51
|
Hosseinalizadeh H, Mohamadzadeh O, Kahrizi MS, Razaghi Bahabadi Z, Klionsky DJ, Mirzei H. TRIM8: a double-edged sword in glioblastoma with the power to heal or hurt. Cell Mol Biol Lett 2023; 28:6. [PMID: 36690946 PMCID: PMC9869596 DOI: 10.1186/s11658-023-00418-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive primary brain tumor and one of the most lethal central nervous system tumors in adults. Despite significant breakthroughs in standard treatment, only about 5% of patients survive 5 years or longer. Therefore, much effort has been put into the search for identifying new glioma-associated genes. Tripartite motif-containing (TRIM) family proteins are essential regulators of carcinogenesis. TRIM8, a member of the TRIM superfamily, is abnormally expressed in high-grade gliomas and is associated with poor clinical prognosis in patients with glioma. Recent research has shown that TRIM8 is a molecule of duality (MoD) that can function as both an oncogene and a tumor suppressor gene, making it a "double-edged sword" in glioblastoma development. This characteristic is due to its role in selectively regulating three major cellular signaling pathways: the TP53/p53-mediated tumor suppression pathway, NFKB/NF-κB, and the JAK-STAT pathway essential for stem cell property support in glioma stem cells. In this review, TRIM8 is analyzed in detail in the context of GBM and its involvement in essential signaling and stem cell-related pathways. We also discuss the basic biological activities of TRIM8 in macroautophagy/autophagy, regulation of bipolar spindle formation and chromosomal stability, and regulation of chemoresistance, and as a trigger of inflammation.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Omid Mohamadzadeh
- Department of Neurosurgery, Tehran University of Medical Science, Tehran, Iran
| | | | - Zahra Razaghi Bahabadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Hamed Mirzei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
52
|
Yu L, Davis IJ, Liu P. Regulation of EWSR1-FLI1 Function by Post-Transcriptional and Post-Translational Modifications. Cancers (Basel) 2023; 15:382. [PMID: 36672331 PMCID: PMC9857208 DOI: 10.3390/cancers15020382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Ewing sarcoma is the second most common bone tumor in childhood and adolescence. Currently, first-line therapy includes multidrug chemotherapy with surgery and/or radiation. Although most patients initially respond to chemotherapy, recurrent tumors become treatment refractory. Pathologically, Ewing sarcoma consists of small round basophilic cells with prominent nuclei marked by expression of surface protein CD99. Genetically, Ewing sarcoma is driven by a fusion oncoprotein that results from one of a small number of chromosomal translocations composed of a FET gene and a gene encoding an ETS family transcription factor, with ~85% of tumors expressing the EWSR1::FLI1 fusion. EWSR1::FLI1 regulates transcription, splicing, genome instability and other cellular functions. Although a tumor-specific target, EWSR1::FLI1-targeted therapy has yet to be developed, largely due to insufficient understanding of EWSR1::FLI1 upstream and downstream signaling, and the challenges in targeting transcription factors with small molecules. In this review, we summarize the contemporary molecular understanding of Ewing sarcoma, and the post-transcriptional and post-translational regulatory mechanisms that control EWSR1::FLI1 function.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian J. Davis
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
53
|
Mo J, Tan K, Dong Y, Lu W, Liu F, Mei Y, Huang H, Zhao K, Lv Z, Ye Y, Tang Y. Therapeutic targeting the oncogenic driver EWSR1::FLI1 in Ewing sarcoma through inhibition of the FACT complex. Oncogene 2023; 42:11-25. [PMID: 36357572 DOI: 10.1038/s41388-022-02533-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022]
Abstract
EWS/ETS fusion transcription factors, most commonly EWSR1::FLI1, drives initiation and progression of Ewing sarcoma (EwS). Even though direct targeting EWSR1::FLI1 is a formidable challenge, epigenetic/transcriptional modulators have been proved to be promising therapeutic targets for indirectly disrupting its expression and/or function. Here, we identified structure-specific recognition protein 1 (SSRP1), a subunit of the Facilitates Chromatin Transcription (FACT) complex, to be an essential tumor-dependent gene directly induced by EWSR1::FLI1 in EwS. The FACT-targeted drug CBL0137 exhibits potent therapeutic efficacy against multiple EwS preclinical models both in vitro and in vivo. Mechanistically, SSRP1 and EWSR1::FLI1 form oncogenic positive feedback loop via mutual transcriptional regulation and activation, and cooperatively promote cell cycle/DNA replication process and IGF1R-PI3K-AKT-mTOR pathway to drive EwS oncogenesis. The FACT inhibitor drug CBL0137 effectively targets the EWSR1::FLI1-FACT circuit, resulting in transcriptional disruption of EWSR1::FLI1, SSRP1 and their downstream effector oncogenic signatures. Our study illustrates a crucial role of the FACT complex in facilitating the expression and function of EWSR1::FLI1 and demonstrates FACT inhibition as a novel and effective epigenetic/transcriptional-targeted therapeutic strategy against EwS, providing preclinical support for adding EwS to CBL0137's future clinical trials.
