51
|
Abstract
In this issue, Singer et al. (2012) reveal that the nucleoporin Nup98 supports adaptation to genotoxic stress by protecting specific p53-induced mRNAs from exosome-dependent degradation, suggesting that wild-type Nup98 may possess tumor suppressor function.
Collapse
Affiliation(s)
- Melanie L Yarbrough
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
52
|
Abstract
Budding yeast, like other eukaryotes, carries its genetic information on chromosomes that are sequestered from other cellular constituents by a double membrane, which forms the nucleus. An elaborate molecular machinery forms large pores that span the double membrane and regulate the traffic of macromolecules into and out of the nucleus. In multicellular eukaryotes, an intermediate filament meshwork formed of lamin proteins bridges from pore to pore and helps the nucleus reform after mitosis. Yeast, however, lacks lamins, and the nuclear envelope is not disrupted during yeast mitosis. The mitotic spindle nucleates from the nucleoplasmic face of the spindle pole body, which is embedded in the nuclear envelope. Surprisingly, the kinetochores remain attached to short microtubules throughout interphase, influencing the position of centromeres in the interphase nucleus, and telomeres are found clustered in foci at the nuclear periphery. In addition to this chromosomal organization, the yeast nucleus is functionally compartmentalized to allow efficient gene expression, repression, RNA processing, genomic replication, and repair. The formation of functional subcompartments is achieved in the nucleus without intranuclear membranes and depends instead on sequence elements, protein-protein interactions, specific anchorage sites at the nuclear envelope or at pores, and long-range contacts between specific chromosomal loci, such as telomeres. Here we review the spatial organization of the budding yeast nucleus, the proteins involved in forming nuclear subcompartments, and evidence suggesting that the spatial organization of the nucleus is important for nuclear function.
Collapse
|
53
|
Abstract
There is increasing evidence that certain Vacuolar protein sorting (Vps) proteins, factors that mediate vesicular protein trafficking, have additional roles in regulating transcription factors at the endosome. We found that yeast mutants lacking the phosphatidylinositol 3-phosphate [PI(3)P] kinase Vps34 or its associated protein kinase Vps15 display multiple phenotypes indicating impaired transcription elongation. These phenotypes include reduced mRNA production from long or G+C-rich coding sequences (CDS) without affecting the associated GAL1 promoter activity, and a reduced rate of RNA polymerase II (Pol II) progression through lacZ CDS in vivo. Consistent with reported genetic interactions with mutations affecting the histone acetyltransferase complex NuA4, vps15Δ and vps34Δ mutations reduce NuA4 occupancy in certain transcribed CDS. vps15Δ and vps34Δ mutants also exhibit impaired localization of the induced GAL1 gene to the nuclear periphery. We found unexpectedly that, similar to known transcription elongation factors, these and several other Vps factors can be cross-linked to the CDS of genes induced by Gcn4 or Gal4 in a manner dependent on transcriptional induction and stimulated by Cdk7/Kin28-dependent phosphorylation of the Pol II C-terminal domain (CTD). We also observed colocalization of a fraction of Vps15-GFP and Vps34-GFP with nuclear pores at nucleus-vacuole (NV) junctions in live cells. These findings suggest that Vps factors enhance the efficiency of transcription elongation in a manner involving their physical proximity to nuclear pores and transcribed chromatin.
Collapse
|
54
|
|
55
|
Abstract
Take a look at a textbook illustration of a cell and you will immediately be able to locate the nucleus, which is often drawn as a spherical or ovoid shaped structure. But not all cells have such nuclei. In fact, some disease states are diagnosed by the presence of nuclei that have an abnormal shape or size. What defines nuclear shape and nuclear size, and how does nuclear geometry affect nuclear function? While the answer to the latter question remains largely unknown, significant progress has been made towards understanding the former. In this review, we provide an overview of the factors and forces that affect nuclear shape and size, discuss the relationship between ER structure and nuclear morphology, and speculate on the possible connection between nuclear size and its shape. We also note the many interesting questions that remain to be explored.
