51
|
Nizhnikov AA, Antonets KS, Inge-Vechtomov SG, Derkatch IL. Modulation of efficiency of translation termination in Saccharomyces cerevisiae. Prion 2014; 8:247-60. [PMID: 25486049 DOI: 10.4161/pri.29851] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nonsense suppression is a readthrough of premature termination codons. It typically occurs either due to the recognition of stop codons by tRNAs with mutant anticodons, or due to a decrease in the fidelity of translation termination. In the latter case, suppressors usually promote the readthrough of different types of nonsense codons and are thus called omnipotent nonsense suppressors. Omnipotent nonsense suppressors were identified in yeast Saccharomyces cerevisiae in 1960s, and most of subsequent studies were performed in this model organism. Initially, omnipotent suppressors were localized by genetic analysis to different protein- and RNA-encoding genes, mostly the components of translational machinery. Later, nonsense suppression was found to be caused not only by genomic mutations, but also by epigenetic elements, prions. Prions are self-perpetuating protein conformations usually manifested by infectious protein aggregates. Modulation of translational accuracy by prions reflects changes in the activity of their structural proteins involved in different aspects of protein synthesis. Overall, nonsense suppression can be seen as a "phenotypic mirror" of events affecting the accuracy of the translational machine. However, the range of proteins participating in the modulation of translation termination fidelity is not fully elucidated. Recently, the list has been expanded significantly by findings that revealed a number of weak genetic and epigenetic nonsense suppressors, the effect of which can be detected only in specific genetic backgrounds. This review summarizes the data on the nonsense suppressors decreasing the fidelity of translation termination in S. cerevisiae, and discusses the functional significance of the modulation of translational accuracy.
Collapse
Affiliation(s)
- Anton A Nizhnikov
- a Department of Genetics and Biotechnology ; St. Petersburg State University ; St. Petersburg , Russia
| | | | | | | |
Collapse
|
52
|
Tarrant D, von der Haar T. Synonymous codons, ribosome speed, and eukaryotic gene expression regulation. Cell Mol Life Sci 2014; 71:4195-206. [PMID: 25038778 PMCID: PMC11113527 DOI: 10.1007/s00018-014-1684-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/26/2014] [Accepted: 07/14/2014] [Indexed: 12/27/2022]
Abstract
Quantitative control of gene expression occurs at multiple levels, including the level of translation. Within the overall process of translation, most identified regulatory processes impinge on the initiation phase. However, recent studies have revealed that the elongation phase can also regulate translation if elongation and initiation occur with specific, not mutually compatible rate parameters. Translation elongation then limits the overall amount of protein that can be made from an mRNA. Several recently discovered control mechanisms of biological pathways are based on such elongation control. Here, we review the molecular mechanisms that determine ribosome speed in eukaryotic organisms, and discuss under which conditions ribosome speed can become the controlling parameter of gene expression levels.
Collapse
Affiliation(s)
- Daniel Tarrant
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Tobias von der Haar
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| |
Collapse
|
53
|
Crepin T, Shalak VF, Yaremchuk AD, Vlasenko DO, McCarthy A, Negrutskii BS, Tukalo MA, El'skaya AV. Mammalian translation elongation factor eEF1A2: X-ray structure and new features of GDP/GTP exchange mechanism in higher eukaryotes. Nucleic Acids Res 2014; 42:12939-48. [PMID: 25326326 PMCID: PMC4227793 DOI: 10.1093/nar/gku974] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Eukaryotic elongation factor eEF1A transits between the GTP- and GDP-bound conformations during the ribosomal polypeptide chain elongation. eEF1A*GTP establishes a complex with the aminoacyl-tRNA in the A site of the 80S ribosome. Correct codon–anticodon recognition triggers GTP hydrolysis, with subsequent dissociation of eEF1A*GDP from the ribosome. The structures of both the ‘GTP’- and ‘GDP’-bound conformations of eEF1A are unknown. Thus, the eEF1A-related ribosomal mechanisms were anticipated only by analogy with the bacterial homolog EF-Tu. Here, we report the first crystal structure of the mammalian eEF1A2*GDP complex which indicates major differences in the organization of the nucleotide-binding domain and intramolecular movements of eEF1A compared to EF-Tu. Our results explain the nucleotide exchange mechanism in the mammalian eEF1A and suggest that the first step of eEF1A*GDP dissociation from the 80S ribosome is the rotation of the nucleotide-binding domain observed after GTP hydrolysis.
Collapse
Affiliation(s)
- Thibaut Crepin
- University of Grenoble Alpes, UVHCI, F-38000 Grenoble, France CNRS, UVHCI, F-38000 Grenoble, France Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France
| | - Vyacheslav F Shalak
- State Key laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., Kiev 03680, Ukraine
| | - Anna D Yaremchuk
- State Key laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., Kiev 03680, Ukraine European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042 France
| | - Dmytro O Vlasenko
- State Key laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., Kiev 03680, Ukraine
| | - Andrew McCarthy
- Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042 France
| | - Boris S Negrutskii
- State Key laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., Kiev 03680, Ukraine
| | - Michail A Tukalo
- State Key laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., Kiev 03680, Ukraine
| | - Anna V El'skaya
- State Key laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., Kiev 03680, Ukraine
| |
Collapse
|
54
|
Chaillou T, Kirby TJ, McCarthy JJ. Ribosome biogenesis: emerging evidence for a central role in the regulation of skeletal muscle mass. J Cell Physiol 2014; 229:1584-94. [PMID: 24604615 DOI: 10.1002/jcp.24604] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 03/04/2014] [Indexed: 12/17/2022]
Abstract
The ribosome is a supramolecular ribonucleoprotein complex that functions at the heart of the translation machinery to convert mRNA into protein. Ribosome biogenesis is the primary determinant of translational capacity of the cell and accordingly has an essential role in the control of cell growth in eukaryotes. Cumulative evidence supports the hypothesis that ribosome biogenesis has an important role in the regulation of skeletal muscle mass. The purpose of this review is to, first, summarize the main mechanisms known to regulate ribosome biogenesis and, second, put forth the hypothesis that ribosome biogenesis is a central mechanism used by skeletal muscle to regulate protein synthesis and control skeletal muscle mass in response to anabolic and catabolic stimuli. The mTORC1 and Wnt/β-catenin/c-myc signaling pathways are discussed as the major pathways that work in concert with each of the three RNA polymerases (RNA Pol I, II, and III) in regulating ribosome biogenesis. Consistent with our hypothesis, activation of these two pathways has been shown to be associated with ribosome biogenesis during skeletal muscle hypertrophy. Although further study is required, the finding that ribosome biogenesis is altered under catabolic states, in particular during disuse atrophy, suggests that its activation represents a novel therapeutic target to reduce or prevent muscle atrophy. Lastly, the emerging field of ribosome specialization is discussed and its potential role in the regulation of gene expression during periods of skeletal muscle plasticity.