Collapse
Affiliation(s)
- Jialin Mo
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Kezhe Tan
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062, Shanghai, China
| | - Yu Dong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenjie Lu
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Fang Liu
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yanqing Mei
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Hongting Huang
- Department of Hepatic Surgery and Liver Transplantation Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Kewen Zhao
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062, Shanghai, China.
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yujie Tang
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
54
|
Proietti L, Manhart G, Heyes E, Troester S, Grebien F. Arrayed CRISPR/Cas9 Screening for the Functional Validation of Cancer Genetic Dependencies. Bio Protoc 2022; 12:e4577. [PMID: 36618092 PMCID: PMC9797365 DOI: 10.21769/bioprotoc.4577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/05/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
CRISPR/Cas9 screening has revolutionized functional genomics in biomedical research and is a widely used approach for the identification of genetic dependencies in cancer cells. Here, we present an efficient and versatile protocol for the cloning of guide RNAs (gRNA) into lentiviral vectors, the production of lentiviral supernatants, and the transduction of target cells in a 96-well format. To assess the effect of gene knockouts on cellular fitness, we describe a competition-based cell proliferation assay using flow cytometry, enabling the screening of many genes at the same time in a fast and reproducible manner. This readout can be extended to any parameter that is accessible to flow-based measurements, such as protein expression and stability, differentiation, cell death, and others. In summary, this protocol allows to functionally assess the effect of a set of 50-300 gene knockouts on various cellular parameters within eight weeks. This protocol was validated in: Leukemia (2021), DOI: 10.1038/s41375-021-01169-6 Graphical abstract.
Collapse
Affiliation(s)
- Ludovica Proietti
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Gabriele Manhart
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Elizabeth Heyes
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Selina Troester
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
,
*For correspondence:
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
,
*For correspondence:
| |
Collapse
|
55
|
Apfelbaum AA, Wrenn ED, Lawlor ER. The importance of fusion protein activity in Ewing sarcoma and the cell intrinsic and extrinsic factors that regulate it: A review. Front Oncol 2022; 12:1044707. [PMID: 36505823 PMCID: PMC9727305 DOI: 10.3389/fonc.2022.1044707] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence shows that despite clonal origins tumors eventually become complex communities comprised of phenotypically distinct cell subpopulations. This heterogeneity arises from both tumor cell intrinsic programs and signals from spatially and temporally dynamic microenvironments. While pediatric cancers usually lack the mutational burden of adult cancers, they still exhibit high levels of cellular heterogeneity that are largely mediated by epigenetic mechanisms. Ewing sarcomas are aggressive bone and soft tissue malignancies with peak incidence in adolescence and the prognosis for patients with relapsed and metastatic disease is dismal. Ewing sarcomas are driven by a single pathognomonic fusion between a FET protein and an ETS family transcription factor, the most common of which is EWS::FLI1. Despite sharing a single driver mutation, Ewing sarcoma cells demonstrate a high degree of transcriptional heterogeneity both between and within tumors. Recent studies have identified differential fusion protein activity as a key source of this heterogeneity which leads to profoundly different cellular phenotypes. Paradoxically, increased invasive and metastatic potential is associated with lower EWS::FLI1 activity. Here, we review what is currently understood about EWS::FLI1 activity, the cell autonomous and tumor microenvironmental factors that regulate it, and the downstream consequences of these activity states on tumor progression. We specifically highlight how transcription factor regulation, signaling pathway modulation, and the extracellular matrix intersect to create a complex network of tumor cell phenotypes. We propose that elucidation of the mechanisms by which these essential elements interact will enable the development of novel therapeutic approaches that are designed to target this complexity and ultimately improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Elizabeth R. Lawlor
