51
|
Tang C, Cheng M, Lai C, Li L, Yang X, Du L, Zhang G, Wang G, Yang L. Recent progress in the applications of non-metal modified graphitic carbon nitride in photocatalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
52
|
Navalón S, Dhakshinamoorthy A, Álvaro M, Ferrer B, García H. Metal-Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting. Chem Rev 2022; 123:445-490. [PMID: 36503233 PMCID: PMC9837824 DOI: 10.1021/acs.chemrev.2c00460] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks (MOFs) have been frequently used as photocatalysts for the hydrogen evolution reaction (HER) using sacrificial agents with UV-vis or visible light irradiation. The aim of the present review is to summarize the use of MOFs as solar-driven photocatalysts targeting to overcome the current efficiency limitations in overall water splitting (OWS). Initially, the fundamentals of the photocatalytic OWS under solar irradiation are presented. Then, the different strategies that can be implemented on MOFs to adapt them for solar photocatalysis for OWS are discussed in detail. Later, the most active MOFs reported until now for the solar-driven HER and/or oxygen evolution reaction (OER) are critically commented. These studies are taken as precedents for the discussion of the existing studies on the use of MOFs as photocatalysts for the OWS under visible or sunlight irradiation. The requirements to be met to use MOFs at large scale for the solar-driven OWS are also discussed. The last section of this review provides a summary of the current state of the field and comments on future prospects that could bring MOFs closer to commercial application.
Collapse
Affiliation(s)
- Sergio Navalón
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,S.N.: email,
| | - Amarajothi Dhakshinamoorthy
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,School
of Chemistry, Madurai Kamaraj University, Palkalai Nagar, Madurai625021, Tamil
NaduIndia,A.D.: email,
| | - Mercedes Álvaro
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain
| | - Belén Ferrer
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain
| | - Hermenegildo García
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,Instituto
Universitario de Tecnología Química, CSIC-UPV, Universitat Politècnica de València, Avenida de los Naranjos, Valencia46022, Spain,H.G.:
email,
| |
Collapse
|
53
|
Díaz-Ufano C, Gallo-Cordova A, Santiandreu L, Veintemillas-Verdaguer S, Sáez R, Fernández MJT, del Puerto Morales M. Maximizing the Adsorption Capacity of Iron Oxide Nanocatalysts for the Degradation of Organic Dyes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
54
|
Cao C, Wu X, Zheng Y, Zhang L, Chen Y. Capacitive Desalination and Disinfection of Water Using UiO-66 Metal-Organic Framework/Bamboo Carbon with Chitosan. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3901. [PMID: 36364677 PMCID: PMC9655982 DOI: 10.3390/nano12213901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The zirconium-based metal-organic framework (MOF) (UiO-66)/bamboo carbon (BC) composite with chitosan was prepared using hydrothermal and impregnation methods and used for capacitive desalination (CDI) and disinfection of water. The results showed that these composites had fast ion exchange and charge transfer properties. During the CDI process, these composites' electrodes exhibited good cycle stability, electrosorption capacity (4.25 mg/g) and excellent bactericidal effect. These carbon-based composites electrodes' bactericidal rate for Escherichia coli could reach 99.99% within 20 minutes; therefore, they had good performance and were a good choice for high-performance deionization applications.