Collapse
Affiliation(s)
- Thomas Chaillou
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | | | | |
Collapse
|
55
|
Affiliation(s)
| | - Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley; Berkeley, CA 94720
| |
Collapse
|
56
|
Rossi D, Kuroshu R, Zanelli CF, Valentini SR. eIF5A and EF-P: two unique translation factors are now traveling the same road. WILEY INTERDISCIPLINARY REVIEWS. RNA 2014; 5:209-22. [PMID: 24402910 DOI: 10.1002/wrna.1211] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/01/2013] [Accepted: 11/06/2013] [Indexed: 11/09/2022]
Abstract
Translational control is extremely important in all organisms, and some of its aspects are highly conserved among all primary kingdoms, such as those related to the translation elongation step. The previously classified translation initiation factor 5A (eIF5A) and its bacterial homologue elongation factor P (EF-P) were discovered in the late 70's and have recently been the object of many studies. eIF5A and EF-P are the only cellular proteins that undergo hypusination and lysinylation, respectively, both of which are unique posttranslational modifications. Herein, we review all the important discoveries related to the biochemical and functional characterization of these factors, highlighting the implication of eIF5A in translation elongation instead of initiation. The findings that eIF5A and EF-P are important for specific cellular processes and play a role in the relief of ribosome stalling caused by specific amino acid sequences, such as those containing prolines reinforce the hypothesis that these factors are involved in specialized translation. Although there are some divergences between these unique factors, recent studies have clarified that they act similarly during protein synthesis. Further studies may reveal their precise mechanism of ribosome activity modulation as well as the mRNA targets that require eIF5A and EF-P for their proper translation.
Collapse
Affiliation(s)
- Danuza Rossi
- Department of Biological Sciences, School of Pharmaceutical Sciences, Univ Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | | | | | | |
Collapse
|
57
|
Abstract
ABSTRACT: The Caliciviridae includes small positive-sense, ssRNA viruses, which infect both animals and humans and cause a wide range of diseases. Human caliciviruses are considered the leading cause of outbreaks and sporadic cases of viral gastroenteritis worldwide. Caliciviruses are nonenveloped with a positive-sense, ssRNA genome. As with other positive-sense, ssRNA viruses, they require interactions between viral components and host-cellular factors at different steps along the viral life cycle. Although knowledge about the role of host-cell proteins in the Caliciviridae life cycle remains modest, evidence on this topic is rapidly emerging. This article compiles and discusses the information regarding the involvement of host-cellular factors in the various stages of the calicivirus replication process, emphasizing factors that might be involved in viral translation and/or RNA replication.
Collapse
Affiliation(s)
- Ana Lorena Gutiérrez-Escolano
- *Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
58
|
Ozoe A, Sone M, Fukushima T, Kataoka N, Chida K, Asano T, Hakuno F, Takahashi SI. Insulin receptor substrate-1 associates with small nucleolar RNA which contributes to ribosome biogenesis. Front Endocrinol (Lausanne) 2014; 5:24. [PMID: 24624118 PMCID: PMC3941584 DOI: 10.3389/fendo.2014.00024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 02/14/2014] [Indexed: 11/29/2022] Open
Abstract
Insulin receptor substrates (IRSs) are well known to play crucial roles in mediating intracellular signals of insulin-like growth factors (IGFs)/insulin. Previously, we showed that IRS-1 forms high molecular mass complexes containing RNAs. To identify RNAs in IRS-1 complexes, we performed ultraviolet (UV) cross-linking and immunoprecipitation analysis using HEK293 cells expressing FLAG-IRS-1 and FLAG-IRS-2. We detected the radioactive signals in the immunoprecipitates of FLAG-IRS-1 proportional to the UV irradiation, but not in the immunoprecipitates of FLAG-IRS-2, suggesting the direct contact of RNAs with IRS-1. RNAs cross-linked to IRS-1 were then amplified by RT-PCR, followed by sequence analysis. We isolated sequence tags attributed to 25 messenger RNAs and 8 non-coding RNAs, including small nucleolar RNAs (snoRNAs). We focused on the interaction of IRS-1 with U96A snoRNA (U96A) and its host Rack1 (receptor for activated C kinase 1) pre-mRNA. We confirmed the interaction of IRS-1 with U96A, and with RACK1 pre-mRNA by immunoprecipitation with IRS-1 followed by Northern blotting or RT-PCR analyses. Mature U96A in IRS-1(-/-) mouse embryonic fibroblasts was quantitatively less than WT. We also found that a part of nuclear IRS-1 is localized in the Cajal body, a nuclear subcompartment where snoRNA mature. The unanticipated function of IRS-1 in snoRNA biogenesis highlights the potential of RNA-associated IRS-1 complex to open a new line of investigation to dissect the novel mechanisms regulating IGFs/insulin-mediated biological events.
Collapse
Affiliation(s)
- Atsufumi Ozoe
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Meri Sone
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Fukushima
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoyuki Kataoka
- Laboratory for Malignancy Control Research, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiro Chida
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoichiro Asano
- Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Fumihiko Hakuno
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Shin-Ichiro Takahashi, Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan e-mail:
| |
Collapse
|
59
|
Energetics of activation of GTP hydrolysis on the ribosome. Nat Commun 2013; 4:1733. [PMID: 23591900 DOI: 10.1038/ncomms2741] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/13/2013] [Indexed: 11/09/2022] Open
Abstract
Several of the steps in protein synthesis on the ribosome utilize hydrolysis of guanosine triphosphate (GTP) as the driving force. This reaction is catalyzed by translation factors that become activated upon binding to the ribosome. The recently determined crystal structure of an elongation factor-Tu ternary complex bound to the ribosome allows the energetics of GTP activation to be explored by computer simulations. A central problem regards the role of the universally conserved histidine, which has been proposed to act as a general base for guanosine triphosphate hydrolysis. Here we report a detailed energetic and structural analysis of different possible protonation states that could be involved in activation of the reaction. We show that the histidine cannot act as a general base, but must be protonated and in its active conformation to promote GTP hydrolysis. We further show that the sarcin-ricin loop of the ribosome spontaneously drives the histidine into the correct conformation for GTP activation.