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
56
|
Liu B, Dong C, Chen Q, Fan Z, Zhang Y, Wu Y, Cui T, Liu F. Circ_0007534 as new emerging target in cancer: Biological functions and molecular interactions. Front Oncol 2022; 12:1031802. [PMID: 36505874 PMCID: PMC9730518 DOI: 10.3389/fonc.2022.1031802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Circular RNA (circRNAs), an important member of the non-coding RNA (ncRNA) family, are widely expressed in a variety of biological cells. Owing to their stable structures, sequence conservations, and cell- or tissue-specific expressions, these RNA have become a popular subject of scientific research. With the development of sequencing methods, it has been revealed that circRNAs exert their biological function by sponging microRNAs (miRNAs), regulating transcription, or binding to proteins. Humans have historically been significantly impacted by various types of cancer. Studies have shown that circRNAs are abnormally expressed in various cancers and are involved in the occurrence and development of malignant tumors, such as tumor cell proliferation, migration, and invasion. As one of its star molecules, circ_0007534 is upregulated in colorectal, cervical, and pancreatic cancers; is closely related to the occurrence, development, and prognosis of tumors; and is expected to become a novel tumor marker and therapeutic target. This article briefly reviews the expression and mechanism of circ_0007534 in malignant tumors based on the domestic and foreign literature.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fuquan Liu
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
57
|
Daley JD, Olson AC, Bailey KM. Harnessing immunomodulation during DNA damage in Ewing sarcoma. Front Oncol 2022; 12:1048705. [PMID: 36483025 PMCID: PMC9722957 DOI: 10.3389/fonc.2022.1048705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Ewing sarcoma is a fusion-oncoprotein-driven primary bone tumor most commonly diagnosed in adolescents. Given the continued poor outcomes for patients with metastatic and relapsed Ewing sarcoma, testing innovative therapeutic approaches is essential. Ewing sarcoma has been categorized as a 'BRCAness' tumor with emerging data characterizing a spectrum of DNA damage repair defects within individual Ewing tumors, including the presence of EWSR1::FLI1 itself, recurrent somatic mutations, and rare germline-based defects. It is critical to understand the cumulative impact of various DNA damage repair defects on an individual Ewing tumor's response to therapy. Further, in addition to DNA-damage-directed therapies, subsets of Ewing tumors may be more susceptible to DNA-damage/immunotherapy combinations given the significant cross-talk between DNA damage and inflammatory pathways in the tumor microenvironment. Here we review potential approaches utilizing DNA-damaging agents as modulators of the Ewing tumor immune microenvironment, with a focus on radiation and opportunities during disease metastasis and relapse.
Collapse
Affiliation(s)
- Jessica D. Daley
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Adam C. Olson
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kelly M. Bailey
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
58
|
Weiss KR, Bailey KM. A Druggable Rheostat for Ewing Sarcoma? Clin Cancer Res 2022; 28:4360-4362. [PMID: 35921177 PMCID: PMC9588653 DOI: 10.1158/1078-0432.ccr-22-1794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 01/26/2023]
Abstract
The posterior HOXD enhancer is an EWSR1::FLI1-dependent regulator of HOXD13 expression in Ewing sarcoma. HOXD13 expression promotes a mesenchymal cell state. Through antagonistic transcriptional programs, EWSR1::FLI1 and HOXD13 serve as master regulators of Ewing cell plasticity. Targeting Ewing cells as they exist in/transition between mesenchymal states is a priority. See related article by Apfelbaum et al., p. 4466.
