51
|
Rheological Characterization of the Influence of Pomegranate Peel Extract Addition and Concentration in Chitosan and Gelatin Coatings. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2030039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, the effects of an agro-industrial residue with active properties, pomegranate peel extract (PPE), were evaluated on the rheological properties of potential coatings based on chitosan (C) and gelatin (G). For this, rheological properties of the polymeric solutions were investigated in relation to PPE concentration (2 or 4 mg PPE g−1 solution), and to its incorporation order into the system (in C or in CG mixture). All solutions were more viscous than elastic (G″ > G′), and the change in PPE concentration had a greater influence accentuating the viscous character of the samples in which PPE was added to the CG mixture (CGPPE2 and CGPPE4). PPE addition to the CG mixture increased the angular frequency at the moduli crossover, indicating the formation of a more resistant polymeric network. This tendency was also observed in flow results, in which PPE addition decreased the pseudoplastic behavior of the solutions, due to a greater cross-linking between the polymers and the phenolic compounds. In general, all the studied solutions showed viscosities suitable for the proposed application, and it was possible to state the importance of standardizing the addition order of the components during the preparation of a coating.
Collapse
|
52
|
Maroufi LY, Tabibiazar M, Ghorbani M, Jahanban-Esfahlan A. Fabrication and characterization of novel antibacterial chitosan/dialdehyde guar gum hydrogels containing pomegranate peel extract for active food packaging application. Int J Biol Macromol 2021; 187:179-188. [PMID: 34310989 DOI: 10.1016/j.ijbiomac.2021.07.126] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 01/09/2023]
Abstract
This study aimed to investigate synthesis and structural characteristics of the chitosan (CS) - modified dialdehyde guar gum (DAGG) hydrogel through the Schiff base reaction. The highest swelling capacity was achieved as about 12,000% of dry weight of the freeze-dried powder at CS: DAGG hydrogel with the mixing ratio of 30:70. The swelling ratio was not affected by changes in pH, which could be considered as an important property in the control of moisture in absorbent pad. The FTIR results indicated that the new amide groups have been formed at 1680 cm-1, which can be attributed to the covalent bond between the amide groups of CS and the aldehyde groups of GG. Based on a SEM image, the prepared hydrogel showed the porous structure so it verified the crosslinking formation between the two polymers. Rheological analyses confirmed that formation compact and porous structure led to some noteworthy improvements in the strength of hydrogel prepared with a high ratio of DAGG. The hydrogel loaded with 5% pomegranate peel extract (PPE) showed both good antioxidant (81.13%) and antimicrobial activities. The hydrogel was observed to have a good potential to be used as an antibacterial pad.
Collapse
Affiliation(s)
- Leila Yavari Maroufi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Mahnaz Tabibiazar
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
53
|
Lastra Ripoll S, Quintana Martínez SE, García
Zapateiro LA. Rheological and Microstructural Properties of Xanthan Gum-Based Coating Solutions Enriched with Phenolic Mango ( Mangifera indica) Peel Extracts. ACS OMEGA 2021; 6:16119-16128. [PMID: 34179657 PMCID: PMC8223432 DOI: 10.1021/acsomega.1c02011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Mango (Mangifera indica) is a tropical fruit highly desired for its vitamin content and flavor, but its peel is considered a byproduct or waste. However, mango peel contains some bioactive compounds that improve food quality matrix for the development of edible coatings or films. The effect of phenolic mango (Mangifera indica) peel extracts on the physicochemical, rheological, and microstructural properties of xanthan gum-based coating solutions was evaluated. The obtained solutions were stable during the study period and presented a non-Newtonian fluid type shear-thinning behavior described by Ostwald-de Waele. Moreover, viscoelastic properties revealed that the elastic modulus was higher than the viscous modulus, showing a characteristic of weak gels. The addition of extracts did not alter the shear rate and viscoelastic character of the solutions, preserving the pseudoplasticity and weak gel behavior of xanthan gum associated with spreadability and adherence of coatings; it modified the gel structure as a function of temperature. Furthermore, the coating solutions of xanthan gum and phenolic mango peel extracts are an alternative to develop complex food systems such as edible coatings, edible films, or delivery systems.
