings indicate that all mice were tumor-forming, and a series of changes from simple hyperplasia (ESSH) to intraepithelial neoplasia (IEN) to esophageal squamous cell carcinoma (ESCC) was seen at different times. The expression of γ-H2AX increased from ESSH to ESCC. In addition, mutations of the Muc4 gene were detected throughout the pathological stages. Furthermore, CNV burden appeared in the esophageal tissues from the beginning of ESSH and accumulated more in cancer with the deepening of the lesions. This study demonstrates that mutations caused by the early appearance of DNA damage may appear in the early stage of malignant tissue before the emergence of atypia. The detection of CNV and mutations of the Muc4 gene may be used as an ultra-early screening indicator for esophageal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Su
- Correspondence: ; Fax: +86-0754-88900429
| |
Collapse
|
59
|
Bilgin S, Erden Tayhan S, Yıldırım A, Koc E. Investigation of the Effects of Isoeugenol-Based Phenolic Compounds on Migration and Proliferation of HT29 Colon Cancer Cells at Cellular and Molecular Level. Bioorg Chem 2022; 130:106230. [DOI: 10.1016/j.bioorg.2022.106230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
|
60
|
Xu X, Zhang T, Xia X, Yin Y, Yang S, Ai D, Qin H, Zhou M, Song J. Pyroptosisin periodontitis: From the intricate interaction with apoptosis, NETosis, and necroptosis to the therapeutic prospects. Front Cell Infect Microbiol 2022; 12:953277. [PMID: 36093182 PMCID: PMC9450806 DOI: 10.3389/fcimb.2022.953277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Periodontitis is highly prevalent worldwide. It is characterized by periodontal attachment and alveolar bone destruction, which not only leads to tooth loss but also results in the exacerbation of systematic diseases. As such, periodontitis has a significant negative impact on the daily lives of patients. Detailed exploration of the molecular mechanisms underlying the physiopathology of periodontitis may contribute to the development of new therapeutic strategies for periodontitis and the associated systematic diseases. Pyroptosis, as one of the inflammatory programmed cell death pathways, is implicated in the pathogenesis of periodontitis. Progress in the field of pyroptosis has greatly enhanced our understanding of its role in inflammatory diseases. This review first summarizes the mechanisms underlying the activation of pyroptosis in periodontitis and the pathological role of pyroptosis in the progression of periodontitis. Then, the crosstalk between pyroptosis with apoptosis, necroptosis, and NETosis in periodontitis is discussed. Moreover, pyroptosis, as a novel link that connects periodontitis with systemic disease, is also reviewed. Finally, the current challenges associated with pyroptosis as a potential therapeutic target for periodontitis are highlighted.
Collapse
Affiliation(s)
- Xiaohui Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xuyun Xia
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuanyuan Yin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sihan Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Dongqing Ai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Han Qin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Mengjiao Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Jinlin Song,
| |
Collapse
|
61
|
Tan JQ, Li Z, Chen G, Wu M, Feng JL, Kong SY, Shi XQ, Zhang HM, Lao YZ, Zhou H, Zhang L, Xu HX. The natural compound from Garcinia bracteata mainly induces GSDME-mediated pyroptosis in esophageal cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154142. [PMID: 35623158 DOI: 10.1016/j.phymed.2022.154142] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/26/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pyroptosis, an inflammatory form of programmed cell death (PCD), is reported to play important roles in the treatment of tumors. In our previous studies, we found that neobractatin (NBT), a caged prenylxanthone isolated from edible fruits of Garcinia bracteata C. Y. Wu ex Y. H. Li, showed anticancer effects against different cancer cells. However, the effect of NBT on pyroptosis is not well understood. PURPOSE This study aims to investigate whether and how GSDME-mediated pyroptosis contributes to NBT-induced antitumor effects in esophageal cancer (EC) cells. METHODS Cell viability assay and colony formation assay were used to determine the anticancer effects of NBT in esophageal cancer cells. Lactate dehydrogenase (LDH) release assay and microscopy imaging were used to detect the main characteristic of pyroptosis. CRISPR-Cas9 knockout and siRNA knockdown were performed to verify the roles of GSDME and caspase-3 in NBT-induced pyroptosis. Flow cytometry was used to measure the reactive oxygen species (ROS) level and cell apoptosis. The changes of related protein level were detected by Western blot. Furthermore, animal experiments were used to verify the in vivo effect of NBT. RESULTS The results showed that NBT reduced the viability of EC cells mainly through GSDME-mediated pyroptosis. Morphologically, NBT induced cell swelling and formed large bubbles emerging from plasma membrane in wild type EC cells. Furthermore, NBT induced the cleavage of GSDME by activating caspase-3 in EC cells. On the other hand, caspase-3 activated by NBT also induced apoptosis especially at high dosage. Knocking down GSDME switched NBT-induced cell death from mainly pyroptosis to apoptosis in vivo and in vitro. Mechanistic studies indicated that NBT led to accumulation of ROS, which then regulated the phosphorylation of both JNK and MEK/ERK. In the absence of ROS or caspase-3, NBT-induced pyroptosis and apoptosis were completely reversed. Moreover, NBT showed a significant antitumor effect in both the KYSE150 and GSDME knockout KYSE150-/- xenograft models by inducing pyroptosis and apoptosis, respectively. CONCLUSION Our results indicated that natural compound NBT could induce GSDME-mediated pyroptosis and apoptosis in esophageal cancer cells, making it a potential therapeutic drug in clinical treatment.