Collapse
Affiliation(s)
- Cuihui Cao
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Department of Chemistry and Pharmacy, Guilin Normal College, Guilin 541119, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaofeng Wu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuming Zheng
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lizhen Zhang
- Department of Chemistry and Pharmacy, Guilin Normal College, Guilin 541119, China
| | - Yunfa Chen
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
55
|
Encapsulation of in-situ generated g-CNQDs with up-conversion effect in Zr/Ti-based porphyrin MOFs for efficient photocatalytic hydrogen production and NO removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
56
|
Gayathri K, Vinothkumar K, Teja Y, Al-Shehri BM, Selvaraj M, Sakar M, Balakrishna RG. Ligand-mediated band structure engineering and physiochemical properties of UiO-66 (Zr) metal-organic frameworks (MOFs) for solar-driven degradation of dye molecules. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
57
|
Hayati F, Moradi S, Farshineh Saei S, Madani Z, Giannakis S, Isari AA, Kakavandi B. A novel, Z-scheme ZnO@AC@FeO photocatalyst, suitable for the intensification of photo-mediated peroxymonosulfate activation: Performance, reactivity and bisphenol A degradation pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115851. [PMID: 35985269 DOI: 10.1016/j.jenvman.2022.115851] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
In this study, the intensification of a UVC-based PMS activation treatment is performed by a novel photocatalyst. Using ZnO nanoparticles coupled with activated carbon (AC), impregnated by ferroferric oxides (FO, magnetite), as an effective Z-scheme photocatalyst (ZACFO), the effective Bisphenol A (BP-A) removal was attained. Several techniques were applied for the characterization of the as-prepared catalyst and proved the successful preparation of ZACFO. The photocatalytic activity of pristine ZnO was significantly improved after its combination with ACFO. It was found that the fabrication of ZACFO heterostructures could inhibit the charge carriers recombination and also accelerate the charge separation of photo-induced e-/h+ pairs. Under this UVC-based photocatalysis-mediated PMS activation system, ZACFO showed an excellent potential as compared to the single constituent catalysts. The complete degradation of 20 mg/L concentration of BP-A was attained in just 20 min with excellent reaction rate constant of 27.3 × 10-2 min-1. Besides, over 60% of TOC was eliminated by the integrated ZACFO/PMS/UV system within 60 min of reaction. The minor inhibition by most matrix components, the high recycling capability with minor metals' leaching and the effectiveness in complex matrices, constitute this composite method an efficient and promising process for treating real wastewater samples. Finally, based on the photo-produced reactive intermediates and by-products identified, the Z-scheme photocatalytic mechanism and the plausible pathway of BP-A degradation were proposed comprehensively. The presence and role of radical and non-radical pathways in the decontamination process of BP-A over ZACFO/PMS/UV system was confirmed.
Collapse
Affiliation(s)
- Farzan Hayati
- Abadan Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Abadan, Iran
| | - Sina Moradi
- Abadan Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Abadan, Iran
| | - Sara Farshineh Saei
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East, Binghamton, NY, 13902, United States
| | - Zahra Madani
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain
| | - Ali Akbar Isari
- Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Italy
| | - Babak Kakavandi
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
58
|
A zirconium–organic framework nanosheet-based aptasensor with outstanding electrochemical sensing performance. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
59
|
Rueda-Navarro CM, Ferrer B, Baldoví HG, Navalón S. Photocatalytic Hydrogen Production from Glycerol Aqueous Solutions as Sustainable Feedstocks Using Zr-Based UiO-66 Materials under Simulated Sunlight Irradiation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3808. [PMID: 36364583 PMCID: PMC9658527 DOI: 10.3390/nano12213808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
There is an increasing interest in developing cost-effective technologies to produce hydrogen from sustainable resources. Herein we show a comprehensive study on the use of metal-organic frameworks (MOFs) as heterogeneous photocatalysts for H2 generation from photoreforming of glycerol aqueous solutions under simulated sunlight irradiation. The list of materials employed in this study include some of the benchmark Zr-MOFs such as UiO-66(Zr)-X (X: H, NO2, NH2) as well as MIL-125(Ti)-NH2 as the reference Ti-MOF. Among these solids, UiO-66(Zr)-NH2 exhibits the highest photocatalytic H2 production, and this observation is attributed to its adequate energy level. The photocatalytic activity of UiO-66(Zr)-NH2 can be increased by deposition of small Pt NPs as the reference noble metal co-catalyst within the MOF network. This photocatalyst is effectively used for H2 generation at least for 70 h without loss of activity. The crystallinity of MOF and Pt particle size were maintained as revealed by powder X-ray diffraction and transmission electron microscopy measurements, respectively. Evidence in support of the occurrence of photoinduced charge separation with Pt@UiO-66(Zr)-NH2 is provided from transient absorption and photoluminescence spectroscopies together with photocurrent measurements. This study exemplifies the possibility of using MOFs as photocatalysts for the solar-driven H2 generation using sustainable feedstocks.
