51
|
Xu C, Zhang T, Wang H, Zhu L, Ruan Y, Huang Z, Wang J, Zhu H, Huang C, Pan M. Integrative single-cell analysis reveals distinct adaptive immune signatures in the cutaneous lesions of pemphigus. J Autoimmun 2024; 142:103128. [PMID: 37939532 DOI: 10.1016/j.jaut.2023.103128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Pemphigus, an autoimmune bullous disease affecting the skin and mucosal membranes, is primarily driven by anti-desmoglein (Dsg) autoantibodies. However, the underlying immune mechanisms of this disease remain largely elusive. Here, we compile an unbiased atlas of immune cells in pemphigus cutaneous lesions at single-cell resolution. We reveal clonally expanded antibody-secreting cells (ASCs) that exhibit variable hypermutation and accumulation of IgG4 class-switching in their immunoglobulin genes. Importantly, pathogenic Dsg-specific ASCs are localized within pemphigus lesions and can evolve from both Dsg-autoreactive and non-binding precursors. We observe an altered distribution of CD4+ T cell subsets within pemphigus lesions, including an imbalance of Th17/Th2 cells. Significantly, we identify a distinct subpopulation of Th17 cells expressing CXCL13 and IL-21 within pemphigus lesions, implying its pivotal role in B cell recruitment and local production of autoantibodies. Furthermore, we characterize multiple clonally expanded CD8+ subpopulations, including effector GMZB+ and GMZK+ subsets with augmented cytotoxic activities, within pemphigus lesions. Chemokine-receptor mapping uncovers cell-type-specific signaling programs involved in the recruitment of T/B cells within pemphigus lesions. Our findings significantly contribute to advancing the understanding of the heterogeneous immune microenvironment and the pathogenesis of pemphigus cutaneous lesions, thereby providing valuable insights for potential therapeutic interventions in this disease.
Collapse
Affiliation(s)
- Chuqiao Xu
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyu Zhang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailun Wang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhu
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Ruan
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zixuan Huang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingying Wang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiqin Zhu
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanxin Huang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Meng Pan
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
52
|
Qian C, Liu C, Liu W, Zhou R, Zhao L. Targeting vascular normalization: a promising strategy to improve immune-vascular crosstalk in cancer immunotherapy. Front Immunol 2023; 14:1291530. [PMID: 38193080 PMCID: PMC10773740 DOI: 10.3389/fimmu.2023.1291530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Blood vessels are a key target for cancer therapy. Compared with the healthy vasculature, tumor blood vessels are extremely immature, highly permeable, and deficient in pericytes. The aberrantly vascularized tumor microenvironment is characterized by hypoxia, low pH, high interstitial pressure, and immunosuppression. The efficacy of chemotherapy, radiotherapy, and immunotherapy is affected by abnormal blood vessels. Some anti-angiogenic drugs show vascular normalization effects in addition to targeting angiogenesis. Reversing the abnormal state of blood vessels creates a normal microenvironment, essential for various cancer treatments, specifically immunotherapy. In addition, immune cells and molecules are involved in the regulation of angiogenesis. Therefore, combining vascular normalization with immunotherapy may increase the efficacy of immunotherapy and reduce the risk of adverse reactions. In this review, we discussed the structure, function, and formation of abnormal vessels. In addition, we elaborated on the role of the immunosuppressive microenvironment in the formation of abnormal vessels. Finally, we described the clinical challenges associated with the combination of immunotherapy with vascular normalization, and highlighted future research directions in this therapeutic area.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chaoqun Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weiwei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
53
|
Ren CC, Xu B, Wang MS, He F, Chen JH, Liao L, Liang W. Meta-analysis of the correlation between glioma prognosis and PD-1/PD-L1 expression. Asian J Surg 2023; 46:5632-5634. [PMID: 37625958 DOI: 10.1016/j.asjsur.2023.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Affiliation(s)
- Chang-Cheng Ren
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, 445000, China
| | - Bo Xu
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, 445000, China
| | - Min-Shu Wang
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, 445000, China
| | - Feng He
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, 445000, China
| | - Jun-Hui Chen
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, 445000, China
| | - Liang Liao
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, 445000, China
| | - Wu Liang
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, 445000, China.