Collapse
Affiliation(s)
- Jia-Qi Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China
| | - Zhuo Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China
| | - Gan Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China
| | - Man Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China
| | - Ji-Ling Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China
| | - Si-Yuan Kong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China
| | - Xiao-Qin Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China
| | - Hong-Mei Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China
| | - Yuan-Zhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China
| | - Hua Zhou
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Li Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China.
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
62
|
The Effect of 5-Aminolevulinic Acid Photodynamic Therapy in Promoting Pyroptosis of HPV-Infected Cells. PHOTONICS 2022. [DOI: 10.3390/photonics9060408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
5-aminolevulinic acid photodynamic therapy (ALA-PDT) is highly effective in the treatment of condyloma acuminata (CA). Previous research has indicated that ALA-PDT could induce cell death by different mechanisms, including apoptosis and autophagy, but the role of pyroptosis in ALA-PDT remains uncertain. Thus, this study aimed to explore whether pyroptosis is a potential mechanism of ALA-PDT killing human papillomavirus (HPV) infected cells. HPV-positive HeLa cells were exposed to ALA-PDT, then cell viability assay, lactate dehydrogenase release (LDH) assay, detection of reactive oxygen species (ROS), quantitative real-time PCR (qPCR), and western blot were used to evaluate pyroptosis induced by ALA-PDT. Results suggested that ALA-PDT enhanced the expression of NLRP3, caspase-1, GSDMD, and the production of inflammatory cytokines such as IL-1β and IL-18. In addition, ALA-PDT induced the production of ROS and led to the destruction of the cell membrane. The inhibition of pyroptosis reduced the killing of HeLa cells by ALA-PDT. This study demonstrates that ALA-PDT induces pyroptosis in HPV-positive cells, which provides some explanation for the mechanism of ALA-PDT to treat CA and HPV infection-related diseases.
Collapse
|
63
|
Mishchenko T, Balalaeva I, Gorokhova A, Vedunova M, Krysko DV. Which cell death modality wins the contest for photodynamic therapy of cancer? Cell Death Dis 2022; 13:455. [PMID: 35562364 PMCID: PMC9106666 DOI: 10.1038/s41419-022-04851-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) was discovered more than 100 years ago. Since then, many protocols and agents for PDT have been proposed for the treatment of several types of cancer. Traditionally, cell death induced by PDT was categorized into three types: apoptosis, cell death associated with autophagy, and necrosis. However, with the discovery of several other regulated cell death modalities in recent years, it has become clear that this is a rather simple understanding of the mechanisms of action of PDT. New observations revealed that cancer cells exposed to PDT can pass through various non-conventional cell death pathways, such as paraptosis, parthanatos, mitotic catastrophe, pyroptosis, necroptosis, and ferroptosis. Nowadays, immunogenic cell death (ICD) has become one of the most promising ways to eradicate tumor cells by activation of the T-cell adaptive immune response and induction of long-term immunological memory. ICD can be triggered by many anti-cancer treatment methods, including PDT. In this review, we critically discuss recent findings on the non-conventional cell death mechanisms triggered by PDT. Next, we emphasize the role and contribution of ICD in these PDT-induced non-conventional cell death modalities. Finally, we discuss the obstacles and propose several areas of research that will help to overcome these challenges and lead to the development of highly effective anti-cancer therapy based on PDT.