Collapse
Affiliation(s)
- Alison D. Walters
- The Laboratory of Cell and Molecular Biology, NIDDK, NIH, Bethesda, Maryland 20892
| | - Ananth Bommakanti
- The Laboratory of Cell and Molecular Biology, NIDDK, NIH, Bethesda, Maryland 20892
| | - Orna Cohen-Fix
- The Laboratory of Cell and Molecular Biology, NIDDK, NIH, Bethesda, Maryland 20892
| |
Collapse
|
56
|
Markaki Y, Smeets D, Fiedler S, Schmid VJ, Schermelleh L, Cremer T, Cremer M. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture. Bioessays 2012; 34:412-26. [PMID: 22508100 DOI: 10.1002/bies.201100176] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Three-dimensional structured illumination microscopy (3D-SIM) has opened up new possibilities to study nuclear architecture at the ultrastructural level down to the ~100 nm range. We present first results and assess the potential using 3D-SIM in combination with 3D fluorescence in situ hybridization (3D-FISH) for the topographical analysis of defined nuclear targets. Our study also deals with the concern that artifacts produced by FISH may counteract the gain in resolution. We address the topography of DAPI-stained DNA in nuclei before and after 3D-FISH, nuclear pores and the lamina, chromosome territories, chromatin domains, and individual gene loci. We also look at the replication patterns of chromocenters and the topographical relationship of Xist-RNA within the inactive X-territory. These examples demonstrate that an appropriately adapted 3D-FISH/3D-SIM approach preserves key characteristics of the nuclear ultrastructure and that the gain in information obtained by 3D-SIM yields new insights into the functional nuclear organization.
Collapse
Affiliation(s)
- Yolanda Markaki
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
57
|
Kawamura R, Tanabe H, Wada T, Saitoh S, Fukushima Y, Wakui K. Visualization of the spatial positioning of the SNRPN, UBE3A, and GABRB3 genes in the normal human nucleus by three-color 3D fluorescence in situ hybridization. Chromosome Res 2012; 20:659-72. [PMID: 22801776 PMCID: PMC3481056 DOI: 10.1007/s10577-012-9300-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/14/2012] [Accepted: 06/14/2012] [Indexed: 11/06/2022]
Abstract
The three-dimensional (3D) structure of the genome is organized non-randomly and plays a role in genomic function via epigenetic mechanisms in the eukaryotic nucleus. Here, we analyzed the spatial positioning of three target regions; the SNRPN, UBE3A, and GABRB3 genes on human chromosome 15q11.2–q12, a representative cluster of imprinted regions, in the interphase nuclei of B lymphoblastoid cell lines, peripheral blood cells, and skin fibroblasts derived from normal individuals to look for evidence of genomic organization and function. The positions of these genes were simultaneously visualized, and all inter-gene distances were calculated for each homologous chromosome in each nucleus after three-color 3D fluorescence in situ hybridization. None of the target genes were arranged linearly in most cells analyzed, and GABRB3 was positioned closer to SNRPN than UBE3A in a high proportion of cells in all cell types. This was in contrast to the genomic map in which GABRB3 was positioned closer to UBE3A than SNRPN. We compared the distances from SNRPN to UBE3A (SU) and from UBE3A to GABRB3 (UG) between alleles in each nucleus, 50 cells per subject. The results revealed that the gene-to-gene distance of one allele was longer than that of the other and that the SU ratio (longer/shorter SU distance between alleles) was larger than the UG ratio (longer/shorter UG distance between alleles). The UG distance was relatively stable between alleles; in contrast, the SU distance of one allele was obviously longer than the distance indicated by the genome size. The results therefore indicate that SNRPN, UBE3A, and GABRB3 have non-linear and non-random curved spatial positioning in the normal nucleus, with differences in the SU distance between alleles possibly representing epigenetic evidence of nuclear organization and gene expression.
Collapse
Affiliation(s)
- Rie Kawamura
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | | | | | | | | | | |
Collapse
|
58
|
Botchkarev VA, Gdula MR, Mardaryev AN, Sharov AA, Fessing MY. Epigenetic regulation of gene expression in keratinocytes. J Invest Dermatol 2012; 132:2505-21. [PMID: 22763788 PMCID: PMC3650472 DOI: 10.1038/jid.2012.182] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nucleus is a complex and highly compartmentalized organelle, which organization undergoes major changes during cell differentiation allowing cells to become specialized and fulfill their functions.During terminal differentiation of the epidermal keratinocytes, nucleus undergoes programmed transformation from active status, associated with execution of the genetic programs of cornification and epidermal barrier formation, to fully inactive condition and becomes a part of the keratinized cells of the cornified layer. Tremendous progress achieved within the last two decades in understanding the biology of the nucleus and epigenetic mechanisms controlling gene expression allowed defining several levels in the regulation of cell differentiation-associated gene expression programs, including an accessibility of the gene regulatory regions to DNA-protein interactions, covalent DNA and histone modifications and ATP-dependent chromatin remodeling, as well as higher-order chromatin remodeling and nuclear compartmentalization of the genes and transcription machinery. Here, we integrate our current knowledge of the mechanisms controlling gene expression during terminal keratinocyte differentiation with distinct levels of chromatin organization and remodeling. We also propose the directions to further explore the role of epigenetic mechanisms and their interactions with other regulatory systems in the control of keratinocyte differentiation in normal and diseased skin.