| |
Collapse
|
54
|
Wang C, He Z. Multi-omics analysis reveals CLIC1 as a therapeutic vulnerability of gliomas. Front Pharmacol 2023; 14:1279370. [PMID: 38027011 PMCID: PMC10663228 DOI: 10.3389/fphar.2023.1279370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Despite advances in comprehending cancer biology, malignant gliomas remain incurable. The present work conducted a multi-omics analysis for investigating the significance of chloride intracellular channel 1 (CLIC1) in gliomas. Methods: Multi-omics data of glioma covering transcriptomics, genomics, DNA methylation and single-cell transcriptomics from multiple public cohorts were enrolled for analyzing CLIC1. In vitro experiments were conducted to measure apoptosis and cell mobility in U251 and U373 glioma cells following transfection of CLIC1 siRNAs. Results: Elevated CLIC1 expression was proven to stably and independently estimate worse survival outcomes. CLIC1 expression was higher in more advanced stage, wild-type IDH and unmethylated MGMT samples. Tumorigenic and anticancer immunity pathways were remarkably enriched in CLIC1-up-regulated tumors. Additionally, CLIC1 was positively linked with cancer-immunity cycle, stromal activation, DNA damage repair and cell cycle. Suppressing CLIC1 resulted in apoptosis and attenuated cell motility of glioma cells. More frequent genomic alterations were found in CLIC1-up-regulated tumors. CLIC1 expression presented a remarkably negative connection to DNA methylation. High CLIC1 expression samples were more sensitive to camptothecin, cisplatin, doxorubicin, erlotinib, paclitaxel, rapamycin, clofarabine, tanespimycin, methotrexate, everolimus, TAK-733, trametinib and AZD8330. Tumors with upregulated CLIC1 presented abundant immune cell infiltration, higher expression of immune-checkpoints and -modulators and similar transcriptome profiling, indicative of well response to immune-checkpoint blockade (ICB). Nevertheless, due to elevated TIDE score, tumors with CLIC1 upregulation appeared to be resistant to ICB. Single-cell analysis unveiled that CLIC1 was expressed ubiquitously in tumor cells and tumor microenvironment. Conclusions: Overall, CLIC1 was a promising treatment vulnerability in glioma.
Collapse
Affiliation(s)
- Chengcheng Wang
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Zheng He
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
55
|
Ji ZZ, Chan MKK, Chan ASW, Leung KT, Jiang X, To KF, Wu Y, Tang PMK. Tumour-associated macrophages: versatile players in the tumour microenvironment. Front Cell Dev Biol 2023; 11:1261749. [PMID: 37965573 PMCID: PMC10641386 DOI: 10.3389/fcell.2023.1261749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Tumour-Associated Macrophages (TAMs) are one of the pivotal components of the tumour microenvironment. Their roles in the cancer immunity are complicated, both pro-tumour and anti-cancer activities are reported, including not only angiogenesis, extracellular matrix remodeling, immunosuppression, drug resistance but also phagocytosis and tumour regression. Interestingly, TAMs are highly dynamic and versatile in solid tumours. They show anti-cancer or pro-tumour activities, and interplay between the tumour microenvironment and cancer stem cells and under specific conditions. In addition to the classic M1/M2 phenotypes, a number of novel dedifferentiation phenomena of TAMs are discovered due to the advanced single-cell technology, e.g., macrophage-myofibroblast transition (MMT) and macrophage-neuron transition (MNT). More importantly, emerging information demonstrated the potential of TAMs on cancer immunotherapy, suggesting by the therapeutic efficiency of the checkpoint inhibitors and chimeric antigen receptor engineered cells based on macrophages. Here, we summarized the latest discoveries of TAMs from basic and translational research and discussed their clinical relevance and therapeutic potential for solid cancers.