Collapse
|
54
|
Physicochemical properties of chitosan/zein/essential oil emulsion-based active films functionalized by polyphenols. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
55
|
Safdar M, Naqvi SA, Anjum F, Pasha I, Shahid M, Waliullah, Jaskani MJ, Khan IA, Aadil RM. Microbial biofilm inhibition, antioxidants, and chemical fingerprints of Afghani pomegranate peel extract documented by gas chromatography–mass spectrometry and Fourier transformation infrared. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mahwish Safdar
- Pomology Lab Institute of Horticultural Sciences University of Agriculture Faisalabad Pakistan
| | - Summar A. Naqvi
- Pomology Lab Institute of Horticultural Sciences University of Agriculture Faisalabad Pakistan
| | - Fozia Anjum
- Department of Chemistry Government College University Faisalabad Pakistan
| | - Imran Pasha
- National Institute of Food Science and TechnologyUniversity of Agriculture Faisalabad Pakistan
| | - Muhammad Shahid
- Department of Biochemistry University of Agriculture Faisalabad Pakistan
| | - Waliullah
- Pomology Lab Institute of Horticultural Sciences University of Agriculture Faisalabad Pakistan
| | - Muhammad J. Jaskani
- Pomology Lab Institute of Horticultural Sciences University of Agriculture Faisalabad Pakistan
| | - Iqrar A. Khan
- Pomology Lab Institute of Horticultural Sciences University of Agriculture Faisalabad Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and TechnologyUniversity of Agriculture Faisalabad Pakistan
| |
Collapse
|
56
|
Rodrigues MÁV, Marangon CA, Martins VDCA, Plepis AMDG. Chitosan/gelatin films with jatobá resin: Control of properties by vegetal resin inclusion and degree of acetylation modification. Int J Biol Macromol 2021; 182:1737-1745. [PMID: 34051262 DOI: 10.1016/j.ijbiomac.2021.05.160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/19/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Blending chitosan and gelatin, two biodegradable and non-toxic polymers, is a recurrent choice in food coating or biomaterials development. The incorporation of vegetal extracts into chitosan/gelatin films can improve or introduce some properties to these materials. Jatobá resin is a product of Hymenaea genus trees with antimicrobial and anti-inflammatory activities, interesting properties for films applied in several areas. The chitosan degree of acetylation (DA) influences the inter and intramolecular interactions of this polymer and, therefore, also implicates in changes of its properties. This research aims to study the influence of jatobá resin inclusion and chitosan DA modification on chitosan/gelatin films properties. Both jatobá resin and chitosan DA affected physicochemical, antimicrobial and barrier properties of the films, allowing the control of these properties by changes in these parameters. Jatobá resin incorporation and the decrease in chitosan DA significantly improved antimicrobial activity and water vapor permeability of films with the reduction of water solubility and swelling.
Collapse
Affiliation(s)
- Murilo Á Vigilato Rodrigues
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São-carlense, 400, 13560-970 São Carlos, SP, Brazil.