Collapse
|
60
|
O'Keeffe G, Jöchl C, Kavanagh K, Doyle S. Extensive proteomic remodeling is induced by eukaryotic translation elongation factor 1Bγ deletion in Aspergillus fumigatus. Protein Sci 2013; 22:1612-22. [PMID: 24023013 DOI: 10.1002/pro.2367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/27/2013] [Accepted: 09/03/2013] [Indexed: 12/14/2022]
Abstract
The opportunistic pathogen Aspergillus fumigatus is ubiquitous in the environment and predominantly infects immunocompromised patients. The functions of many genes remain unknown despite sequencing of the fungal genome. A putative translation elongation factor 1Bγ (eEF1Bγ, termed elfA; 750 bp) is expressed, and exhibits glutathione S-transferase activity, in A. fumigatus. Here, we demonstrate the role of ElfA in the oxidative stress response, as well as a possible involvement in translation and actin cytoskeleton organization, respectively. Comparative proteomics, in addition to phenotypic analysis, under basal and oxidative stress conditions, demonstrated a role for A. fumigatus elfA in the oxidative stress response. An elfA-deficient strain (A. fumigatus ΔelfA) was significantly more sensitive to the oxidants H2O2, diamide, and 4,4'-dipyridyl disulfide (DPS) than the wild-type. This was further supported with the identification of differentially expressed proteins of the oxidative stress response, including; mitochondrial peroxiredoxin Prx1, molecular chaperone Hsp70 and mitochondrial glycerol-3-phosphate dehydrogenase. Phenotypic analysis also revealed that A. fumigatus ΔelfA was significantly more tolerant to voriconazole than the wild-type. The differential expression of two aminoacyl-tRNA synthetases suggests a role for A. fumigatus elfA in translation, while the identification of actin-bundling protein Sac6 and vacuolar dynamin-like GTPase VpsA link A. fumigatus elfA to the actin cytoskeleton. Overall, this work highlights the diverse roles of A. fumigatus elfA, with respect to translation, oxidative stress and actin cytoskeleton organization. In addition to this, the strategy of combining targeted gene deletion with comparative proteomics for elucidating the role of proteins of unknown function is further revealed.
Collapse
Affiliation(s)
- Grainne O'Keeffe
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | | | | | | |
Collapse
|
61
|
Hwang J, Oh CS, Kang BC. Translation elongation factor 1B (eEF1B) is an essential host factor for Tobacco mosaic virus infection in plants. Virology 2013; 439:105-14. [PMID: 23490052 DOI: 10.1016/j.virol.2013.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/30/2013] [Accepted: 02/07/2013] [Indexed: 11/16/2022]
Abstract
Identifying host factors provides an important clue to understand virus infection. We selected 10 host factor candidate genes and each gene was silenced in Nicotiana benthamiana (N. benthamiana) to investigate their roles in virus infection. The resulting plants were infected with Tobacco mosaic virus (TMV). The accumulation of viral coat protein and the spread of virus were greatly reduced in the plants that eukaryotic translation elongation factor 1A (eEF1A) or 1B (eEF1B) was silenced. These results suggest both eEF1A and eEF1B are required for TMV infection. We also tested for interactions between the eEFs and viral proteins of TMV. Both eEF1A and eEF1B proteins interacted directly with the methyltransferase (MT) domain of the TMV RNA-dependent RNA polymerase (RdRp). eEF1A and eEF1B also interacted with each other in vivo. Our data suggest that eEF1B may be a component of the TMV replication complex which interacts with MT domain of TMV RdRp and eEF1A.
Collapse
Affiliation(s)
- JeeNa Hwang
- Department of Plant Science, Plant Genomics & Breeding Institute and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
62
|
A microarray-based gene expression analysis to identify diagnostic biomarkers for unknown primary cancer. PLoS One 2013; 8:e63249. [PMID: 23671674 PMCID: PMC3650062 DOI: 10.1371/journal.pone.0063249] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/01/2013] [Indexed: 01/20/2023] Open
Abstract
Background The biological basis for cancer of unknown primary (CUP) at the molecular level remains largely unknown, with no evidence of whether a common biological entity exists. Here, we assessed the possibility of identifying a common diagnostic biomarker for CUP using a microarray gene expression analysis. Methods Tumor mRNA samples from 60 patients with CUP were analyzed using the Affymetrix U133A Plus 2.0 GeneChip and were normalized by asinh (hyperbolic arc sine) transformation to construct a mean gene-expression profile specific to CUP. A gene-expression profile specific to non-CUP group was constructed using publicly available raw microarray datasets. The t-tests were performed to compare the CUP with non-CUP groups and the top 59 CUP specific genes with the highest fold change were selected (p-value<0.001). Results Among the 44 genes that were up-regulated in the CUP group, 6 genes for ribosomal proteins were identified. Two of these genes (RPS7 and RPL11) are known to be involved in the Mdm2–p53 pathway. We also identified several genes related to metastasis and apoptosis, suggesting a biological attribute of CUP. Conclusions The protein products of the up-regulated and down-regulated genes identified in this study may be clinically useful as unique biomarkers for CUP.
Collapse
|
63
|
Abstract
Phosphoryl transfer plays key roles in signaling, energy transduction, protein synthesis, and maintaining the integrity of the genetic material. On the surface, it would appear to be a simple nucleophile displacement reaction. However, this simplicity is deceptive, as, even in aqueous solution, the low-lying d-orbitals on the phosphorus atom allow for eight distinct mechanistic possibilities, before even introducing the complexities of the enzyme catalyzed reactions. To further complicate matters, while powerful, traditional experimental techniques such as the use of linear free-energy relationships (LFER) or measuring isotope effects cannot make unique distinctions between different potential mechanisms. A quarter of a century has passed since Westheimer wrote his seminal review, 'Why Nature Chose Phosphate' (Science 235 (1987), 1173), and a lot has changed in the field since then. The present review revisits this biologically crucial issue, exploring both relevant enzymatic systems as well as the corresponding chemistry in aqueous solution, and demonstrating that the only way key questions in this field are likely to be resolved is through careful theoretical studies (which of course should be able to reproduce all relevant experimental data). Finally, we demonstrate that the reason that nature really chose phosphate is due to interplay between two counteracting effects: on the one hand, phosphates are negatively charged and the resulting charge-charge repulsion with the attacking nucleophile contributes to the very high barrier for hydrolysis, making phosphate esters among the most inert compounds known. However, biology is not only about reducing the barrier to unfavorable chemical reactions. That is, the same charge-charge repulsion that makes phosphate ester hydrolysis so unfavorable also makes it possible to regulate, by exploiting the electrostatics. This means that phosphate ester hydrolysis can not only be turned on, but also be turned off, by fine tuning the electrostatic environment and the present review demonstrates numerous examples where this is the case. Without this capacity for regulation, it would be impossible to have for instance a signaling or metabolic cascade, where the action of each participant is determined by the fine-tuned activity of the previous piece in the production line. This makes phosphate esters the ideal compounds to facilitate life as we know it.