Collapse
Affiliation(s)
- Zoey Zeyuan Ji
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
56
|
Adamo A, Frusteri C, Pilotto S, Caligola S, Belluomini L, Poffe O, Giacobazzi L, Dusi S, Musiu C, Hu Y, Wang T, Rizzini D, Vella A, Canè S, Sartori G, Insolda J, Sposito M, Incani UC, Carbone C, Piro G, Pettinella F, Qi F, Wang D, Sartoris S, De Sanctis F, Scapini P, Dusi S, Cassatella MA, Bria E, Milella M, Bronte V, Ugel S. Immune checkpoint blockade therapy mitigates systemic inflammation and affects cellular FLIP-expressing monocytic myeloid-derived suppressor cells in non-progressor non-small cell lung cancer patients. Oncoimmunology 2023; 12:2253644. [PMID: 37720688 PMCID: PMC10503454 DOI: 10.1080/2162402x.2023.2253644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/10/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023] Open
Abstract
Cancer cells favor the generation of myeloid cells with immunosuppressive and inflammatory features, including myeloid-derived suppressor cells (MDSCs), which support tumor progression. The anti-apoptotic molecule, cellular FLICE (FADD-like interleukin-1β-converting enzyme)-inhibitory protein (c-FLIP), which acts as an important modulator of caspase-8, is required for the development and function of monocytic (M)-MDSCs. Here, we assessed the effect of immune checkpoint inhibitor (ICI) therapy on systemic immunological landscape, including FLIP-expressing MDSCs, in non-small cell lung cancer (NSCLC) patients. Longitudinal changes in peripheral immunological parameters were correlated with patients' outcome. In detail, 34 NSCLC patients were enrolled and classified as progressors (P) or non-progressors (NP), according to the RECIST evaluation. We demonstrated a reduction in pro-inflammatory cytokines such as IL-8, IL-6, and IL-1β in only NP patients after ICI treatment. Moreover, using t-distributed stochastic neighbor embedding (t-SNE) and cluster analysis, we characterized in NP patients a significant increase in the amount of lymphocytes and a slight contraction of myeloid cells such as neutrophils and monocytes. Despite this moderate ICI-associated alteration in myeloid cells, we identified a distinctive reduction of c-FLIP expression in M-MDSCs from NP patients concurrently with the first clinical evaluation (T1), even though NP and P patients showed the same level of expression at baseline (T0). In agreement with the c-FLIP expression, monocytes isolated from both P and NP patients displayed similar immunosuppressive functions at T0; however, this pro-tumor activity was negatively influenced at T1 in the NP patient cohort exclusively. Hence, ICI therapy can mitigate systemic inflammation and impair MDSC-dependent immunosuppression.
Collapse
Affiliation(s)
- Annalisa Adamo
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Cristina Frusteri
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Sara Pilotto
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Simone Caligola
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IOV-IRCCS), Padova, Italy
| | - Lorenzo Belluomini
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Ornella Poffe
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Luca Giacobazzi
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Silvia Dusi
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IOV-IRCCS), Padova, Italy
| | - Chiara Musiu
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Yushu Hu
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Tian Wang
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Davide Rizzini
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Antonio Vella
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Stefania Canè
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IOV-IRCCS), Padova, Italy
| | - Giulia Sartori
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Jessica Insolda
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Marco Sposito
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Ursula Cesta Incani
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Geny Piro
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Francesca Pettinella
- General Pathology section, Department of Medicine University of Verona, Verona, Italy
| | - Fang Qi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Dali Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Silvia Sartoris
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Francesco De Sanctis
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Patrizia Scapini
- General Pathology section, Department of Medicine University of Verona, Verona, Italy
| | - Stefano Dusi
- General Pathology section, Department of Medicine University of Verona, Verona, Italy
| | | | - Emilio Bria
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IOV-IRCCS), Padova, Italy
| | - Michele Milella
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Vincenzo Bronte
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IOV-IRCCS), Padova, Italy
| | - Stefano Ugel
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
57
|
