51
|
Wu Y, Li S, Song J, Jiang B, Chen S, Sun H, Li X. Acetylated Distarch Phosphate/Chitosan Films Reinforced with Sodium Laurate-Modified Nano-TiO 2 : Effects of Sodium Laurate Concentration. J Food Sci 2018; 83:2819-2826. [PMID: 30325500 DOI: 10.1111/1750-3841.14354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/04/2018] [Accepted: 08/24/2018] [Indexed: 12/01/2022]
Abstract
Nano-titanium dioxide (TiO2 ) was modified with the surfactant sodium laurate (SL) via ultrasonic microwave-assisted technology to improve the dispersion of TiO2 in polymer matrices. As revealed by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy analyses, SL was well adsorbed onto the TiO2 surface through chemical bonding, resulting in SL-modified TiO2 (TiO2 -SLx). The hydrophobicity and dispersibility of TiO2 -SLx increased significantly compared to unmodified nano-TiO2 . With an increase in the SL concentration from 5% to 15%, the agglomeration of TiO2 -SLx particles decreased considerably, while the particles were more uniform. TiO2 -SLx nanoparticles (3 wt%) were then incorporated into acetylated distarch phosphate/chitosan (ADPS/CS) blended matrices to reinforce the biopolymers. Relative to unmodified TiO2 , TiO2 -SLx exhibited a better dispersion capability. Furthermore, as the SL concentration increased, the tensile strength (TS) of the composite films increased, while the elongation at break (E), water vapor permeability (WVP), and solubility all decreased. The composite film containing TiO2 -SL15 (TiO2 modified with 15% SL; ADPS/CS-TiO2 -SL15 film) displayed the highest TS (31.50 MPa), which was 33.70% higher than that of the pure ADPS/CS film, whereas the ADPS/CS-TiO2 -SL25 film exhibited the lowest E. Further, the ADPS/CS-TiO2 -SL15 film displayed the lowest WVP (0.90 × 10-12 g·cm-1 ·s-1 ·Pa-1 ) and solubility (22.91%), which decreased by 30.23% and 26.03% compared to that of the pure ADPS/CS film, respectively. Therefore, SL modification and the use of ultrasonic microwave-assisted technology are promising for the preparation of nanofillers for biopolymer reinforcement. PRACTICAL APPLICATION: Nano-titanium dioxide (TiO2 ) nanoparticles were modified using the anionic surfactant sodium laurate via ultrasonic-microwave assisted technology, to improve the dispersion of the TiO2 nanoparticles in polymer matrices. Modified TiO2 nanoparticles were incorporated into acetylated di-starch phosphate/Chitosan blend films, causing the tensile strength of the composite film to increase and the water solubility and water vapor permeability of the composite film to decrease, making the films suitable for packaging applications.
Collapse
Affiliation(s)
- Yuanyuan Wu
- College of Food Science and Engineering, Jilin Univ., Changchun, 130022, P. R. China
| | - Shuai Li
- College of Food Science and Engineering, Jilin Univ., Changchun, 130022, P. R. China.,College of Food Quality and Safety, Jilin Agriculture Science and Technology College, Jilin, 132101, P. R. China
| | - Jingxin Song
- College of Food Science and Engineering, Jilin Univ., Changchun, 130022, P. R. China
| | - Bingxue Jiang
- College of Food Science and Engineering, Jilin Univ., Changchun, 130022, P. R. China
| | - ShanShan Chen
- College of Food Science and Engineering, Jilin Univ., Changchun, 130022, P. R. China
| | - Huimin Sun
- College of Food Science and Engineering, Jilin Univ., Changchun, 130022, P. R. China
| | - Xinxin Li
- College of Food Science and Engineering, Jilin Univ., Changchun, 130022, P. R. China
| |
Collapse
|
52
|
Huang Y, Mei L, Chen X, Wang Q. Recent Developments in Food Packaging Based on Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E830. [PMID: 30322162 PMCID: PMC6215134 DOI: 10.3390/nano8100830] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/29/2018] [Accepted: 10/08/2018] [Indexed: 01/27/2023]
Abstract
The increasing demand for high food quality and safety, and concerns of environment sustainable development have been encouraging researchers in the food industry to exploit the robust and green biodegradable nanocomposites, which provide new opportunities and challenges for the development of nanomaterials in the food industry. This review paper aims at summarizing the recent three years of research findings on the new development of nanomaterials for food packaging. Two categories of nanomaterials (i.e., inorganic and organic) are included. The synthetic methods, physical and chemical properties, biological activity, and applications in food systems and safety assessments of each nanomaterial are presented. This review also highlights the possible mechanisms of antimicrobial activity against bacteria of certain active nanomaterials and their health concerns. It concludes with an outlook of the nanomaterials functionalized in food packaging.