Collapse
|
64
|
Graifer D, Karpova G. Photoactivatable RNA derivatives as tools for studying the structural and functional organization of complex cellular ribonucleoprotein machineries. RSC Adv 2013. [DOI: 10.1039/c2ra22095d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
65
|
Fukushima K, Iwahashi H, Nishikimi M. ONIOM Study of a Proton Shuttle-Catalyzed Stepwise Mechanism for Peptide Bond Formation in the Ribosome. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2012. [DOI: 10.1246/bcsj.20120144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Morimitsu Nishikimi
- Department of Food Science and Nutrition, Faculty of Human Life and Environmental Sciences, Nagoya Women’s University
| |
Collapse
|
66
|
Zhigailov AV, Babaylova ES, Polimbetova NS, Graifer DM, Karpova GG, Iskakov BK. Fragment of mRNA coding part complementary to region 1638–1650 of wheat 18S RNA functions as a translational enhancer. Mol Biol 2012. [DOI: 10.1134/s0026893312040164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
67
|
Couttas TA, Raftery MJ, Padula MP, Herbert BR, Wilkins MR. Methylation of translation-associated proteins in Saccharomyces cerevisiae: Identification of methylated lysines and their methyltransferases. Proteomics 2012; 12:960-72. [PMID: 22522802 DOI: 10.1002/pmic.201100570] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study aimed to identify sites of lysine methylation in Saccharomyces cerevisiae and the associated methyltransferases. Hexapeptide ligand affinity chromatography was used to normalize the abundance levels of proteins in whole cell lysate. MS/MS, in association with antibody-based detection, was then used to identify lysine methylated proteins and the precise sites of modification. Lysine methylation was found on the proteins elongation factor (EF) 1-α, 2, and 3A, as well as ribosomal proteins 40S S18-A/B, 60S L11-A/B, L18-A/B, and L42-A/B. Precise sites were mapped in all cases. Single-gene knockouts of known and putative methyltransferase(s), in association with MS/MS, showed that EF1-α is monomethylated by Efm1 at lysin 30 and dimethylated by See1 at lysine 316. Methyltransferase Rkm1 was found to monomethylate 40S ribosomal protein S18-A/B at lysine 48. Knockout analysis also revealed that putative methyltransferase YBR271W affects the methylation of proteins EF2 and 3A; this was detected by Western blotting and immunodetection. This methyltransferase shows strong interspecies conservation and a tryptophan-containing motif associated with its active site. We suggest that enzyme YBR271W is named EF methyltransferase 2 (Efm2), in line with the recent naming of YHL039W as Efm1.
Collapse
Affiliation(s)
- Timothy A Couttas
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW, Australia
| | | | | | | | | |
Collapse
|
68
|
The HIV-1 Nef protein interacts with two components of the 40S small ribosomal subunit, the RPS10 protein and the 18S rRNA. Virol J 2012; 9:103. [PMID: 22672539 PMCID: PMC3393617 DOI: 10.1186/1743-422x-9-103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 06/06/2012] [Indexed: 01/06/2023] Open
Abstract
Background Human immunodeficiency virus type 1 (HIV-1) Nef-encoded protein plays key functions at almost all stages of the viral life cycle, but its role in translation is largely unknown. Methods To determine the effect of Nef on translation we used an in vitro translation assay. The detection of Nef/RPS10 complexes and the presence of 18S rRNA and tRNAs in the complexes were performed by coimmunoprecipitation and RT-PCR assay. Results We observed that the HIV-1 Nef protein specifically impaired translation in vitro. We observed the interaction of Nef with RPS10 by coimmunoprecipitation assay. In addition 18S rRNA and tRNAs were present in the Nef/RPS10 complexes. Conclusions Our results are consistent with a model in which the Nef protein by binding to two components of the 40S small ribosomal subunit, RPS10 and 18S rRNA, and to a lesser extent to tRNAs, could lead to decreased protein synthesis.
Collapse
|
69
|
Abstract
Genomic analyses increasingly make use of sophisticated statistical and computational approaches in investigations of genomic function and evolution. Scientists implementing and developing these approaches are often computational scientists, physicists, or mathematicians. This article aims to provide a compact overview of genome biology for these scientists. Thus, the article focuses on providing biological context to the genomic features, processes, and structures analysed by these approaches. Topics covered include (1) differences between eukaryotic and prokaryotic cells; (2) the physical structure of genomes and chromatin; (3) different categories of genomic regions, including those serving as templates for RNA and protein synthesis, regulatory regions, repetitive regions, and "architectural" or "organisational" regions, such as centromeres and telomeres; (4) the cell cycle; (5) an overview of transcription, translation, and protein structure; and (6) a glossary of relevant terms.
Collapse
|
70
|
Dever TE, Green R. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb Perspect Biol 2012; 4:a013706. [PMID: 22751155 DOI: 10.1101/cshperspect.a013706] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This work summarizes our current understanding of the elongation and termination/recycling phases of eukaryotic protein synthesis. We focus here on recent advances in the field. In addition to an overview of translation elongation, we discuss unique aspects of eukaryotic translation elongation including eEF1 recycling, eEF2 modification, and eEF3 and eIF5A function. Likewise, we highlight the function of the eukaryotic release factors eRF1 and eRF3 in translation termination, and the functions of ABCE1/Rli1, the Dom34:Hbs1 complex, and Ligatin (eIF2D) in ribosome recycling. Finally, we present some of the key questions in translation elongation, termination, and recycling that remain to be answered.
Collapse
Affiliation(s)
- Thomas E Dever
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
71
|
Abstract
It is widely accepted that protein synthesis occurs in the cytoplasms of eukaryotic cells, but some investigators believe that it also occurs in the nucleus. In spite of experiments performed in several labs over many years, the issue of nuclear translation remains unresolved. Advocates assert that it would serve as an economical and convenient way to explain how cells monitor the quality of newly made mRNAs or ribosomes. Skeptics argue that regardless of its esthetic appeal, compelling evidence for nuclear translation has been absent. The key question--also central to the debate more than 30 years ago--is whether alleged nuclear translation can be proven to represent "genuine polypeptide synthesis that is a function of the nuclear compartment".
Collapse
Affiliation(s)
- James Dahlberg
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | | |
Collapse
|
72
|
Klinge S, Voigts-Hoffmann F, Leibundgut M, Ban N. Atomic structures of the eukaryotic ribosome. Trends Biochem Sci 2012; 37:189-98. [DOI: 10.1016/j.tibs.2012.02.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/10/2012] [Accepted: 02/16/2012] [Indexed: 12/20/2022]
|
73
|
Graifer D, Karpova G. Structural and functional topography of the human ribosome. Acta Biochim Biophys Sin (Shanghai) 2012; 44:281-99. [PMID: 22257731 DOI: 10.1093/abbs/gmr118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This review covers data on the structural organization of functional sites in the human ribosome, namely, the messenger RNA binding center, the binding site of the hepatitis C virus RNA internal ribosome entry site, and the peptidyl transferase center. The data summarized here have been obtained primarily by means of a site-directed cross-linking approach with application of the analogs of the respective ribosomal ligands bearing cross-linkers at the designed positions. These data are discussed taking into consideration available structural data on ribosomes from various kingdoms obtained with the use of cryo-electron microscopy, X-ray crystallography, and other approaches.