Huang C, Chen B, Wang X, Xu J, Sun L, Wang D, Zhao Y, Zhou C, Gao Q, Wang Q, Chen Z, Wang M, Zhang X, Xu W, Shen B, Zhu W. Gastric cancer mesenchymal stem cells via the CXCR2/HK2/PD-L1 pathway mediate immunosuppression. Gastric Cancer 2023; 26:691-707. [PMID: 37300724 DOI: 10.1007/s10120-023-01405-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Anti-PD-1 immunotherapy has emerged as an important therapeutic modality in advanced gastric cancer (GC). However, drug resistance frequently develops, limiting its effectiveness. METHODS The role of gastric cancer mesenchymal stem cells (GCMSCs) in anti-PD-1 resistance was evaluated in vivo in NPGCD34+ or NCGPBMC xenograft mouse model. In addition, we investigated CD8+T cell infiltration and effector function by spectral cytometry and IHC. The effects of GCMSCs conditional medium (GCMSC-CM) on GC cell lines were characterized at the level of the proteome, secretome using western blot, and ELISA assays. RESULTS We reported that GCMSCs mediated tolerance mechanisms contribute to tumor immunotherapy tolerance. GCMSC-CM attenuated the antitumor activity of PD-1 antibody and inhibited immune response in humanized mouse model. In GC cells under serum deprivation and hypoxia, GCMSC-CM promoted GC cells proliferation via upregulating PD-L1 expression. Mechanistically, GCMSC-derived IL-8 and AKT-mediated phosphorylation facilitated HK2 nuclear localization. Phosphorylated-HK2 promoted PD-L1 transcription by binding to HIF-1α. What is more, GCMSC-CM also induced lactate overproduction in GC cells in vitro and xenograft tumors in vivo, leading to impaired function of CD8+ T cells. Furthermore, CXCR1/2 receptor depletion, CXCR2 receptor antagonist AZD5069 and IL-8 neutralizing antibody application also significantly reversed GCMSCs mediated immunosuppression, restoring the antitumor capacity of PD-1 antibody. CONCLUSIONS Our findings reveal that blocking GCMSCs-derived IL-8/CXCR2 pathway decreasing PD-L1 expression and lactate production, improving antitumor efficacy of anti-PD-1 immunotherapy, may be of value for the treatment of advanced gastric carcinoma.
Collapse
Affiliation(s)
- Chao Huang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Bin Chen
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
- Department of Clinical Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xin Wang
- Department of Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Xu
- Department of Laboratory Medicine, Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Li Sun
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
- Department of Clinical Laboratory, Kunshan First People's Hospital, Kunshan, China
| | - Deqiang Wang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuanyuan Zhao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Chenglin Zhou
- Department of Laboratory Medicine, Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Qiuzhi Gao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Qianqian Wang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Zhihong Chen
- Department of Gastrointestinal Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Wang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Xu Zhang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Wenrong Xu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China.
| |
Collapse
|
58
|
Gregory E, Powers I, Jamshidi-Parsian A, Griffin R, Song Y. Pancreatic Tumor-Derived Extracellular Vesicles Stimulate Schwann Cell Phenotype Indicative of Perineural Invasion via IL-8 Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546629. [PMID: 37425927 PMCID: PMC10326972 DOI: 10.1101/2023.06.26.546629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Pancreatic cancer remains a pre-eminent cause of cancer-related deaths with late-stage diagnoses leading to an 11% five-year survival rate. Moreover, perineural invasion (PNI), in which cancer cells migrate into adjacent nerves, occurs in an overwhelming majority of patients, further enhancing tumor metastasis. PNI has only recently been recognized as a key contributor to cancer progression; thus, there are insufficient treatment options for the disease. Attention has been focused on glial Schwann cells (SC) for their mediation of pancreatic PNI. Under stress, SCs dedifferentiate from their mature state to facilitate the repair of peripheral nerves; however, this signaling can also re-direct cancer cells to accelerate PNI. Limited research has explored the mechanism that causes this shift in SC phenotype in cancer. Tumor-derived extracellular vesicles (TEV) have been implicated in other avenues of cancer development, such as pre-metastatic niche formation in secondary locations, yet how TEVs contribute to PNI has not been fully explored. In this study, we highlight TEVs as initiators of SC activation into a PNI-associated phenotype. Proteomic and pathway assessments of TEVs revealed an elevation in interleukin-8 (IL-8) signaling and nuclear factor kappa B (NFκB) over healthy cell-derived EVs. TEV-treated SCs exhibited higher levels of activation markers, which were successfully neutralized with IL-8 inhibition. Additionally, TEVs increased NFκB subunit p65 nuclear translocation, which may lead to increased secretion of cytokines and proteases indicative of SC activation and PNI. These findings present a novel mechanism that may be targeted for the treatment of pancreatic cancer PNI. Statement of Significance Identifying pancreatic tumor extracellular vesicles as key players in Schwann cell activation and perineural invasion by way of IL-8 will educate for more specialized and effective targets for an under-valued disease.
Collapse
|