Collapse
Affiliation(s)
- Kurt R. Weiss
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kelly M. Bailey
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
59
|
Apfelbaum AA, Wu F, Hawkins AG, Magnuson B, Jiménez JA, Taylor SD, Wrenn ED, Waltner O, Pfaltzgraff ER, Song JY, Hall C, Wellik DM, Ljungman M, Furlan SN, Ryan RJ, Sarthy JF, Lawlor ER. EWS::FLI1 and HOXD13 Control Tumor Cell Plasticity in Ewing Sarcoma. Clin Cancer Res 2022; 28:4466-4478. [PMID: 35653119 PMCID: PMC9588607 DOI: 10.1158/1078-0432.ccr-22-0384] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE Propagation of Ewing sarcoma requires precise regulation of EWS::FLI1 transcriptional activity. Determining the mechanisms of fusion regulation will advance our understanding of tumor progression. Here we investigated whether HOXD13, a developmental transcription factor that promotes Ewing sarcoma metastatic phenotypes, influences EWS::FLI1 transcriptional activity. EXPERIMENTAL DESIGN Existing tumor and cell line datasets were used to define EWS::FLI1 binding sites and transcriptional targets. Chromatin immunoprecipitation and CRISPR interference were employed to identify enhancers. CUT&RUN and RNA sequencing defined binding sites and transcriptional targets of HOXD13. Transcriptional states were investigated using bulk and single-cell transcriptomic data from cell lines, patient-derived xenografts, and patient tumors. Mesenchymal phenotypes were assessed by gene set enrichment, flow cytometry, and migration assays. RESULTS We found that EWS::FLI1 creates a de novo GGAA microsatellite enhancer in a developmentally conserved regulatory region of the HOXD locus. Knockdown of HOXD13 led to widespread changes in expression of developmental gene programs and EWS::FLI1 targets. HOXD13 binding was enriched at established EWS::FLI1 binding sites where it influenced expression of EWS::FLI1-activated genes. More strikingly, HOXD13 bound and activated EWS::FLI1-repressed genes, leading to adoption of mesenchymal and migratory cell states that are normally suppressed by the fusion. Single-cell analysis confirmed that direct transcriptional antagonism between HOXD13-mediated gene activation and EWS::FLI1-dependent gene repression defines the state of Ewing sarcoma cells along a mesenchymal axis. CONCLUSIONS Ewing sarcoma tumors are comprised of tumor cells that exist along a mesenchymal transcriptional continuum. The identity of cells along this continuum is, in large part, determined by the competing activities of EWS::FLI1 and HOXD13. See related commentary by Weiss and Bailey, p. 4360.
Collapse
Affiliation(s)
- April A. Apfelbaum
- Cancer Biology PhD Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Feinan Wu
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Allegra G. Hawkins
- Childhood Cancer Data Lab Alex’s Lemonade Stand Foundation, Philadelphia, PA, USA
| | - Brian Magnuson
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jennifer A. Jiménez
- Cancer Biology PhD Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sean D. Taylor
- Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Emma D. Wrenn
- Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Olivia Waltner
- Fred Hutch Cancer Research Center, Seattle, WA, 98109, USA
| | | | - Jane Y. Song
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Cody Hall
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Deneen M. Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, 53705
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott N. Furlan
- Fred Hutch Cancer Research Center, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
| | - Russell J.H. Ryan
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jay F. Sarthy
- Fred Hutch Cancer Research Center, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
| | - Elizabeth R. Lawlor
- Seattle Children’s Research Institute, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
60
|
Pingul BY, Huang H, Chen Q, Alikarami F, Zhang Z, Qi J, Bernt KM, Berger SL, Cao Z, Shi J. Dissection of the MEF2D-IRF8 transcriptional circuit dependency in acute myeloid leukemia. iScience 2022; 25:105139. [PMID: 36193052 PMCID: PMC9526175 DOI: 10.1016/j.isci.2022.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 08/05/2022] [Accepted: 09/10/2022] [Indexed: 11/26/2022] Open
Abstract