Collapse
Affiliation(s)
- Dmitri Graifer
- Laboratory of Ribosome Structure and Functions, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
74
|
Burnside K, Rajagopal L. Regulation of prokaryotic gene expression by eukaryotic-like enzymes. Curr Opin Microbiol 2012; 15:125-31. [PMID: 22221896 DOI: 10.1016/j.mib.2011.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/01/2011] [Accepted: 12/14/2011] [Indexed: 12/30/2022]
Abstract
A growing body of evidence indicates that serine/threonine kinases (STKs) and phosphatases (STPs) regulate gene expression in prokaryotic organisms. As prokaryotic STKs and STPs are not DNA binding proteins, regulation of gene expression is accomplished through post-translational modification of their targets. These include two-component response regulators, DNA binding proteins and proteins that mediate transcription and translation. This review summarizes our current understanding of how STKs and STPs mediate gene expression in prokaryotes. Further studies to identify environmental signals that trigger the signaling cascade and elucidation of mechanisms that regulate crosstalk between eukaryotic-like signaling enzymes, two-component systems, and components of the transcriptional and translational machinery will facilitate a greater understanding of prokaryotic gene regulation.
Collapse
Affiliation(s)
- Kellie Burnside
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, WA 98101-1304, United States
| | | |
Collapse
|
75
|
The phylogenomic roots of modern biochemistry: origins of proteins, cofactors and protein biosynthesis. J Mol Evol 2012; 74:1-34. [PMID: 22210458 DOI: 10.1007/s00239-011-9480-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 12/12/2011] [Indexed: 12/20/2022]
Abstract
The complexity of modern biochemistry developed gradually on early Earth as new molecules and structures populated the emerging cellular systems. Here, we generate a historical account of the gradual discovery of primordial proteins, cofactors, and molecular functions using phylogenomic information in the sequence of 420 genomes. We focus on structural and functional annotations of the 54 most ancient protein domains. We show how primordial functions are linked to folded structures and how their interaction with cofactors expanded the functional repertoire. We also reveal protocell membranes played a crucial role in early protein evolution and show translation started with RNA and thioester cofactor-mediated aminoacylation. Our findings allow elaboration of an evolutionary model of early biochemistry that is firmly grounded in phylogenomic information and biochemical, biophysical, and structural knowledge. The model describes how primordial α-helical bundles stabilized membranes, how these were decorated by layered arrangements of β-sheets and α-helices, and how these arrangements became globular. Ancient forms of aminoacyl-tRNA synthetase (aaRS) catalytic domains and ancient non-ribosomal protein synthetase (NRPS) modules gave rise to primordial protein synthesis and the ability to generate a code for specificity in their active sites. These structures diversified producing cofactor-binding molecular switches and barrel structures. Accretion of domains and molecules gave rise to modern aaRSs, NRPS, and ribosomal ensembles, first organized around novel emerging cofactors (tRNA and carrier proteins) and then more complex cofactor structures (rRNA). The model explains how the generation of protein structures acted as scaffold for nucleic acids and resulted in crystallization of modern translation.
Collapse
|
76
|
Sharifulin D, Khairulina Y, Ivanov A, Meschaninova M, Ven'yaminova A, Graifer D, Karpova G. A central fragment of ribosomal protein S26 containing the eukaryote-specific motif YxxPKxYxK is a key component of the ribosomal binding site of mRNA region 5' of the E site codon. Nucleic Acids Res 2011; 40:3056-65. [PMID: 22167470 PMCID: PMC3326325 DOI: 10.1093/nar/gkr1212] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The eukaryotic ribosomal protein S26e (rpS26e) lacking eubacterial counterparts is a key component of the ribosomal binding site of mRNA region 5′ of the codon positioned at the exit site. Here, we determined the rpS26e oligopeptide neighboring mRNA on the human 80S ribosome using mRNA analogues bearing perfluorophenyl azide-derivatized nucleotides at designed locations. The protein was cross-linked to mRNA analogues in specific ribosomal complexes, in which the derivatized nucleotide was located at positions −3 to −9. Digestion of cross-linked rpS26e with various specific proteolytic agents followed by identification of the resulting modified oligopeptides made it possible to map the cross-links to fragment 60–71. This fragment contains the motif YxxPKxYxK conserved in eukaryotic but not in archaeal rpS26e. Analysis of X-ray structure of the Tetrahymena thermophila 40S subunit showed that this motif is not implicated in the intraribosomal interactions, implying its involvement in translation process in a eukaryote-specific manner. Comparison of the results obtained with data on positioning of ribosomal ligands on the 40S subunit lead us to suggest that this motif is involved in interaction with both the 5′-untranslated region of mRNA and the initiation factor eIF3 specific for eukaryotes, providing new insights into molecular mechanisms of translation in eukaryotes.
Collapse
Affiliation(s)
- Dmitri Sharifulin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | | | | | | | | | | |
Collapse
|
77
|
Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast. Proc Natl Acad Sci U S A 2011; 108:E1392-8. [PMID: 22143755 DOI: 10.1073/pnas.1113956108] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although well defined in bacterial systems, the molecular mechanisms underlying ribosome recycling in eukaryotic cells have only begun to be explored. Recent studies have proposed a direct role for eukaryotic termination factors eRF1 and eRF3 (and the related factors Dom34 and Hbs1) in downstream recycling processes; however, our understanding of the connection between termination and recycling in eukaryotes is limited. Here, using an in vitro reconstituted yeast translation system, we identify a key role for the multifunctional ABC-family protein Rli1 in stimulating both eRF1-mediated termination and ribosome recycling in yeast. Through subsequent kinetic analysis, we uncover a network of regulatory features that provides mechanistic insight into how the events of termination and recycling are obligately ordered. These results establish a model in which eukaryotic termination and recycling are not clearly demarcated events, as they are in bacteria, but coupled stages of the same release-factor mediated process.
Collapse
|
78
|
Abstract
The dynamic processes of cell growth and division are under constant surveillance. As one of the primary “gatekeepers” of the cell, the p53 tumor suppressor plays a major role in sensing and responding to a variety of stressors to maintain cellular homeostasis. Recent studies have shown that inhibition of ribosomal biogenesis can activate p53 through ribosomal protein (RP)-mediated suppression of Mdm2 E3 ligase activity. Mutations in Mdm2 that disrupt RP binding have been detected in human cancers; however, the physiological significance of the RP-Mdm2 interaction is not completely understood. We generated mice carrying a single cysteine-to-phenylalanine substitution in the central zinc finger of Mdm2 (Mdm2C305F) that disrupts Mdm2’s binding to RPL11 and RPL5. Despite being developmentally normal and maintaining an intact p53 response to DNA damage, the Mdm2C305F mice demonstrate a diminished p53 response to perturbations in ribosomal biogenesis, providing the first in vivo evidence for an RP-Mdm2-p53 signaling pathway. Here we review some recent studies about RP-Mdm2-p53 signaling and speculate on the relevance of this pathway to human cancer.