Collapse
|
60
|
Wu Y, Zhao X, Tian J, Liu S, Liu W, Wang T. Heterogeneous catalytic system of photocatalytic persulfate activation by novel Bi2WO6 coupled magnetic biochar for degradation of ciprofloxacin. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
61
|
Aldeen EMS, Jalil AA, Mim RS, Alhebshi A, Hassan NS, Saravanan R. Altered zirconium dioxide based photocatalyst for enhancement of organic pollutants degradation: A review. CHEMOSPHERE 2022; 304:135349. [PMID: 35714961 DOI: 10.1016/j.chemosphere.2022.135349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Heterogeneous advanced oxidation processes are a promising approach for cost-efficient removal of pollutants using semiconductors. Zirconium dioxide (ZrO2) is an auspicious material for photocatalytic activity owning to its suitable bandgap, stability, and low cost. However, ZrO2 suffers from fast recombination rate, and poor light harvesting ability. Nonetheless, extra modification has also shown improvements and therefore is worth investigating. The endeavour of this paper initially discusses the fundamentals with respect to reactive species, classification, and synthesis methods for ZrO2. Furthermore, with particular consideration to stability and reusability, several additional modification approaches for ZrO2-based photocatalysts such as doping and noble metals loading. Furthermore, the formation of heterojunctions has also been shown to boost photocatalytic activity while inhibiting charge carrier recombination. Finally, photocatalyst separation via magnetic-based photocatalysts are elucidated. As a result, ZrO2-based photocatalysts are regarded as a promising emerging technology that warrants further development and research.
Collapse
Affiliation(s)
- E M Sharaf Aldeen
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, UTM Johor Bahru, 81310, Johor, Malaysia.
| | - R S Mim
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia
| | - A Alhebshi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, UTM Johor Bahru, 81310, Johor, Malaysia
| | - R Saravanan
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775, Arica, Chile
| |
Collapse
|
62
|
Li M, Yuan J, Wang G, Yang L, Shao J, Li H, Lu J. One-step construction of Ti-In bimetallic MOFs to improve synergistic effect of adsorption and photocatalytic degradation of bisphenol A. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
63
|
Huang D, Gao L, Cheng M, Yan M, Zhang G, Chen S, Du L, Wang G, Li R, Tao J, Zhou W, Yin L. Carbon and N conservation during composting: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156355. [PMID: 35654189 DOI: 10.1016/j.scitotenv.2022.156355] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Composting, as a conventional solid waste treatment method, plays an essential role in carbon and nitrogen conservation, thereby reducing the loss of nutrients and energy. However, some carbon- and nitrogen-containing gases are inevitably released during the process of composting due to the different operating conditions, resulting in carbon and nitrogen losses. To overcome this obstacle, many researchers have been trying to optimize the adjustment parameters and add some amendments (i.e., pHysical amendments, chemical amendments and microbial amendments) to reduce the losses and enhance carbon and nitrogen conservation. However, investigation regarding mechanisms for the conservation of carbon and nitrogen are limited. Therefore, this review summarizes the studies on physical amendments, chemical amendments and microbial amendments and proposes underlying mechanisms for the enhancement of carbon and nitrogen conservation: adsorption or conversion, and also evaluates their contribution to the mitigation of the greenhouse effect, providing a theoretical basis for subsequent composting-related researchers to better improve carbon and nitrogen conservation measures. This paper also suggests that: assessing the contribution of composting as a process to global greenhouse gas mitigation requires a complete life cycle evaluation of composting. The current lack of compost clinker impact on carbon and nitrogen sequestration capacity of the application site needs to be explored by more research workers.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Lan Gao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Gaoxia Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiaxi Tao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
64
|
Abstract
Vehicle exhaust has been acknowledged as an essential factor affecting human health due to the extensive use of cars. Its main components include volatile organic compounds (VOCs) and nitrogen oxides (NOx), which can cause acute irritation and chronic diseases, and significant research on the treatment of vehicle exhaust has received increasing attention in recent decades. Recently, photocatalytic technology has been considered a practical approach for eliminating vehicle emissions. This review highlights the crucial role of photocatalytic technology in eliminating vehicle emissions using semiconductor catalysts. A particular emphasis has been placed on various photocatalytic materials, such as TiO2-based materials, Bi-based materials, and Metal–Organic Frameworks (MOFs), and their recent advances in the performance of VOC and NOx photodegradation. In addition, the applications of photocatalytic technology for the elimination of vehicle exhaust are presented (including photocatalysts combined with pavement surfaces, making photocatalysts into architectural coatings and photoreactors), which will offer a promising strategy for photocatalytic technology to remove vehicle exhaust.