Transcriptional dysregulation is a prominent feature in leukemia. Here, we systematically surveyed transcription factor (TF) vulnerabilities in leukemia and uncovered TF clusters that exhibit context-specific vulnerabilities within and between different subtypes of leukemia. Among these TF clusters, we demonstrated that acute myeloid leukemia (AML) with high IRF8 expression was addicted to MEF2D. MEF2D and IRF8 form an autoregulatory loop via direct binding to mutual enhancer elements. One important function of this circuit in AML is to sustain PU.1/MEIS1 co-regulated transcriptional outputs via stabilizing PU.1’s chromatin occupancy. We illustrated that AML could acquire dependency on this circuit through various oncogenic mechanisms that results in the activation of their enhancers. In addition to forming a circuit, MEF2D and IRF8 can also separately regulate gene expression, and dual perturbation of these two TFs leads to a more robust inhibition of AML proliferation. Collectively, our results revealed a TF circuit essential for AML survival. MEF2D is a context-specific vulnerability in IRF8hi AML MEF2D and IRF8 form a transcriptional circuit via binding to each other’s enhancers MEF2D-IRF8 circuit supports PU.1’s chromatin occupancy and transcriptional output MEF2D and IRF8 can regulate separate gene expression programs alongside the circuit
Collapse
|
61
|
Kim MS, Lee WS, Lee H, Jin W. TrkC, a novel prognostic marker, induces and maintains cell survival and metastatic dissemination of Ewing sarcoma by inhibiting EWSR1-FLI1 degradation. Cell Death Dis 2022; 13:836. [PMID: 36171207 PMCID: PMC9519565 DOI: 10.1038/s41419-022-05275-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/23/2023]
Abstract
Upregulation of EWSR1-FLI1 expression has been associated with invasiveness, induced cell survival, metastatic dissemination, and acquisition of self-renewal traits in Ewing sarcoma (ES). Although existing evidence implies that TrkC expression is linked to the pathogenesis of other cancer types, its role and the mechanism behind its correlation with EWSR1-FLI1 in the pathogenesis of ES remain unclear. In this study, we uncovered a novel physiological role of TrkC as a key regulator of EWSR1-FLI1 involved in the survival and metastatic dissemination of ES. TrkC was observed to be frequently overexpressed in human metastatic ES cells in vitro and in vivo, facilitating enhanced survival, tumorigenicity, and metastasis of ES cells. TrkC-mediated metastasis of ES cells was induced by the inhibition of the proteasomal degradation of EWSR1-FLI1 via the TrkC/EWSR1-FLI1 complex, which subsequently enabled the induction of the target proteins, EGR2 and NKX2.2. Moreover, TrkC significantly inhibited tumor suppressor activity of TGF-β through reduction of the mRNA expression of one of its receptors, TGFBR2 via TrkC-induced stabilization of EWSR1-FLI1. Furthermore, loss of TrkC expression inhibited tumor growth and metastasis in experimental mouse models. This study is the first to report the involvement and functional role of TrkC in the pathogenesis of ES, suggesting important implications for understanding the alterations of TrkC in Ewing tumors.
Collapse
Affiliation(s)
- Min Soo Kim
- grid.256155.00000 0004 0647 2973Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 21999 Republic of Korea
| | - Won Sung Lee
- grid.256155.00000 0004 0647 2973Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 21999 Republic of Korea
| | - Hanki Lee
- grid.410898.c0000 0001 2339 0388Graduate School of Interdisciplinary Program of Biomodulation, Myongji University, Yongin, Gyeonggi-do 17058 Republic of Korea
| | - Wook Jin
- grid.256155.00000 0004 0647 2973Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 21999 Republic of Korea
| |
Collapse
|
62
|
Systematic profiling of conditional degron tag technologies for target validation studies. Nat Commun 2022; 13:5495. [PMID: 36127368 PMCID: PMC9489723 DOI: 10.1038/s41467-022-33246-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Conditional degron tags (CDTs) are a powerful tool for target validation that combines the kinetics and reversible action of pharmacological agents with the generalizability of genetic manipulation. However, successful design of a CDT fusion protein often requires a prolonged, ad hoc cycle of construct design, failure, and re-design. To address this limitation, we report here a system to rapidly compare the activity of five unique CDTs: AID/AID2, IKZF3d, dTAG, HaloTag, and SMASh. We demonstrate the utility of this system against 16 unique protein targets. We find that expression and degradation are highly dependent on the specific CDT, the construct design, and the target. None of the CDTs leads to efficient expression and/or degradation across all targets; however, our systematic approach enables the identification of at least one optimal CDT fusion for each target. To enable the adoption of CDT strategies more broadly, we have made these reagents, and a detailed protocol, available as a community resource. Conditional Degron Tags are a valuable tool to validate and study novel therapeutic targets. Here, the authors compared 5 orthogonal tags across 16 unique proteins and provide a panel of vectors for users to systematically screen the tags with their own protein of interest.