Collapse
|
59
|
Transcription factor binding to a DNA zip code controls interchromosomal clustering at the nuclear periphery. Dev Cell 2012; 22:1234-46. [PMID: 22579222 DOI: 10.1016/j.devcel.2012.03.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/17/2012] [Accepted: 03/27/2012] [Indexed: 11/21/2022]
Abstract
Active genes in yeast can be targeted to the nuclear periphery through interaction of cis-acting "DNA zip codes" with the nuclear pore complex. We find that genes with identical zip codes cluster together. This clustering was specific; pairs of genes that were targeted to the nuclear periphery by different zip codes did not cluster together. Insertion of two different zip codes (GRS I or GRS III) at an ectopic site induced clustering with endogenous genes that have that zip code. Targeting to the nuclear periphery and interaction with the nuclear pore is a prerequisite for gene clustering, but clustering can be maintained in the nucleoplasm. Finally, we find that the Put3 transcription factor recognizes the GRS I zip code to mediate both targeting to the NPC and interchromosomal clustering. These results suggest that zip-code-mediated clustering of genes at the nuclear periphery influences the three-dimensional arrangement of the yeast genome.
Collapse
|
60
|
Kociucka B, Cieslak J, Szczerbal I. Three-dimensional arrangement of genes involved in lipid metabolism in nuclei of porcine adipocytes and fibroblasts in relation to their transcription level. Cytogenet Genome Res 2012; 136:295-302. [PMID: 22572622 DOI: 10.1159/000338255] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2012] [Indexed: 11/19/2022] Open
Abstract
The 3-dimensional arrangement of chromosomes and genes within a nuclear space is considered to represent the level of transcriptional regulation. Understanding how the nuclear architecture of adipocyte cells contributes to gene expression has become the subject of great interest in the context of obesity research. In this study we investigated nuclear positioning of 3 gene loci involved in lipid metabolism in the pig (Sus scrofa, SSC) which is considered as an important animal model for obesity in humans. We found that the position of the SCD gene in the 3-dimensional space of the cell nucleus is not correlated with transcriptional activity. The gene locus as well as chromosome territory SSC14 occupied the same peripheral location in adipocyte and fibroblast cells, in spite of the fact that their transcription level differs significantly between both cell types. For the 2 other investigated genes, i.e. ACACA and SREBF1 and their chromosome territory (SSC12), slightly different nuclear locations were found. They occupied intermediate nuclear positions in fibroblast nuclei, while in adipocytes they were positioned in the nuclear interior. The more internal location of these genes corresponds to increased transcription levels in fat cells. Our results confirm the non-random position of genes and chromosome territories in nuclei of adult porcine cells and indicate that relationship between transcription activity and gene positioning exists only for some but not all genes.
Collapse
Affiliation(s)
- B Kociucka
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | | | | |
Collapse
|
61
|
Neumann FR, Dion V, Gehlen LR, Tsai-Pflugfelder M, Schmid R, Taddei A, Gasser SM. Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev 2012; 26:369-83. [PMID: 22345518 DOI: 10.1101/gad.176156.111] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chromatin in the interphase nucleus moves in a constrained random walk. Despite extensive study, the molecular causes of such movement and its impact on DNA-based reactions are unclear. Using high-precision live fluorescence microscopy in budding yeast, we quantified the movement of tagged chromosomal loci to which transcriptional activators or nucleosome remodeling complexes were targeted. We found that local binding of the transcriptional activator VP16, but not of the Gal4 acidic domain, enhances chromatin mobility. The increase in movement did not correlate strictly with RNA polymerase II (PolII) elongation, but could be phenocopied by targeting the INO80 remodeler to the locus. Enhanced chromatin mobility required Ino80's ATPase activity. Consistently, the INO80-dependent remodeling of nucleosomes upon transcriptional activation of the endogenous PHO5 promoter enhanced chromatin movement locally. Finally, increased mobility at a double-strand break was also shown to depend in part on the INO80 complex. This correlated with increased rates of spontaneous gene conversion. We propose that local chromatin remodeling and nucleosome eviction increase large-scale chromatin movements by enhancing the flexibility of the chromatin fiber.