| | - Crisiane A Marangon
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo, Av. Trabalhador São-carlense, 400, 13566-950 São Carlos, SP, Brazil
| | - Virginia da C Amaro Martins
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São-carlense, 400, 13560-970 São Carlos, SP, Brazil
| | - Ana Maria de Guzzi Plepis
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São-carlense, 400, 13560-970 São Carlos, SP, Brazil; Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo, Av. Trabalhador São-carlense, 400, 13566-950 São Carlos, SP, Brazil
| |
Collapse
|
57
|
Wang H, Ding F, Ma L, Zhang Y. Edible films from chitosan-gelatin: Physical properties and food packaging application. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100871] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
58
|
Ko K, Dadmohammadi Y, Abbaspourrad A. Nutritional and Bioactive Components of Pomegranate Waste Used in Food and Cosmetic Applications: A Review. Foods 2021; 10:657. [PMID: 33808709 PMCID: PMC8003411 DOI: 10.3390/foods10030657] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
Pomegranate (Punica granatum L.) is a fruit that is rich in bioactive compounds that has a biowaste (rind and seed) with the potential to be converted into value-added products in a wide variety of applications. Recent studies have demonstrated the potent antioxidant and antimicrobial effects of using pomegranate rind and seed as natural food additives, thus making researchers incorporate them into bioplastics and edible coatings for food packaging. Additionally, these components have shown great plasticizing effects on packaging materials while extending the shelf life of food through active packaging. Even within skin health applications, pomegranate seed oil and its bioactive compounds have been particularly effective in combating UV-induced stresses on animal skin and in-vitro models, where cells and microorganisms are separated from the whole organism. They have also aided in healing wounds and have shown major anti-inflammatory, analgesic, and anti-bacterial properties. This review highlights all of the relevant and recent food and skin health applications found in the value-added conversion of pomegranate biowaste. The lack of research in particular areas and future outlook are also discussed.
Collapse
Affiliation(s)
| | | | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA; (K.K.); (Y.D.)
| |
Collapse
|
59
|
Adamiak K, Lewandowska K, Sionkowska A. The Infuence of Salicin on Rheological and Film-Forming Properties of Collagen. Molecules 2021; 26:molecules26061661. [PMID: 33809811 PMCID: PMC8002410 DOI: 10.3390/molecules26061661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/04/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
Collagen films are widely used as adhesives in medicine and cosmetology. However, its properties require modification. In this work, the influence of salicin on the properties of collagen solution and films was studied. Collagen was extracted from silver carp skin. The rheological properties of collagen solutions with and without salicin were characterized by steady shear tests. Thin collagen films were prepared by solvent evaporation. The structure of films was researched using infrared spectroscopy. The surface properties of films were investigated using Atomic Force Microscopy (AFM). Mechanical properties were measured as well. It was found that the addition of salicin modified the roughness of collagen films and their mechanical and rheological properties. The above-mentioned parameters are very important in potential applications of collagen films containing salicin.
Collapse
Affiliation(s)
- Katarzyna Adamiak
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland; (K.A.); (K.L.)
- WellU sp.z.o.o, Wielkopolska 280, 81-531 Gdynia, Poland
| | - Katarzyna Lewandowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland; (K.A.); (K.L.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland; (K.A.); (K.L.)
- Correspondence: ; Tel.: +48-56-6114547
| |
Collapse
|
60
|
Antibacterial and Antioxidant Gelatin Nanofiber Scaffold Containing Ethanol Extract of Pomegranate Peel: Design, Characterization and In Vitro Assay. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02616-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
61
|
Hosseini SF, Ghaderi J, Gómez-Guillén MC. trans-Cinnamaldehyde-doped quadripartite biopolymeric films: Rheological behavior of film-forming solutions and biofunctional performance of films. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106339] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
62
|
Effects of cryoconcentrate blueberry juice incorporation on gelatin gel: A rheological, textural and bioactive properties study. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110674] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
63
|
Chen M, Yan T, Huang J, Zhou Y, Hu Y. Fabrication of halochromic smart films by immobilizing red cabbage anthocyanins into chitosan/oxidized-chitin nanocrystals composites for real-time hairtail and shrimp freshness monitoring. Int J Biol Macromol 2021; 179:90-100. [PMID: 33636274 DOI: 10.1016/j.ijbiomac.2021.02.170] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
In this study, halochromic smart films were produced, characterized, and applied to monitor the freshness of hairtail and shrimp in real-time. Red cabbage anthocyanins (RCAs) solution illustrated significant color variations (red-pink-blue-green) in different pH environments. RCAs were successfully immobilized into chitosan (CS)/oxidized-chitin nanocrystals (OCN) composites through hydrogen bonding, and cohesive film structures were formed. When the proper concentration of RCAs was incorporated into the composites, improved water vapor permeability (WVP), oxygen permeability (OP), mechanical, UV-blocking, and antioxidant properties were observed. Moreover, the smart films exhibited distinguishable changes of color to ammonia vapor and acidic/alkaline environment within short time intervals, which were easy to discern by naked eyes. Finally, the smart films were applied to monitor the freshness of hairtail (Trichiurus lepturus) and shrimp (Penaeus vannamei). The film color changed significantly during storage time, and three stages of product freshness (fresh, medium fresh, and spoiled) were successfully differentiated. Strong correlations among three freshness indicators and two colorimetric parameters were also identified and analyzed. Overall, the smart system assembled from non-toxic and biodegradable components could contribute to monitoring the freshness of seafood, like hairtail and shrimp, in real-time.