Collapse
|
63
|
Karlina I, Schroeder BA, Kirgizov K, Romantsova O, Istranov AL, Nedorubov A, Timashev P, Ulasov I. Latest developments in the pathobiology of Ewing sarcoma. J Bone Oncol 2022; 35:100440. [PMID: 35855933 PMCID: PMC9287185 DOI: 10.1016/j.jbo.2022.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Irina Karlina
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Brett A. Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Kirill Kirgizov
- Research Institute of Pediatric Oncology and Hematology at N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia Moscow, 115478, Russia
| | - Olga Romantsova
- Research Institute of Pediatric Oncology and Hematology at N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia Moscow, 115478, Russia
| | - Andrey L. Istranov
- Department of Oncology, radiation therapy and plastic surgery, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Andrey Nedorubov
- Center for Preclinical Research, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Peter Timashev
- World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Corresponding author at: Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| |
Collapse
|
64
|
Singer DS. A new phase of the Cancer Moonshot to end cancer as we know it. Nat Med 2022; 28:1345-1347. [PMID: 35760861 PMCID: PMC9244436 DOI: 10.1038/s41591-022-01881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
65
|
Giannikopoulos P, Parham DM. Pediatric Sarcomas: The Next Generation of Molecular Studies. Cancers (Basel) 2022; 14:2515. [PMID: 35626119 PMCID: PMC9139929 DOI: 10.3390/cancers14102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Pediatric sarcomas constitute one of the largest groups of childhood cancers, following hematopoietic, neural, and renal lesions. Partly because of their diversity, they continue to offer challenges in diagnosis and treatment. In spite of the diagnostic, nosologic, and therapeutic gains made with genetic technology, newer means for investigation are needed. This article reviews emerging technology being used to study human neoplasia and how these methods might be applicable to pediatric sarcomas. Methods reviewed include single cell RNA sequencing (scRNAseq), spatial multi-omics, high-throughput functional genomics, and clustered regularly interspersed short palindromic sequence-Cas9 (CRISPR-Cas9) technology. In spite of these advances, the field continues to be challenged by a dearth of properly annotated materials, particularly from recurrences and metastases and pre- and post-treatment samples.
Collapse
Affiliation(s)
| | - David M. Parham
- Department of Anatomic Pathology, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| |
Collapse
|
66
|
Pedot G, Marques JG, Ambühl PP, Wachtel M, Kasper S, Ngo QA, Niggli FK, Schäfer BW. Retracted: Inhibition of HDACs reduces Ewing sarcoma tumor growth through EWS-FLI1 protein destabilization. Neoplasia 2022; 27:100784. [PMID: 35366465 PMCID: PMC8971315 DOI: 10.1016/j.neo.2022.100784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/26/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022]
Abstract
Oncogenic transcription factors lacking enzymatic activity or targetable binding pockets are typically considered "undruggable". An example is provided by the EWS-FLI1 oncoprotein, whose continuous expression and activity as transcription factor are critically required for Ewing sarcoma tumor formation, maintenance, and proliferation. Because neither upstream nor downstream targets have so far disabled its oncogenic potential, we performed a high-throughput drug screen (HTS), enriched for FDA-approved drugs, coupled to a Global Protein Stability (GPS) approach to identify novel compounds capable to destabilize EWS-FLI1 protein by enhancing its degradation through the ubiquitin-proteasome system. The protein stability screen revealed the dual histone deacetylase (HDAC) and phosphatidylinositol-3-kinase (PI3K) inhibitor called fimepinostat (CUDC-907) as top candidate to modulate EWS-FLI1 stability. Fimepinostat strongly reduced EWS-FLI1 protein abundance, reduced viability of several Ewing sarcoma cell lines and PDX-derived primary cells and delayed tumor growth in a xenograft mouse model, whereas it did not significantly affect healthy cells. Mechanistically, we demonstrated that EWS-FLI1 protein levels were mainly regulated by fimepinostat's HDAC activity. Our study demonstrates that HTS combined to GPS is a reliable approach to identify drug candidates able to modulate stability of EWS-FLI1 and lays new ground for the development of novel therapeutic strategies aimed to reduce Ewing sarcoma tumor progression.