Collapse
Affiliation(s)
- Yukun Huang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Lei Mei
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA.
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Qin Wang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA.
| |
Collapse
|
53
|
Composite edible films and coatings from food-grade biopolymers. Journal of Food Science and Technology 2018; 55:4369-4383. [PMID: 30333633 DOI: 10.1007/s13197-018-3402-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/07/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
The development of edible films and coatings from food-grade biopolymers has advanced significantly during the past decade. The current state-of-the-art lies in the formulation of composite edible films and coatings from such biomolecules. Composite films and coatings refer to systems where multiple biopolymers have been combined to achieve beneficial properties. Carbohydrate, protein, and lipids have been preferred for developing such systems. Binary films and coatings have been prepared from multiple combinations including protein-protein, carbohydrate-carbohydrate and protein-carbohydrate. Similarly, ternary films and coatings have been prepared from protein-protein-carbohydrate combinations. In addition, several active ingredients including antimicrobial compounds have been loaded to these systems for the preparation of functional films and coatings. Therefore, the goal of this manuscript is to review the multitude of composite systems that are currently available for food packaging purposes. In addition, we discuss the application of composite coatings to fruits and vegetables, dairy, meat and seafood as model food systems.
Collapse
|
54
|
Dhumal CV, Pal K, Sarkar P. Characterization of Tri-Phasic Edible Films from Chitosan, Guar Gum, and Whey Protein Isolate Loaded with Plant-Based Antimicrobial Compounds. POLYM-PLAST TECH MAT 2018. [DOI: 10.1080/03602559.2018.1466179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chanda Vilas Dhumal
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
55
|
Maryam Adilah Z, Jamilah B, Nur Hanani Z. Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.08.017] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
56
|
Zhang X, Xiao G, Wang Y, Zhao Y, Su H, Tan T. Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr Polym 2017; 169:101-107. [DOI: 10.1016/j.carbpol.2017.03.073] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/02/2017] [Accepted: 03/23/2017] [Indexed: 12/11/2022]
|
57
|
Mujtaba M, Salaberria AM, Andres MA, Kaya M, Gunyakti A, Labidi J. Utilization of flax (Linum usitatissimum) cellulose nanocrystals as reinforcing material for chitosan films. Int J Biol Macromol 2017; 104:944-952. [PMID: 28684354 DOI: 10.1016/j.ijbiomac.2017.06.127] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/30/2017] [Accepted: 06/30/2017] [Indexed: 11/29/2022]
Abstract
Use of plastic based packaging tools is causing both health and economic problems. To overcome this situation, researchers are focusing on the use of different biomaterials such as chitosan and cellulose. The current study was conducted to check the effect of flax (Linum usitatissimum) cellulose nanocrystals (CNC) on mechanical and barrier properties of chitosan-based films. CNC was incorporated in different concentrations (5, 10, 20 and 30%). CNC was isolated from flax fiber using acid hydrolysis method. Tensile strength (TS) and young modulus (YM) values increased with the increase of CNC concentration. Chitosan film with 20% CNC revealed the highest YM value as 52.35MPa. No significant improvement was recorded in water vapor permeability due to overall lower film crystallinity. All the films were observed to be transparent up to an acceptable level. SEM and AFM analysis confirmed the homogeneity of films. A gradual enhancement was recorded in the antimicrobial activity of chitosan/CNC composite films. No significant improvement revealed in the thermal stability of composites.
Collapse
Affiliation(s)
- Muhammad Mujtaba
- Aksaray University, Faculty of Science and Letters, Department of Biotechnology and Molecular Biology, 68100, Aksaray, Turkey; Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza. Europa 1, 20018, Donostia-San Sebastian, Spain
| | - Asier M Salaberria
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza. Europa 1, 20018, Donostia-San Sebastian, Spain
| | - María A Andres
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza. Europa 1, 20018, Donostia-San Sebastian, Spain
| | - Murat Kaya
- Aksaray University, Faculty of Science and Letters, Department of Biotechnology and Molecular Biology, 68100, Aksaray, Turkey
| | - Ayse Gunyakti
- Aksaray University, Faculty of Science and Letters, Department of Biotechnology and Molecular Biology, 68100, Aksaray, Turkey
| | - Jalel Labidi
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza. Europa 1, 20018, Donostia-San Sebastian, Spain.
