51
|
Abstract
The dorsal lateral geniculate nucleus (dLGN) of the thalamus is the principal conduit for visual information from retina to visual cortex. Viewed initially as a simple relay, recent studies in the mouse reveal far greater complexity in the way input from the retina is combined, transmitted, and processed in dLGN. Here we consider the structural and functional organization of the mouse retinogeniculate pathway by examining the patterns of retinal projections to dLGN and how they converge onto thalamocortical neurons to shape the flow of visual information to visual cortex.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences,Washington University School of Medicine,Saint Louis,Missouri 63110
| | - William Guido
- Department of Anatomical Sciences and Neurobiology,University of Louisville School of Medicine,Louisville,Kentucky 40292
| |
Collapse
|
52
|
Kulkarni A, Ertekin D, Lee CH, Hummel T. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system. eLife 2016; 5:e13715. [PMID: 26987017 PMCID: PMC4846375 DOI: 10.7554/elife.13715] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila.
Collapse
Affiliation(s)
| | - Deniz Ertekin
- Department of Neurobiology, University of Vienna, Vienna, Austria
| | - Chi-Hon Lee
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Vienna, Austria
| |
Collapse
|
53
|
Abstract
The nervous system is populated by numerous types of neurons, each bearing a dendritic arbor with a characteristic morphology. These type-specific features influence many aspects of a neuron's function, including the number and identity of presynaptic inputs and how inputs are integrated to determine firing properties. Here, we review the mechanisms that regulate the construction of cell type-specific dendrite patterns during development. We focus on four aspects of dendrite patterning that are particularly important in determining the function of the mature neuron: (a) dendrite shape, including branching pattern and geometry of the arbor; (b) dendritic arbor size;
Collapse
Affiliation(s)
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138;
| | - Jeremy N Kay
- Departments of Neurobiology and Ophthalmology, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
54
|
Tang JCY, Rudolph S, Dhande OS, Abraira VE, Choi S, Lapan SW, Drew IR, Drokhlyansky E, Huberman AD, Regehr WG, Cepko CL. Cell type-specific manipulation with GFP-dependent Cre recombinase. Nat Neurosci 2015; 18:1334-41. [PMID: 26258682 PMCID: PMC4839275 DOI: 10.1038/nn.4081] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/02/2015] [Indexed: 12/12/2022]
Abstract
There are many transgenic GFP reporter lines that allow visualization of specific populations of cells. Using such lines for functional studies requires a method that transforms GFP into a molecule that enables genetic manipulation. Here we report the creation of a method that exploits GFP for gene manipulation, Cre Recombinase Dependent on GFP (CRE-DOG), a split component system that uses GFP and its derivatives to directly induce Cre/loxP recombination. Using plasmid electroporation and AAV viral vectors, we delivered CRE-DOG to multiple GFP mouse lines, leading to effective recombination selectively in GFP-labeled cells. Further, CRE-DOG enabled optogenetic control of these neurons. Beyond providing a new set of tools for manipulation of gene expression selectively in GFP+ cells, we demonstrate that GFP can be used to reconstitute the activity of a protein not known to have a modular structure, suggesting that this strategy might be applicable to a wide range of proteins.