Collapse
Affiliation(s)
- Gloria Pedot
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Joana Graça Marques
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Philip P Ambühl
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Stephanie Kasper
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Quy A Ngo
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Felix K Niggli
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland.
| |
Collapse
|
67
|
van der Graaf W, Tesselaar M, McVeigh T, Oyen W, Fröhling S. Biology-Guided Precision Medicine in Rare Cancers: Lessons from Sarcomas and Neuroendocrine Tumours. Semin Cancer Biol 2022; 84:228-241. [DOI: 10.1016/j.semcancer.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022]
|
68
|
Padovani C, Jevtić P, Rapé M. Quality control of protein complex composition. Mol Cell 2022; 82:1439-1450. [PMID: 35316660 DOI: 10.1016/j.molcel.2022.02.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/26/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
Eukaryotic cells possess hundreds of protein complexes that contain multiple subunits and must be formed at the correct time and place during development. Despite specific assembly pathways, cells frequently encounter complexes with missing or aberrant subunits that can disrupt important signaling events. Cells, therefore, employ several ubiquitin-dependent quality control pathways that can prevent, correct, or degrade flawed complexes. In this review, we will discuss our emerging understanding of such quality control of protein complex composition.
Collapse
Affiliation(s)
- Chris Padovani
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Predrag Jevtić
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Michael Rapé
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
69
|
Flores G, Grohar PJ. One oncogene, several vulnerabilities: EWS/FLI targeted therapies for Ewing sarcoma. J Bone Oncol 2021; 31:100404. [PMID: 34976713 PMCID: PMC8686064 DOI: 10.1016/j.jbo.2021.100404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
EWS/FLI is the defining mutation of Ewing sarcoma. This oncogene drives malignant transformation and progression and occurs in a genetic background characterized by few other recurrent cooperating mutations. In addition, the tumor is absolutely dependent on the continued expression of EWS/FLI to maintain the malignant phenotype. However, EWS/FLI is a transcription factor and therefore a challenging drug target. The difficulty of directly targeting EWS/FLI stems from unique features of this fusion protein as well as the network of interacting proteins required to execute the transcriptional program. This network includes interacting proteins as well as upstream and downstream effectors that together reprogram the epigenome and transcriptome. While the vast number of proteins involved in this process challenge the development of a highly specific inhibitors, they also yield numerous therapeutic opportunities. In this report, we will review how this vast EWS-FLI transcriptional network has been exploited over the last two decades to identify compounds that directly target EWS/FLI and/or associated vulnerabilities.
Collapse
Affiliation(s)
- Guillermo Flores
- Van Andel Research Institute, Grand Rapids, MI, USA
- Michigan State University, College of Human Medicine, USA
| | - Patrick J Grohar
- Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3501 Civic Center Blvd., Philadelphia, PA, USA
| |
Collapse
|
70
|
Abstract
Transcription factors (TFs) are essential mediators of epigenetic regulation and modifiers of penetrance. Studies from the past decades have revealed a sub-class of TF that is capable of remodeling closed chromatin states through targeting nucleosomal motifs. This pioneer factor (PF) class of chromatin remodeler is ATP independent in its roles in epigenetic initiation, with nucleosome-motif recognition and association with repressive chromatin regions. Increasing evidence suggests that the fundamental properties of PFs can be coopted in human cancers. We explore the role of PFs in the larger context of tissue-specific epigenetic regulation. Moreover, we highlight an emerging class of chimeric PF derived from translocation partners in human disease and PFs associated with rare tumors. In the age of site-directed genome editing and targeted protein degradation, increasing our understanding of PFs will provide access to next-generation therapy for human disease driven from altered transcriptional circuitry.
Collapse
|