Collapse
Affiliation(s)
- Paula L Miliani de Marval
- Department of Radiation Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
79
|
Ribosomal protein L11 recruits miR-24/miRISC to repress c-Myc expression in response to ribosomal stress. Mol Cell Biol 2011; 31:4007-21. [PMID: 21807902 DOI: 10.1128/mcb.05810-11] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
c-Myc promotes cell growth by enhancing ribosomal biogenesis and translation. Deregulated expression of c-Myc and aberrant ribosomal biogenesis and translation contribute to tumorigenesis. Thus, a fine coordination between c-Myc and ribosomal biogenesis is vital for normal cell homeostasis. Here, we show that ribosomal protein L11 regulates c-myc mRNA turnover. L11 binds to c-myc mRNA at its 3' untranslated region (3'-UTR), the core component of microRNA-induced silencing complex (miRISC) argonaute 2 (Ago2), as well as miR-24, leading to c-myc mRNA reduction. Knockdown of L11 drastically increases the levels and stability of c-myc mRNA. Ablation of Ago2 abrogated the L11-mediated reduction of c-myc mRNA, whereas knockdown of L11 rescued miR-24-mediated c-myc mRNA decay. Interestingly, treatment of cells with the ribosomal stress-inducing agent actinomycin D or 5-fluorouracil significantly decreased the c-myc mRNA levels in an L11- and Ago2-dependent manner. Both treatments enhanced the association of L11 with Ago2, miR-24, and c-myc mRNA. We further show that ribosome-free L11 binds to c-myc mRNA in the cytoplasm and that this binding is enhanced by actinomycin D treatment. Together, our results identify a novel regulatory paradigm wherein L11 plays a critical role in controlling c-myc mRNA turnover via recruiting miRISC in response to ribosomal stress.
Collapse
|
80
|
Lauber MA, Reilly JP. Structural analysis of a prokaryotic ribosome using a novel amidinating cross-linker and mass spectrometry. J Proteome Res 2011; 10:3604-16. [PMID: 21618984 DOI: 10.1021/pr200260n] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure of the Escherichia coli ribosome, a 2.5 MDa ribonucleoprotein complex containing more than 50 proteins, was probed using the novel amidinating cross-linker diethyl suberthioimidate (DEST) and mass spectrometry. Peptide cross-links derived from this complex structure were identified at high confidence (FDR 0.8%) from precursor mass measurements and collision-induced dissociation (CID) fragmentation spectra. The acquired cross-linking data were found to be in excellent agreement with the crystal structure of the E. coli ribosome. DEST cross-links are particularly amenable to strong cation exchange (SCX) chromatography, facilitating a large-scale analysis. SCX enrichment and fractionation were shown to increase the number of cross-link spectra matches in our analysis 10-fold. Evidence is presented that these techniques can be used to study complex interactomes.
Collapse
Affiliation(s)
- Matthew A Lauber
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
81
|
Abstract
The last 15 years have witnessed the development of tools that allow the observation and manipulation of single molecules. The rapidly expanding application of these technologies for investigating biological systems of ever-increasing complexity is revolutionizing our ability to probe the mechanisms of biological reactions. Here, we compare the mechanistic information available from single-molecule experiments with the information typically obtained from ensemble studies and show how these two experimental approaches interface with each other. We next present a basic overview of the toolkit for observing and manipulating biology one molecule at a time. We close by presenting a case study demonstrating the impact that single-molecule approaches have had on our understanding of one of life's most fundamental biochemical reactions: the translation of a messenger RNA into its encoded protein by the ribosome.
Collapse
Affiliation(s)
- Ignacio Tinoco
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA
| | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
82
|
Bulygin KN, Khairulina YS, Kolosov PM, Ven’yaminova AG, Graifer DM, Vorobjev YN, Frolova LY, Karpova GG. Adenine and guanine recognition of stop codon is mediated by different N domain conformations of translation termination factor eRF1. Nucleic Acids Res 2011; 39:7134-46. [PMID: 21602268 PMCID: PMC3167606 DOI: 10.1093/nar/gkr376] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Positioning of release factor eRF1 toward adenines and the ribose-phosphate backbone of the UAAA stop signal in the ribosomal decoding site was studied using messenger RNA (mRNA) analogs containing stop signal UAA/UAAA and a photoactivatable cross-linker at definite locations. The human eRF1 peptides cross-linked to these analogs were identified. Cross-linkers on the adenines at the 2nd, 3rd or 4th position modified eRF1 near the conserved YxCxxxF loop (positions 125–131 in the N domain), but cross-linker at the 4th position mainly modified the tripeptide 26-AAR-28. This tripeptide cross-linked also with derivatized 3′-phosphate of UAA, while the same cross-linker at the 3′-phosphate of UAAA modified both the 26–28 and 67–73 fragments. A comparison of the results with those obtained earlier with mRNA analogs bearing a similar cross-linker at the guanines indicates that positioning of eRF1 toward adenines and guanines of stop signals in the 80S termination complex is different. Molecular modeling of eRF1 in the 80S termination complex showed that eRF1 fragments neighboring guanines and adenines of stop signals are compatible with different N domain conformations of eRF1. These conformations vary by positioning of stop signal purines toward the universally conserved dipeptide 31-GT-32, which neighbors guanines but is oriented more distantly from adenines.
Collapse
Affiliation(s)
- Konstantin N. Bulygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 and Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yulia S. Khairulina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 and Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Petr M. Kolosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 and Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Aliya G. Ven’yaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 and Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Dmitri M. Graifer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 and Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yuri N. Vorobjev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 and Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ludmila Yu. Frolova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 and Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Galina G. Karpova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 and Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Moscow, 119991, Russia
- *To whom correspondence should be addressed. Tel: +7(383) 363 5140; Fax: +7(383) 363-5153;
| |
Collapse
|
83
|
Klaholz BP. Molecular recognition and catalysis in translation termination complexes. Trends Biochem Sci 2011; 36:282-92. [DOI: 10.1016/j.tibs.2011.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 11/16/2022]
|
84
|
Jha S, Komar AA. Birth, life and death of nascent polypeptide chains. Biotechnol J 2011; 6:623-40. [PMID: 21538896 PMCID: PMC3130931 DOI: 10.1002/biot.201000327] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/26/2011] [Accepted: 03/15/2011] [Indexed: 01/16/2023]
Abstract
The journey of nascent polypeptides from synthesis at the peptidyl transferase center of the ribosome (“birth”) to full function (“maturity”) involves multiple interactions, constraints, modifications and folding events. Each step of this journey impacts the ultimate expression level and functional capacity of the translated protein. It has become clear that the kinetics of protein translation is predominantly modulated by synonymous codon usage along the mRNA, and that this provides an active mechanism for coordinating the synthesis, maturation and folding of nascent polypeptides. Multiple quality control systems ensure that proteins achieve their native, functional form. Unproductive co-translational folding intermediates that arise during protein synthesis may undergo enhanced interaction with components of these systems, such as chaperones, and/or be subjects of co-translational degradation (“death”). This review provides an overview of our current understanding of the complex co-translational events that accompany the synthesis, maturation, folding and degradation of nascent polypeptide chains.