Collapse
Affiliation(s)
- Tatiana Mishchenko
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Irina Balalaeva
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Anastasia Gorokhova
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Maria Vedunova
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Dmitri V. Krysko
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation ,grid.5342.00000 0001 2069 7798Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium ,grid.510942.bCancer Research Institute Ghent, Ghent, Belgium ,grid.448878.f0000 0001 2288 8774Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
64
|
Zheng ZY, Xu LY. A response to the commentary by Jianquan Yang, Wen Guo, Rong Huang, Chunyang Zhou, and Man Lu. Cancer Lett 2022; 533:215596. [PMID: 35181479 DOI: 10.1016/j.canlet.2022.215596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023]
Affiliation(s)
- Zhen-Yuan Zheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China; Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| |
Collapse
|
65
|
Xia Y, Jin Y, Cui D, Wu X, Song C, Jin W, Huang H. Antitumor Effect of Simvastatin in Combination With DNA Methyltransferase Inhibitor on Gastric Cancer via GSDME-Mediated Pyroptosis. Front Pharmacol 2022; 13:860546. [PMID: 35517821 PMCID: PMC9065610 DOI: 10.3389/fphar.2022.860546] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Gasdermin E (GSDME) is one of the executors of pyroptosis, a type of programmed lytic cell death, which can be triggered by caspase-3 activation upon stimulation. Silenced GSDME expression due to promoter hypermethylation is associated with gastric cancer (GC), which is confirmed in the present study by bioinformatics analysis and methylation-specific PCR (MSP) test of GC cell lines and clinical samples. GC cell lines and mouse xenograft models were used to investigate the pyroptosis-inducing effect of the common cholesterol-depleting, drug simvastatin (SIM), allied with upregulating GSDME expression by doxycycline (DOX)- inducible Tet-on system or DNA methyltransferase inhibitor 5-Aza-2′-deoxycytidine (5-Aza-CdR). Cell viability assessment and xenograft tumour growth demonstrated that the tumour inhibition effects of SIM can be enhanced by elevated GSDME expression. Morphological examinations and assays measuring lactate dehydrogenase (LDH) release and caspase-3/GSDME protein cleavage underlined the stimulation of pyroptosis as an important mechanism. Using short hairpin RNA (shRNA) knockdown of caspase-3 or GSDME, and caspase-3-specific inhibitors, we provided evidence of the requirement of caspase-3/GSDME in the pyroptosis process triggered by SIM. We conclude that reactivating GSDME expression and thereby inducing cancer cell-specific pyroptosis could be a potential therapeutic strategy against GC.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Pathophysiology, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Yong Jin
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Daxiang Cui
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Wu
- Guizhou Provincial People’s Hospital, Guiyang, China
| | - Cunfeng Song
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Cunfeng Song, ; Weilin Jin, ; Hai Huang,
| | - Weilin Jin
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
- *Correspondence: Cunfeng Song, ; Weilin Jin, ; Hai Huang,
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
- *Correspondence: Cunfeng Song, ; Weilin Jin, ; Hai Huang,
| |
Collapse
|
66
|
Liao XX, Dai YZ, Zhao YZ, Nie K. Gasdermin E: A Prospective Target for Therapy of Diseases. Front Pharmacol 2022; 13:855828. [PMID: 35462927 PMCID: PMC9019550 DOI: 10.3389/fphar.2022.855828] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
Gasdermin E (GSDME) is a member of the gasdermin protein family, which mediates programmed cell death including apoptosis and pyroptosis. Recently, it was suggested that GSDME is activated by chemotherapeutic drugs to stimulate pyroptosis of cancer cells and trigger anti-tumor immunity, which is identified as a tumor suppressor. However, GSDME-mediated pyroptosis contributes to normal tissue damage, leading to pathological inflammations. Inhibiting GSDME-mediated pyroptosis might be a potential target in ameliorating inflammatory diseases. Therefore, targeting GSDME is a promising option for the treatment of diseases in the future. In this review, we introduce the roles of GSDME-driven programmed cell death in different diseases and the potential targeted therapies of GSDME, so as to provide a foundation for future research.