Collapse
Affiliation(s)
- Frank R Neumann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
62
|
Structural basis for the assembly and nucleic acid binding of the TREX-2 transcription-export complex. Nat Struct Mol Biol 2012; 19:328-36. [PMID: 22343721 PMCID: PMC3303126 DOI: 10.1038/nsmb.2235] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/22/2011] [Indexed: 01/05/2023]
Abstract
The conserved TREX-2 transcription-export complex integrates transcription and processing of many actively-transcribed nascent mRNAs with the recruitment of export factors at nuclear pores and also contributes to transcriptional memory and genomic stability. We report the crystal structure of the Sac3–Thp1–Sem1 segment of Saccharomyces cerevisiae TREX-2 that interfaces with the gene expression machinery. Sac3–Thp1–Sem1 forms a novel PCI-domain complex characterized by the juxtaposition of Sac3 and Thp1 winged helix domains, forming a platform that mediates nucleic acid binding. Structure-guided mutations underline the essential requirement of the Thp1–Sac3 interaction for mRNA binding and for the coupling of transcription and processing with mRNP assembly and export. These results provide insight into how newly synthesized transcripts are efficiently transferred from TREX-2 to the principal mRNA export factor and, identify how Sem1 stabilizes PCI domain-containing proteins and promotes complex assembly.
Collapse
|
63
|
Burns LT, Wente SR. Trafficking to uncharted territory of the nuclear envelope. Curr Opin Cell Biol 2012; 24:341-9. [PMID: 22326668 DOI: 10.1016/j.ceb.2012.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 02/07/2023]
Abstract
The nuclear envelope (NE) in eukaryotic cells serves as the physical barrier between the nucleus and cytoplasm. Until recently, mechanisms for establishing the composition of the inner nuclear membrane (INM) remained uncharted. Current findings uncover multiple pathways for trafficking of integral and peripheral INM proteins. A major route for INM protein transport occurs through the nuclear pore complexes (NPCs) with additional requirements for nuclear localization sequences, transport receptors, and Ran-GTP. Studies also reveal a putative NPC-independent vesicular pathway for NE trafficking. INM perturbations lead to changes in nuclear physiology highlighting the potential human disease impacts of continued NE discoveries.
Collapse
Affiliation(s)
- Laura T Burns
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | | |
Collapse
|
64
|
Albert B, Léger-Silvestre I, Normand C, Gadal O. Nuclear organization and chromatin dynamics in yeast: biophysical models or biologically driven interactions? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:468-81. [PMID: 22245105 DOI: 10.1016/j.bbagrm.2011.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/26/2022]
Abstract
Over the past decade, tremendous progress has been made in understanding the spatial organization of genes and chromosomes. Nuclear organization can be thought of as information that is not encoded in DNA, but which nevertheless impacts gene expression. Nuclear organizational influences can be cell-specific and are potentially heritable. Thus, nuclear organization fulfills all the criteria necessary for it to be considered an authentic level of epigenetic information. Chromosomal nuclear organization is primarily dictated by the biophysical properties of chromatin. Diffusion models of polymers confined in the crowded nuclear space accurately recapitulate experimental observation. Diffusion is a Brownian process, which implies that the positions of chromosomes and genes are not defined deterministically but are likely to be dictated by the laws of probability. Despite the small size of their nuclei, budding yeast have been instrumental in discovering how epigenetic information is encoded in the spatial organization of the genome. The relatively simple organization of the yeast nucleus and the very high number of genetically identical cells that can be observed under fluorescent microscopy allow statistically robust definitions of the gene and chromosome positions in the nuclear space to be constructed. In this review, we will focus on how the spatial organization of the chromatin in the yeast nucleus might impact transcription. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
|
65
|
Molina-Navarro MM, Martinez-Jimenez CP, Rodriguez-Navarro S. Transcriptional elongation and mRNA export are coregulated processes. GENETICS RESEARCH INTERNATIONAL 2011; 2011:652461. [PMID: 22567364 PMCID: PMC3335577 DOI: 10.4061/2011/652461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/10/2011] [Indexed: 01/06/2023]
Abstract
Chromatin structure complexity requires the interaction and coordinated work of a multiplicity of factors at different transcriptional regulation stages. Transcription control comprises a set of processes that ensures proper balance in the gene expression under different conditions, such as signals, metabolic states, or development. We could frame those steps from epigenetic marks to mRNA stability to support the holistic view of a fine-tune balance of final mRNA levels through mRNA transcription, export, stability, translation, and degradation. Transport of mRNA from the nucleus to the cytoplasm is a key process in regulated gene expression. Transcriptional elongation and mRNA export are coregulated steps that determine the mature mRNA levels in the cytoplasm. In this paper, recent insights into the coordination of these processes in eukaryotes will be summarised.
Collapse
|