| |
Collapse
|
58
|
Li K, Jin S, Liu X, Chen H, He J, Li J. Preparation and Characterization of Chitosan/Soy Protein Isolate Nanocomposite Film Reinforced by Cu Nanoclusters. Polymers (Basel) 2017; 9:E247. [PMID: 30970924 PMCID: PMC6432471 DOI: 10.3390/polym9070247] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/17/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022] Open
Abstract
Soy protein isolate (SPI) based films have received considerable attention for use in packaging materials. However, SPI-based films exhibit relatively poor mechanical properties and water resistance ability. To tackle these challenges, chitosan (CS) and endogenous Cu nanoclusters (NCs) capped with protein were proposed and designed to modify SPI-based films. Attenuated total reflectance-Fourier transform infrared spectroscopy and X-ray diffraction patterns of composite films demonstrated that interactions, such as hydrogen bonds in the film forming process, promoted the cross-linking of composite films. The surface microstructure of CS/SPI films modified with Cu NCs was more uniform and transmission electron microscopy (TEM) showed that uniform and discrete clusters were formed. Compared with untreated SPI films, the tensile strength and elongation at break of composite films were simultaneously improved by 118.78% and 74.93%, respectively. Moreover, these composite films also exhibited higher water contact angle and degradation temperature than that of pure SPI film. The water vapor permeation of the modified film also decreased. These improved properties of functional bio-polymers show great potential as food packaging materials.
Collapse
Affiliation(s)
- Kuang Li
- Key Laboratory of Wood Materials Science and Utilization, Beijing Forestry University, Ministry of Education, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shicun Jin
- Key Laboratory of Wood Materials Science and Utilization, Beijing Forestry University, Ministry of Education, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xiaorong Liu
- Key Laboratory of Wood Materials Science and Utilization, Beijing Forestry University, Ministry of Education, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Hui Chen
- Key Laboratory of Wood Materials Science and Utilization, Beijing Forestry University, Ministry of Education, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jing He
- Key Laboratory of Wood Materials Science and Utilization, Beijing Forestry University, Ministry of Education, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jianzhang Li
- Key Laboratory of Wood Materials Science and Utilization, Beijing Forestry University, Ministry of Education, Beijing 100083, China.
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
59
|
Darbasi M, Askari G, Kiani H, Khodaiyan F. Development of chitosan based extended-release antioxidant films by control of fabrication variables. Int J Biol Macromol 2017; 104:303-310. [PMID: 28610925 DOI: 10.1016/j.ijbiomac.2017.06.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 06/01/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
Abstract
In this study, mechanical, optical and permeability to water vapor of chitosan containing α-tocopherol film as the function of preparation conditions including concentration of emulsifier and speed of homogenization have investigated. In addition, the effect of above mentioned variables and presence of ethanol as co-surfactant on the release rate of α-tocopherol from chitosan film to fatty food simulant (ethanol 95%) were investigated. Fourier transform infrared spectroscopy and differential scanning calorimetry were employed to analyze the structural and thermal properties of the films. Results showed that the incorporation of α-tocopherol and preparation conditions affected the physical and mechanical properties of the chitosan films. Obtained results indicated that increasing the concentration of Tween 80 increased the release rate of α-tocopherol in the most studied films. Increasing the stirring speed of homogenization and the presence of ethanol considerably decreased the release rate of α-tocopherol at the most film samples. The lowest amount of released antioxidant was 8.6-10% of total incorporated α-tocopherol at the first stages and is obtained when ethanol used during preparation of film forming solution. Our results indicated that the release rate of α-tocopherol could be controlled by changing the stirring speed of homogenization and especially ethanol presence, considerably.
Collapse
Affiliation(s)
- Masoud Darbasi
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Engineering and Technology, University Campus of Agriculture and Nature Resources, University of Tehran, Karaj, Iran
| | - Gholamreza Askari
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Engineering and Technology, University Campus of Agriculture and Nature Resources, University of Tehran, Karaj, Iran.