Collapse
|
67
|
Fu J, Li G, Luo R, Lu Z, Wang Y. Classification of pyroptosis patterns and construction of a novel prognostic model for prostate cancer based on bulk and single-cell RNA sequencing. Front Endocrinol (Lausanne) 2022; 13:1003594. [PMID: 36105400 PMCID: PMC9465051 DOI: 10.3389/fendo.2022.1003594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Emerging evidence suggests an important role for pyroptosis in tumorigenesis and recurrence, but it remains to be elucidated in prostate cancer (PCa). Considering the low accuracy of common clinical predictors of PCa recurrence, we aimed to develop a novel pyroptosis-related signature to predict the prognosis of PCa patients based on integrative analyses of bulk and single-cell RNA sequencing (RNA-seq) profiling. METHODS The RNA-seq data of PCa patients was downloaded from several online databases. PCa patients were stratified into two Classes by unsupervised clustering. A novel signature was constructed by Cox and the Least Absolute Shrinkage and Selection Operator (LASSO) regression. The Kaplan-Meier curve was employed to evaluate the prognostic value of this signature and the single sample Gene Set Enrichment Analysis (ssGSEA) algorithm was used to analysis tumor-infiltrating immune cells. At single-cell level, we also classified the malignant cells into two Classes and constructed cell developmental trajectories and cell-cell interaction networks. Furthermore, RT-qPCR and immunofluorescence were used to validate the expression of core pyroptosis-related genes. RESULTS Twelve prognostic pyroptosis-related genes were identified and used to classify PCa patients into two prognostic Classes. We constructed a signature that identified PCa patients with different risks of recurrence and the risk score was proven to be an independent predictor of the recurrence free survival (RFS). Patients in the high-risk group had a significantly lower RFS (P<0.001). The expression of various immune cells differed between the two Classes. At the single-cell level, we classified the malignant cells into two Classes and described the heterogeneity. In addition, we observed that malignant cells may shift from Class1 to Class2 and thus have a worse prognosis. CONCLUSION We have constructed a robust pyroptosis-related signature to predict the RFS of PCa patients and described the heterogeneity of prostate cancer cells in terms of pyroptosis.
Collapse
|
68
|
Zhou C, Zhan G, Jin Y, Chen J, Shen Z, Shen Y, Deng H. A novel pyroptosis-related gene signature to predict outcomes in laryngeal squamous cell carcinoma. Aging (Albany NY) 2021; 13:25960-25979. [PMID: 34910689 PMCID: PMC8751611 DOI: 10.18632/aging.203783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/02/2021] [Indexed: 12/09/2022]
Abstract
Pyroptosis, a pro-inflammatory form of programmed cell death, is associated with carcinogenesis and progression. However, there is little information concerning pyroptosis-related genes (PRGs) in laryngeal squamous cell carcinoma (LSCC). Herein, we aim to explore the prognostic value of PRGs in LSCC. The expression and clinical data of 47 PRGs in LSCC patients were obtained from The Cancer Genome Atlas. A novel prognostic PRG signature was constructed using least absolute shrinkage and selection operator analysis. Receiver operating characteristic (ROC) curves were drawn, and Kaplan-Meier survival Cox proportional hazard regression analyses were performed to measure the predictive capacity of the PRG signature. Furthermore, we constructed a six-PRG signature to divide LSCC patients into high- and low-risk groups. Patients in the high-risk group had worse overall survival than the low-risk group. The area under the time-dependent ROC curve was 0.696 for 1 year, 0.784 for 3 years, and 0.738 for 5 years. We proved that the PRGs signature was an independent predictor for LSCC. Functional enrichment analysis indicated that several immune-related pathways were significantly enriched in the low-risk group. Consistent with this, patients with low-risk scores had higher immune scores and better immunotherapeutic responses than the high-risk group. In conclusion, we established a novel PRGs signature that can predict outcome and response to immunotherapy of LSCC, pyroptosis may be a potential target for LSCC.
Collapse
Affiliation(s)
- Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| | - Guowen Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Yinzhou Second Hospital, Ningbo 315040, Zhejiang, China
| | - Yangli Jin
- Department of Ultrasonography, Ningbo Yinzhou Second Hospital, Ningbo 315040, Zhejiang, China
| | - Jianneng Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo 315200, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| | - Yi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| |
Collapse
|
69
|
Liang R. Letter to the editor regarding "Photodynamic therapy induces human esophageal carcinoma cell pyroptosis by targeting the PKM2/caspase-8/caspase-3/GSDME axis.". Cancer Lett 2021; 527:24-25. [PMID: 34883098 DOI: 10.1016/j.canlet.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Renba Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|