51
|
Tran HQ, Batul R, Bhave M, Yu A. Current Advances in the Utilization of Polydopamine Nanostructures in Biomedical Therapy. Biotechnol J 2019; 14:e1900080. [DOI: 10.1002/biot.201900080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Huy Q. Tran
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| | - Rahila Batul
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| | - Mrinal Bhave
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| | - Aimin Yu
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| |
Collapse
|
52
|
Gao N, Xing C, Wang H, Feng L, Zeng X, Mei L, Peng Z. pH-Responsive Dual Drug-Loaded Nanocarriers Based on Poly (2-Ethyl-2-Oxazoline) Modified Black Phosphorus Nanosheets for Cancer Chemo/Photothermal Therapy. Front Pharmacol 2019; 10:270. [PMID: 30941045 PMCID: PMC6433829 DOI: 10.3389/fphar.2019.00270] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
Synergistic cancer therapy, such as those combining chemotherapeutic and photothermal methods, has stronger treatment effect than that of individual ones. However, it is challenging to efficiently deliver nanocarriers into tumor cells to elevate intracellular drug concentration. Herein, we developed an effective pH-responsive and dual drug co-delivery platform for combined chemo/photothermal therapy. An anticancer drug doxorubicin (DOX) was first loaded onto the surface of black phosphorus (BP). With poly(2-ethyl-2-oxazoline) (PEOz) ligand conjugated onto the polydopamine (PDA) coated BP nanosheets, targeted long circulation and cellular uptake in vivo was significantly improved. With another anticancer drug bortezomib (BTZ) loaded onto the surface of the nanocapsule, the platform can co-deliver two different drugs. The surface charge of the nanocapsule was reversed from negative to positive at the tumor extracellular pH (∼6.8), ionizing the tertiary amide groups along the PEOz chain, thus facilitating the cell internalization of the nanocarrier. The cytotoxicity therapeutic effect of this nanoplatform was further augmented under near-infrared laser irradiation. As such, our DOX-loaded BP@PDA-PEOz-BTZ platform is very promising to synergistic cancer therapy.
Collapse
Affiliation(s)
- Nansha Gao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Chenyang Xing
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Haifei Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Liwen Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zhengchun Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
53
|
Xiao C, Hu H, Yang H, Li S, Zhou H, Ruan J, Zhu Y, Yang X, Li Z. Colloidal hydroxyethyl starch for tumor-targeted platinum delivery. NANOSCALE ADVANCES 2019; 1:1002-1012. [PMID: 36133197 PMCID: PMC9473228 DOI: 10.1039/c8na00271a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/23/2018] [Indexed: 05/06/2023]
Abstract
Cis-platinum has been widely used as a first-line chemotherapy agent in clinics for more than 40 years. Although considerable efforts have been expended for developing platinum-based nano drug delivery systems (NDDS) to resolve the problems of low water solubility, short half-life, and severe side effects of cis-platinum, it remains challenging to apply these nanoplatforms to cancer treatments in clinics on account of the issues related to safety, complex fabrication procedures, and limited cellular uptake. Herein, we constructed a novel cis-platinum delivery system with hydroxyethyl starch (HES), which is a semisynthetic polysaccharide that has been used worldwide as colloidal plasma volume expanders (PVE) in clinics for several decades. By combining TEM, AFM, and DLS, we have found that HES particles are colloidal nanoparticles in solution, with diameters ranging from 15 to 40 nm as a function of molecular weight. We further revealed that HES adopted a hyperbranched colloidal structure with rather compact conformation. These results demonstrate that HES is a promising nanocarrier to deliver drug molecules. Taking advantage of the poly-hydroxyl sites of HES, we constructed a novel HES-based cis-platinum delivery nanoplatform. HES was directly conjugated with cis-platinum prodrug via an ester bond and decorated with an active targeting molecule, lactobionic acid (LA), contributing toward higher in vitro antitumor activity against hepatoma carcinoma cells as compared to cis-platinum. These results have significant implications for the clinically used plasma volume expander-HES and shed light on the clinical translation of HES-based nano drug delivery systems.
Collapse
Affiliation(s)
- Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86 27 87792234 +86 27 87792234
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Hang Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86 27 87792234 +86 27 87792234
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Hai Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86 27 87792234 +86 27 87792234
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Si Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86 27 87792234 +86 27 87792234
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Hui Zhou
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Jian Ruan
- Wuhan HUST Life Science & Technology Co., Ltd Wuhan 430223 China
| | - Yuting Zhu
- Wuhan HUST Life Science & Technology Co., Ltd Wuhan 430223 China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86 27 87792234 +86 27 87792234
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology Wuhan 430074 China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86 27 87792234 +86 27 87792234
- Department of Nanomedicine and Biopharmaceutics, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology Wuhan 430074 China
- Wuhan Institute of Biotechnology High Tech Road 666, East Lake High Tech Zone Wuhan 430040 China
| |
Collapse
|
54
|
Liu S, Li W, Gai S, Yang G, Zhong C, Dai Y, He F, Yang P, Suh YD. A smart tumor microenvironment responsive nanoplatform based on upconversion nanoparticles for efficient multimodal imaging guided therapy. Biomater Sci 2019; 7:951-962. [DOI: 10.1039/c8bm01243a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A smart tumor microenvironment responsive theranostic nanoplatform USPDF for UCL/CT dual-mode imaging and combination of chemotherapy and photothermal therapy.
Collapse
Affiliation(s)
- Shikai Liu
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Wenting Li
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Guixin Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Chongna Zhong
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Yunlu Dai
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Yung Doug Suh
- Research Center for Bio Platform Technology
- Korea Research Institute of Chemical Technology (KRICT)
- DaeJeon 305-600
- Korea
- School of Chemical Engineering
| |
Collapse
|