Collapse
Affiliation(s)
- Jonathan C Y Tang
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie Rudolph
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Onkar S Dhande
- Department of Neurosciences, University of California, San Diego, California, USA.,Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, California, USA.,Department of Ophthalmology, University of California, San Diego, California, USA
| | - Victoria E Abraira
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Seungwon Choi
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sylvain W Lapan
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Iain R Drew
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eugene Drokhlyansky
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew D Huberman
- Department of Neurosciences, University of California, San Diego, California, USA.,Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, California, USA.,Department of Ophthalmology, University of California, San Diego, California, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Constance L Cepko
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
55
|
El-Danaf RN, Krahe TE, Dilger EK, Bickford ME, Fox MA, Guido W. Developmental remodeling of relay cells in the dorsal lateral geniculate nucleus in the absence of retinal input. Neural Dev 2015; 10:19. [PMID: 26174426 PMCID: PMC4502538 DOI: 10.1186/s13064-015-0046-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/01/2015] [Indexed: 12/01/2022] Open
Abstract
Background The dorsal lateral geniculate nucleus (dLGN) of the mouse has been an important experimental model for understanding thalamic circuit development. The developmental remodeling of retinal projections has been the primary focus, however much less is known about the maturation of their synaptic targets, the relay cells of the dLGN. Here we examined the growth and maturation of relay cells during the first few weeks of life and addressed whether early retinal innervation affects their development. To accomplish this we utilized the math5 null (math5−/−) mouse, a mutant lacking retinal ganglion cells and central projections. Results The absence of retinogeniculate axon innervation led to an overall shrinkage of dLGN and disrupted the pattern of dendritic growth among developing relay cells. 3-D reconstructions of biocytin filled neurons from math5−/− mice showed that in the absence of retinal input relay cells undergo a period of exuberant dendritic growth and branching, followed by branch elimination and an overall attenuation in dendritic field size. However, math5−/− relay cells retained a sufficient degree of complexity and class specificity, as well as their basic membrane properties and spike firing characteristics. Conclusions Retinal innervation plays an important trophic role in dLGN development. Additional support perhaps arising from non-retinal innervation and signaling is likely to contribute to the stabilization of their dendritic form and function.
Collapse
Affiliation(s)
- Rana N El-Danaf
- Departments of Neuroscience, Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Thomas E Krahe
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, VA, 23298, USA.
| | | | - Martha E Bickford
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| | - Michael A Fox
- Virginia Tech Carilion Research Institute, Roanoke, VA, 24016, USA. .,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
56
|
The Acquisition of Target Dependence by Developing Rat Retinal Ganglion Cells. eNeuro 2015; 2:eN-NWR-0044-14. [PMID: 26464991 PMCID: PMC4586937 DOI: 10.1523/eneuro.0044-14.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/23/2022] Open
Abstract
Similar to neurons in the peripheral nervous system, immature CNS-derived RGCs become dependent on target-derived neurotrophic support as their axons reach termination sites in the brain. To study the factors that influence this developmental transition we took advantage of the fact that rat RGCs are born, and target innervation occurs, over a protracted period of time. Early-born RGCs have axons in the SC by birth (P0), whereas axons from late-born RGCs do not innervate the SC until P4-P5. Birth dating RGCs using EdU allowed us to identify RGCs (1) with axons still growing toward targets, (2) transitioning to target dependence, and (3) entirely dependent on target-derived support. Using laser-capture microdissection we isolated ∼34,000 EdU+ RGCs and analyzed transcript expression by custom qPCR array. Statistical analyses revealed a difference in gene expression profiles in actively growing RGCs compared with target-dependent RGCs, as well as in transitional versus target-dependent RGCs. Prior to innervation RGCs expressed high levels of BDNF and CNTFR α but lower levels of neurexin 1 mRNA. Analysis also revealed greater expression of transcripts for signaling molecules such as MAPK, Akt, CREB, and STAT. In a supporting in vitro study, purified birth-dated P1 RGCs were cultured for 24-48 h with or without BDNF; lack of BDNF resulted in significant loss of early-born but not late-born RGCs. In summary, we identified several important changes in RGC signaling that may form the basis for the switch from target independence to dependence.