Collapse
Affiliation(s)
- Sujata Jha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | |
Collapse
|
85
|
Chakraborty A, Uechi T, Kenmochi N. Guarding the 'translation apparatus': defective ribosome biogenesis and the p53 signaling pathway. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:507-22. [PMID: 21957040 DOI: 10.1002/wrna.73] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribosomes, the molecular factories that carry out protein synthesis, are essential for every living cell. Ribosome biogenesis, the process of ribosome synthesis, is highly complex and energy consuming. Over the last decade, many exciting and novel findings have linked various aspects of ribosome biogenesis to cell growth and cell cycle control. Defects in ribosome biogenesis have also been linked to human diseases. It is now clear that disruption of ribosome biogenesis causes nucleolar stress that triggers a p53 signaling pathway, thus providing cells with a surveillance mechanism for monitoring ribosomal integrity. Although the exact mechanisms of p53 induction in response to nucleolar stress are still unknown, several ribosomal proteins have been identified as key players in this ribosome-p53 signaling pathway. Recent studies of human ribosomal pathologies in a variety of animal models have also highlighted the role of this pathway in the pathophysiology of these diseases. However, it remains to be understood why the effect of ribosomal malfunction is not a universal response in all cell types but is restricted to particular tissues, causing the specific phenotypes seen in ribosomal diseases. A challenge for future studies will be to identify additional players in this signaling pathway and to elucidate the underlying molecular mechanisms that link defective ribosome synthesis to p53.
Collapse
|
86
|
Komar AA, Hatzoglou M. Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle 2011; 10:229-40. [PMID: 21220943 DOI: 10.4161/cc.10.2.14472] [Citation(s) in RCA: 305] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Translation of cellular mRNAs via initiation at Internal Ribosome Entry Sites (IRESs) has received increased attention during recent years due to its emerging significance for many physiological and pathological stress conditions in eukaryotic cells. Expression of genes bearing IRES elements in their mRNAs is controlled by multiple molecular mechanisms, with IRES-mediated translation favored under conditions when cap-dependent translation is compromised. In this review, we discuss recent advances in the field and future directions that may bring us closer to understanding the complex mechanisms that guide cellular IRES-mediated expression. We present examples in which the competitive action of IRES-transacting factors (ITAFs) plays a pivotal role in IRES-mediated translation and thereby controls cell-fate decisions leading to either pro-survival stress adaptation or cell death.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA.
| | | |
Collapse
|
87
|
Proteome evolution and the metabolic origins of translation and cellular life. J Mol Evol 2010; 72:14-33. [PMID: 21082171 DOI: 10.1007/s00239-010-9400-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 10/25/2010] [Indexed: 12/27/2022]
Abstract
The origin of life has puzzled molecular scientists for over half a century. Yet fundamental questions remain unanswered, including which came first, the metabolic machinery or the encoding nucleic acids. In this study we take a protein-centric view and explore the ancestral origins of proteins. Protein domain structures in proteomes are highly conserved and embody molecular functions and interactions that are needed for cellular and organismal processes. Here we use domain structure to study the evolution of molecular function in the protein world. Timelines describing the age and function of protein domains at fold, fold superfamily, and fold family levels of structural complexity were derived from a structural phylogenomic census in hundreds of fully sequenced genomes. These timelines unfold congruent hourglass patterns in rates of appearance of domain structures and functions, functional diversity, and hierarchical complexity, and revealed a gradual build up of protein repertoires associated with metabolism, translation and DNA, in that order. The most ancient domain architectures were hydrolase enzymes and the first translation domains had catalytic functions for the aminoacylation and the molecular switch-driven transport of RNA. Remarkably, the most ancient domains had metabolic roles, did not interact with RNA, and preceded the gradual build-up of translation. In fact, the first translation domains had also a metabolic origin and were only later followed by specialized translation machinery. Our results explain how the generation of structure in the protein world and the concurrent crystallization of translation and diversified cellular life created further opportunities for proteomic diversification.
Collapse
|
88
|
Tedder PMR, Bradford JR, Needham CJ, McConkey GA, Bulpitt AJ, Westhead DR. Gene function prediction using semantic similarity clustering and enrichment analysis in the malaria parasite Plasmodium falciparum. ACTA ACUST UNITED AC 2010; 26:2431-7. [PMID: 20693320 DOI: 10.1093/bioinformatics/btq450] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
MOTIVATION Functional genomics data provides a rich source of information that can be used in the annotation of the thousands of genes of unknown function found in most sequenced genomes. However, previous gene function prediction programs are mostly produced for relatively well-annotated organisms that often have a large amount of functional genomics data. Here, we present a novel method for predicting gene function that uses clustering of genes by semantic similarity, a naïve Bayes classifier and 'enrichment analysis' to predict gene function for a genome that is less well annotated but does has a severe effect on human health, that of the malaria parasite Plasmodium falciparum. RESULTS Predictions for the molecular function, biological process and cellular component of P.falciparum genes were created from eight different datasets with a combined prediction also being produced. The high-confidence predictions produced by the combined prediction were compared to those produced by a simple K-nearest neighbour classifier approach and were shown to improve accuracy and coverage. Finally, two case studies are described, which investigate two biological processes in more detail, that of translation initiation and invasion of the host cell. AVAILABILITY Predictions produced are available at http://www.bioinformatics.leeds.ac.uk/∼bio5pmrt/PAGODA.
Collapse
Affiliation(s)
- Philip M R Tedder
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | | | | | | | | | | |
Collapse
|
89
|
Abstract
Protein biosynthesis, or translation, occurs on the ribosome, a large RNA-protein assembly universally conserved in all forms of life. Over the last decade, structures of the small and large ribosomal subunits and of the intact ribosome have begun to reveal the molecular details of how the ribosome works. Both cryo-electron microscopy and X-ray crystallography continue to provide fresh insights into the mechanism of translation. In this review, we describe the most recent structural models of the bacterial ribosome that shed light on the movement of messenger RNA and transfer RNA on the ribosome after each peptide bond is formed, a process termed translocation. We also discuss recent structures that reveal the molecular basis for stop codon recognition during translation termination. Finally, we review recent advances in understanding how bacteria handle errors in both translocation and termination.