Collapse
Affiliation(s)
- Meiyu Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Tianyi Yan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Jiayin Huang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Yaqi Zhou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Yaqin Hu
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
64
|
Jin K, Tang Y, Liu J, Wang J, Ye C. Nanofibrillated cellulose as coating agent for food packaging paper. Int J Biol Macromol 2020; 168:331-338. [PMID: 33310098 DOI: 10.1016/j.ijbiomac.2020.12.066] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
Nanofibrillated cellulose (NFC), a promising bio-based nanomaterial, has received much attention in the field of coating preparation due to its unique properties. Herein, NFC was prepared from microcrystalline cellulose (MCC) via high-pressure homogenization process and deliberately employed as coating agent to enhance the properties of paper coatings and coated paper. The results demonstrated that the obtained paper coatings exhibited strong NFC concentration dependence on rheological behavior and displayed decreased water retention value with the increased NFC addition. Meanwhile, NFC addition was found to lead to the reduced Cobb value, improved air resistance, and enhanced tensile strength of coated paper. Under an optimized NFC addition of 0.30-0.40%, the properties of coated paper generally reached the optimum state. Moreover, SEM observation further confirmed that NFC addition imparted a relatively uniform surface structure to coated paper. Hence, NFC could be defined as an effective coating agent for developing high-performance coated paper for food packaging applications.
Collapse
Affiliation(s)
- Kaiyan Jin
- Pulp and Paper Center, Zhejiang Sci-Tech University, Hangzhou 310023, China
| | - Yanjun Tang
- Pulp and Paper Center, Zhejiang Sci-Tech University, Hangzhou 310023, China.
| | - Jichun Liu
- Ningbo Asia Pulp and Paper Company, Ltd., Ningbo 315803, China
| | - Junming Wang
- Ningbo Asia Pulp and Paper Company, Ltd., Ningbo 315803, China
| | - Chunjie Ye
- Ningbo Asia Pulp and Paper Company, Ltd., Ningbo 315803, China
| |
Collapse
|
65
|
Romanelli Vicente Bertolo M, Conceição Amaro Martins V, Guzzi Plepis AM, Bogusz Junior S. Rheological study of the incorporation of grape seed extract in chitosan and gelatin coatings. J Appl Polym Sci 2020. [DOI: 10.1002/app.50052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mirella Romanelli Vicente Bertolo
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Avenida do Trabalhador São Carlense São Carlos São Paulo Brazil
| | - Virginia Conceição Amaro Martins
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Avenida do Trabalhador São Carlense São Carlos São Paulo Brazil
| | - Ana Maria Guzzi Plepis
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Avenida do Trabalhador São Carlense São Carlos São Paulo Brazil
| | - Stanislau Bogusz Junior
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Avenida do Trabalhador São Carlense São Carlos São Paulo Brazil
| |
Collapse
|
66
|
The Influence of UV Light on Rheological Properties of Collagen Extracted from Silver Carp Skin. MATERIALS 2020; 13:ma13194453. [PMID: 33049939 PMCID: PMC7579024 DOI: 10.3390/ma13194453] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022]
Abstract
Acid soluble collagen (ASC) was extracted from Silver Carp fish skin. Collagen was dissolved in acetic acid at varying concentrations and its rheological properties were studied. Steady shear flow properties of collagen solutions at concentrations of 5 and 10 mg/mL were characterized using rheometry at 20 °C. Collagen solutions were irradiated with UV light (wavelength 254 nm) for up to 2 h and rheological properties were measured. All the collagen solutions showed a shear-thinning flow behavior. A constant viscosity region was observed after 1 h of UV irradiation, which showed that collagen molecules were fully denatured. A short treatment with collagen solution by UV (ultraviolet) light led to an increase in viscosity; however, the denaturation temperature of UV-irradiated collagen decreased. Depending on the time of UV treatment, collagen extracted from Silver Carp fish skin may undergo physical crosslinking or photodegradation. Physically crosslinked collagen may find applications in functional food, cosmetic, biomedical, and pharmaceutical industries.