| | - Hossein Kiani
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Engineering and Technology, University Campus of Agriculture and Nature Resources, University of Tehran, Karaj, Iran
| | - Faramarz Khodaiyan
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Engineering and Technology, University Campus of Agriculture and Nature Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
60
|
Kobylinskyy S, Shtompel’ V, Riabov S. Polymer blends based on polyurethane ionomer and chitosan. Polym J 2017. [DOI: 10.15407/polymerj.39.02.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
61
|
Li K, Jin S, Chen H, He J, Li J. A High-Performance Soy Protein Isolate-Based Nanocomposite Film Modified with Microcrystalline Cellulose and Cu and Zn Nanoclusters. Polymers (Basel) 2017; 9:E167. [PMID: 30970846 PMCID: PMC6432157 DOI: 10.3390/polym9050167] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/05/2022] Open
Abstract
Soy protein isolate (SPI)-based materials are abundant, biocompatible, renewable, and biodegradable. In order to improve the tensile strength (TS) of SPI films, we prepared a novel composite film modified with microcrystalline cellulose (MCC) and metal nanoclusters (NCs) in this study. The effects of the modification of MCC on the properties of SPI-Cu NCs and SPI-Zn NCs films were investigated. Attenuated total reflectance-Fourier transformed infrared spectroscopy analyses and X-ray diffraction patterns characterized the strong interactions and reduction of the crystalline structure of the composite films. Scanning electron microscopy (SEM) showed the enhanced cross-linked and entangled structure of modified films. Compared with an untreated SPI film, the tensile strength of the SPI-MCC-Cu and SPI-MCC-Zn films increased from 2.91 to 13.95 and 6.52 MPa, respectively. Moreover, the results also indicated their favorable water resistance with a higher water contact angle. Meanwhile, the composite films exhibited increased initial degradation temperatures, demonstrating their higher thermostability. The results suggested that MCC could effectively improve the performance of SPI-NCs films, which would provide a novel preparation method for environmentally friendly SPI-based films in the applications of packaging materials.
Collapse
Affiliation(s)
- Kuang Li
- Key Laboratory of Wood Material Science and Utilization, Beijing Forestry University, Beijing 100083, China.
- Ministry of Education, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shicun Jin
- Key Laboratory of Wood Material Science and Utilization, Beijing Forestry University, Beijing 100083, China.
- Ministry of Education, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Hui Chen
- Key Laboratory of Wood Material Science and Utilization, Beijing Forestry University, Beijing 100083, China.
- Ministry of Education, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jing He
- Key Laboratory of Wood Material Science and Utilization, Beijing Forestry University, Beijing 100083, China.
- Ministry of Education, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jianzhang Li
- Key Laboratory of Wood Material Science and Utilization, Beijing Forestry University, Beijing 100083, China.
- Ministry of Education, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
62
|
Jin B, Li X, Zhou X, Xu X, Jian H, Li M, Guo K, Guan J, Yan S. Fabrication and characterization of nanocomposite film made from a jackfruit filum polysaccharide incorporating TiO2nanoparticles by photocatalysis. RSC Adv 2017. [DOI: 10.1039/c6ra28648h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Jackfruit filum polysaccharide (JFPS) was extracted and confirmed to contain neutral and acidic polysaccharides, largely composed of acidic polysaccharides.
Collapse
Affiliation(s)
- Bei Jin
- School of Chemistry and Chemical Engineering
- Institute of Physical Chemistry
- Development Center for New Materials Engineering & Technology in Universities of Guangdong
- Lingnan Normal University
- Zhanjiang 524048
| | - Xiangzhong Li
- School of Chemistry and Chemical Engineering
- Institute of Physical Chemistry
- Development Center for New Materials Engineering & Technology in Universities of Guangdong
- Lingnan Normal University
- Zhanjiang 524048
| | - Xiaosong Zhou
- School of Chemistry and Chemical Engineering
- Institute of Physical Chemistry
- Development Center for New Materials Engineering & Technology in Universities of Guangdong
- Lingnan Normal University
- Zhanjiang 524048
| | - Xuan Xu
- School of Chemistry and Chemical Engineering
- Institute of Physical Chemistry
- Development Center for New Materials Engineering & Technology in Universities of Guangdong
- Lingnan Normal University
- Zhanjiang 524048
| | - Hailin Jian
- School of Chemistry and Chemical Engineering
- Institute of Physical Chemistry
- Development Center for New Materials Engineering & Technology in Universities of Guangdong
- Lingnan Normal University
- Zhanjiang 524048
| | - Mulan Li
- School of Chemistry and Chemical Engineering
- Institute of Physical Chemistry
- Development Center for New Materials Engineering & Technology in Universities of Guangdong
- Lingnan Normal University
- Zhanjiang 524048
| | - Keqi Guo
- School of Chemistry and Chemical Engineering
- Institute of Physical Chemistry
- Development Center for New Materials Engineering & Technology in Universities of Guangdong
- Lingnan Normal University
- Zhanjiang 524048
| | - Jinmin Guan
- School of Chemistry and Chemical Engineering
- Institute of Physical Chemistry
- Development Center for New Materials Engineering & Technology in Universities of Guangdong
- Lingnan Normal University
- Zhanjiang 524048
| | - Shanglong Yan
- School of Chemistry and Chemical Engineering
- Institute of Physical Chemistry
- Development Center for New Materials Engineering & Technology in Universities of Guangdong
- Lingnan Normal University
- Zhanjiang 524048
| |
Collapse
|