Collapse
Affiliation(s)
- Jack A Dunkle
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
90
|
Siegfried NA, Kierzek R, Bevilacqua PC. Role of unsatisfied hydrogen bond acceptors in RNA energetics and specificity. J Am Chem Soc 2010; 132:5342-4. [PMID: 20345162 DOI: 10.1021/ja9107726] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA plays essential roles in much of biology. These functions are dictated by structures mediated by hydrogen bonding, stacking, electrostatics, and steric interactions. Roles of unsatisfied hydrogen bond functionalities in these structures are less well understood. Herein, we evaluated the energetic contributions of unsatisfied hydrogen bonding groups by placing chemically modified substituents in select internal positions in RNA helices and conducting thermodynamic studies. We find that unsatisfied carbonyl groups make exceptional contributions to structure formation (approximately 3 kcal/mol in free energy), most likely due to a combination of strain and dehydration effects. Thus, unsatisfied hydrogen bonding groups are likely key determinants in the folding energetics and specificity of many RNA and DNA molecules and may be especially important in tertiary structure interactions.
Collapse
Affiliation(s)
- Nathan A Siegfried
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|
91
|
Abstract
Eukaryotic translation elongation factor 1A (eEF1A) is one of the most abundant protein synthesis factors. eEF1A is responsible for the delivery of all aminoacyl-tRNAs to the ribosome, aside from initiator and selenocysteine tRNAs. In addition to its roles in polypeptide chain elongation, unique cellular and viral activities have been attributed to eEF1A in eukaryotes from yeast to plants and mammals. From preliminary, speculative associations to well characterized biochemical and biological interactions, it is clear that eEF1A, of all the translation factors, has been ascribed the most functions outside of protein synthesis. A mechanistic understanding of these non-canonical functions of eEF1A will shed light on many important biological questions, including viral-host interaction, subcellular organization, and the integration of key cellular pathways.
Collapse
Affiliation(s)
- Maria K Mateyak
- Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA
| | | |
Collapse
|
92
|
Abstract
MYC regulates the transcription of thousands of genes required to coordinate a range of cellular processes, including those essential for proliferation, growth, differentiation, apoptosis and self-renewal. Recently, MYC has also been shown to serve as a direct regulator of ribosome biogenesis. MYC coordinates protein synthesis through the transcriptional control of RNA and protein components of ribosomes, and of gene products required for the processing of ribosomal RNA, the nuclear export of ribosomal subunits and the initiation of mRNA translation. We discuss how the modulation of ribosome biogenesis by MYC may be essential to its physiological functions as well as its pathological role in tumorigenesis.
Collapse
Affiliation(s)
- Jan van Riggelen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
93
|
Increased incidence of rare codon clusters at 5' and 3' gene termini: implications for function. BMC Genomics 2010; 11:118. [PMID: 20167116 PMCID: PMC2833160 DOI: 10.1186/1471-2164-11-118] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 02/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The process of translation can be affected by the use of rare versus common codons within the mRNA transcript. RESULTS Here, we show that rare codons are enriched at the 5' and 3' termini of genes from E. coli and other prokaryotes. Genes predicted to be secreted show significant enrichment in 5' rare codon clusters, but not 3' rare codon clusters. Surprisingly, no correlation between 5' mRNA structure and rare codon usage was observed. CONCLUSIONS Potential functional roles for the enrichment of rare codons at terminal positions are explored.
Collapse
|
94
|
Lumsden T, Bentley AA, Beutler W, Ghosh A, Galkin O, Komar AA. Yeast strains with N-terminally truncated ribosomal protein S5: implications for the evolution, structure and function of the Rps5/Rps7 proteins. Nucleic Acids Res 2009; 38:1261-72. [PMID: 19969550 PMCID: PMC2831326 DOI: 10.1093/nar/gkp1113] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ribosomal protein (rp)S5 belongs to the family of the highly conserved rp's that contains rpS7 from prokaryotes and rpS5 from eukaryotes. Alignment of rpS5/rpS7 from metazoans (Homo sapiens), fungi (Saccharomyces cerevisiae) and bacteria (Escherichia coli) shows that the proteins contain a conserved central/C-terminal core region and possess variable N-terminal regions. Yeast rpS5 is 69 amino acids (aa) longer than the E. coli rpS7 protein; and human rpS5 is 48 aa longer than the rpS7, respectively. To investigate the function of the yeast rpS5 and in particular the role of its N-terminal region, we obtained and characterized yeast strains in which the wild-type yeast rpS5 was replaced by its truncated variants, lacking 13, 24, 30 and 46 N-terminal amino acids, respectively. All mutant yeast strains were viable and displayed only moderately reduced growth rates, with the exception of the strain lacking 46 N-terminal amino acids, which had a doubling time of about 3 h. Biochemical analysis of the mutant yeast strains suggests that the N-terminal part of the eukaryotic and, in particular, yeast rpS5 may impact the ability of 40S subunits to function properly in translation and affect the efficiency of initiation, specifically the recruitment of initiation factors eIF3 and eIF2.
Collapse
Affiliation(s)
- Thomas Lumsden
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | | | | | | | | | | |
Collapse
|
95
|
Hellen CUT. IRES-induced conformational changes in the ribosome and the mechanism of translation initiation by internal ribosomal entry. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:558-70. [PMID: 19539793 DOI: 10.1016/j.bbagrm.2009.06.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/04/2009] [Accepted: 06/11/2009] [Indexed: 01/02/2023]
Abstract
Translation of the genomes of several positive-sense RNA viruses follows end-independent initiation on an internal ribosomal entry site (IRES) in the viral mRNA. There are four major IRES groups, and despite major differences in the mechanisms that they use, one unifying characteristic is that each mechanism involves essential non-canonical interactions of the IRES with components of the canonical translational apparatus. Thus the approximately 200nt.-long Type 4 IRESs (epitomized by Cricket paralysis virus) bind directly to the intersubunit space on the ribosomal 40S subunit, followed by joining to a 60S subunit to form active ribosomes by a factor-independent mechanism. The approximately 300nt.-long type 3 IRESs (epitomized by Hepatitis C virus) binds independently to eukaryotic initiation factor (eIF) 3, and to the solvent-accessible surface and E-site of the 40S subunit: addition of eIF2-GTP/initiator tRNA is sufficient to form a 48S complex that can join a 60S subunit in an eIF5/eIF5B-mediated reaction to form an active ribosome. Recent cryo-electron microscopy and biochemical analyses have revealed a second general characteristic of the mechanisms of initiation on Type 3 and Type 4 IRESs. Both classes of IRES induce similar conformational changes in the ribosome that influence entry, positioning and fixation of mRNA in the ribosomal decoding channel. HCV-like IRESs also stabilize binding of initiator tRNA in the peptidyl (P) site of the 40S subunit, whereas Type 4 IRESs induce changes in the ribosome that likely promote subsequent steps in the translation process, including subunit joining and elongation.
Collapse
Affiliation(s)
- Christopher U T Hellen
- Department of Cell Biology, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Box 44, Brooklyn, NY 11203, USA.
| |
Collapse
|