Collapse
|
67
|
Pomegranate: Nutraceutical with Promising Benefits on Human Health. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196915] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pomegranate is an old plant made up by flowers, roots, fruits and leaves, native to Central Asia and principally cultivated in the Mediterranean and California (although now widespread almost all over the globe). The current use of this precious plant regards not only the exteriority of the fruit (employed also for ornamental purpose) but especially the nutritional and, still potential, health benefits that come out from the various parts composing this one (carpellary membranes, arils, seeds and bark). Indeed, the phytochemical composition of the fruit abounds in compounds (flavonoids, ellagitannins, proanthocyanidins, mineral salts, vitamins, lipids, organic acids) presenting a significant biological and nutraceutical value. For these reasons, pomegranate interest is increased over the years as the object of study for many research groups, particularly in the pharmaceutical sector. Specifically, in-depth studies of its biological and functional properties and the research of new formulations could be applied to a wide spectrum of diseases including neoplastic, cardiovascular, viral, inflammatory, metabolic, microbial, intestinal, reproductive and skin diseases. In this review, considering the increasing scientific and commercial interest of nutraceuticals, we reported an update of the investigations concerning the health-promoting properties of pomegranate and its bioactive compounds against principal human pathologies.
Collapse
|
68
|
Rodrigues MÁV, Bertolo MRV, Marangon CA, Martins VDCA, Plepis AMDG. Chitosan and gelatin materials incorporated with phenolic extracts of grape seed and jabuticaba peel: Rheological, physicochemical, antioxidant, antimicrobial and barrier properties. Int J Biol Macromol 2020; 160:769-779. [DOI: 10.1016/j.ijbiomac.2020.05.240] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 01/12/2023]
|
69
|
Kandylis P, Kokkinomagoulos E. Food Applications and Potential Health Benefits of Pomegranate and its Derivatives. Foods 2020; 9:E122. [PMID: 31979390 PMCID: PMC7074153 DOI: 10.3390/foods9020122] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
Pomegranate (Punica granatum L.) is an ancient fruit that is particularly cultivated in west Asia, though it is also cultivated in the Mediterranean region and other parts of the world. Since ancient years, its consumption has been associated with numerous health benefits. In recent years, several in vitro and in vivo studies have revealed its beneficial physiological activities, especially its antioxidative, antimicrobial and anti-inflammatory properties. Furthermore, human-based studies have shown promising results and have indicated pomegranate potential as a protective agent of several diseases. Following that trend and the food industry's demand for antioxidants and antimicrobials from natural sources, the application of pomegranate and its extracts (mainly as antioxidants and antimicrobials), has been studied extensively in different types of food products with satisfactory results. This review aims to present all the recent studies and trends in the applications of pomegranate in the food industry and how these trends have affected product's physicochemical characteristics and shelf-life. In addition, recent in vitro and in vivo studies are presented in order to reveal pomegranate's potential in the treatment of several diseases.
Collapse
Affiliation(s)
- Panagiotis Kandylis
- Laboratory of Oenology and Alcoholic Beverages, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece;
| | | |
Collapse
|