Collapse
|
65
|
Shi Q, Deng S, Zheng Y, Du Y, Li L, Yang S, Zhang G, Du L, Wang G, Cheng M, Liu Y. The application of transition metal-modified biochar in sulfate radical based advanced oxidation processes. ENVIRONMENTAL RESEARCH 2022; 212:113340. [PMID: 35452671 DOI: 10.1016/j.envres.2022.113340] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 03/04/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Sulfate radical (SO4•-) based advanced oxidation processes (SR-AOPs) is a very important chemical oxidation technology for the degradation of recalcitrant organic pollutants in water and has been well developed. Recently, transition metals or their oxides-modified biochar has been widely used as the catalyst to catalyze peroxymonosulfate (PMS) and peroxydisulfate (PS) in SR-AOPs due to their outstanding properties (e.g., large surface area, high stability, abound catalytic sites, and diversity of material design, etc.). These composite materials not only combine the respective beneficial characteristics of biochar and transition metals (or their oxides) but also often present synergistic effects between the components. In this review, we present the synthesis of different types of transition metal (or metal oxides)/biochar-based catalysts and their application in SR-AOPs. The catalytic mechanism, including the generation process of free radicals and other reaction pathways on the surface of the catalyst were also carefully discussed. Particular attention has been paid to the synergistic effects between the components that result in enhanced catalytic performance. At the end of this review, the future development prospects of this technology are proposed.
Collapse
Affiliation(s)
- Qingkai Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Si Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yuling Zheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yinlin Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Suzhao Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Gaoxia Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Yang Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
66
|
Jafarzadeh M. Recent Progress in the Development of MOF-Based Photocatalysts for the Photoreduction of Cr (VI). ACS APPLIED MATERIALS & INTERFACES 2022; 14:24993-25024. [PMID: 35604855 DOI: 10.1021/acsami.2c03946] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There has been a direct correlation between the rate of industrial development and the spread of pollution on Earth, particularly in the last century. The organic and inorganic pollutants generated from industrial activities have created serious risks to human life and the environment. The concept of sustainability has emerged to tackle the environmental issues in developing chemical-based industries. However, pollutants have continued to be discharged to water resources, and finding appropriate techniques for the removal and remedy of wastewater is in high demand. Chromium is one of the high-risk heavy metals in industrial wastewaters that should be removed via physical adsorption and/or transformed into less hazardous chemicals. Photocatalysis as a sustainable process has received considerable attention as it utilizes sunlight irradiation to remedy Cr(VI) via a cost-effective process. Numerous photocatalytic systems have been developed up to now, but metal-organic frameworks (MOFs) have gained growing attention because of their unique versatilities and facile structural modulations. A variety of MOF-based photocatalysts have been widely employed for the photoreduction of Cr(VI). Here, we review the recent progress in the design of MOF photocatalysts and summarize their performance in photoreduction reactions.
Collapse
|
67
|
Bakhsh EM, Khan MSJ, Akhtar K, Khan SB, Asiri AM. Chitosan hydrogel wrapped bimetallic nanoparticles based efficient catalysts for the catalytic removal of organic pollutants and hydrogen production. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Esraa M. Bakhsh
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | | | - Kalsoom Akhtar
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Center of Excellence for Advanced Materials Research King Abdulaziz University Jeddah Saudi Arabia
| | - Abdullah M. Asiri
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Center of Excellence for Advanced Materials Research King Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
68
|
Fully conversing and highly selective oxidation of benzene to phenol based on MOF-derived CuO@CN photocatalyst. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|