Collapse
|
57
|
Yungher BJ, Luo X, Salgueiro Y, Blackmore MG, Park KK. Viral vector-based improvement of optic nerve regeneration: characterization of individual axons' growth patterns and synaptogenesis in a visual target. Gene Ther 2015; 22:811-21. [PMID: 26005861 PMCID: PMC4600032 DOI: 10.1038/gt.2015.51] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/10/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022]
Abstract
Lack of axon growth ability in the central nervous system poses a major barrier to achieving functional connectivity after injury. Thus, a non-transgenic regenerative approach to reinnervating targets has important implications in clinical and research settings. Previous studies using knockout (KO) mice have demonstrated long distance axon regeneration. Using an optic nerve injury model, here we evaluate the efficacy of viral, RNAi and pharmacological approaches that target the PTEN and STAT3 pathways to improve long distance axon regeneration in wild type (WT) mice. Our data show that adeno-associated virus (AAV) expressing short hairpin RNA (shRNA) against PTEN (shPTEN) enhances retinal ganglion cell axon regeneration after crush injury. However, compared to the previous data in PTEN KO mice, AAV-shRNA results in a lesser degree of regeneration, likely due to incomplete gene silencing inherent to RNAi. In comparison, an extensive enhancement in regeneration is seen when AAV-shPTEN is coupled to AAV encoding ciliary neurotrophic factor (CNTF) and to a cyclic adenosine monophosphate (cAMP) analogue, allowing axons to travel long distances and reach their target. We apply whole tissue imaging that facilitates three-dimensional visualization of single regenerating axons and document heterogeneous terminal patterns in the targets. This shows that some axonal populations generate extensive arbors and make synapses with the target neurons. Collectively, we show a combinatorial viral RNAi and pharmacological strategy that improves long distance regeneration in WT animals and provide single fiber projection data that indicates a degree of preservation of target recognition.
Collapse
Affiliation(s)
- B J Yungher
- Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - X Luo
- Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Y Salgueiro
- Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - M G Blackmore
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - K K Park
- Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
58
|
Sun LO, Brady CM, Cahill H, Al-Khindi T, Sakuta H, Dhande OS, Noda M, Huberman AD, Nathans J, Kolodkin AL. Functional assembly of accessory optic system circuitry critical for compensatory eye movements. Neuron 2015; 86:971-984. [PMID: 25959730 DOI: 10.1016/j.neuron.2015.03.064] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 02/09/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
Abstract
Accurate motion detection requires neural circuitry that compensates for global visual field motion. Select subtypes of retinal ganglion cells perceive image motion and connect to the accessory optic system (AOS) in the brain, which generates compensatory eye movements that stabilize images during slow visual field motion. Here, we show that the murine transmembrane semaphorin 6A (Sema6A) is expressed in a subset of On direction-selective ganglion cells (On DSGCs) and is required for retinorecipient axonal targeting to the medial terminal nucleus (MTN) of the AOS. Plexin A2 and A4, two Sema6A binding partners, are expressed in MTN cells, attract Sema6A(+) On DSGC axons, and mediate MTN targeting of Sema6A(+) RGC projections. Furthermore, Sema6A/Plexin-A2/A4 signaling is required for the functional output of the AOS. These data reveal molecular mechanisms underlying the assembly of AOS circuits critical for moving image perception.
Collapse
Affiliation(s)
- Lu O Sun
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Colleen M Brady
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hugh Cahill
- Department of Molecular Biology and Genetics, Department of Neuroscience, Department of Ophthalmology, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Timour Al-Khindi
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hiraki Sakuta
- Division of Molecular Neuroscience, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Onkar S Dhande
- Department of Neurosciences, Neurobiology Section in the Division of Biological Sciences, Department of Ophthalmology, University of California, San Diego, San Diego, CA 92093, USA
| | - Masaharu Noda
- Division of Molecular Neuroscience, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Andrew D Huberman
- Department of Neurosciences, Neurobiology Section in the Division of Biological Sciences, Department of Ophthalmology, University of California, San Diego, San Diego, CA 92093, USA
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Department of Neuroscience, Department of Ophthalmology, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
59
|
Contactin-4 mediates axon-target specificity and functional development of the accessory optic system. Neuron 2015; 86:985-999. [PMID: 25959733 DOI: 10.1016/j.neuron.2015.04.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/19/2015] [Accepted: 03/31/2015] [Indexed: 12/31/2022]
Abstract
The mammalian eye-to-brain pathway includes more than 20 parallel circuits, each consisting of precise long-range connections between specific sets of retinal ganglion cells (RGCs) and target structures in the brain. The mechanisms that drive assembly of these parallel connections and the functional implications of their specificity remain unresolved. Here we show that in the absence of contactin 4 (CNTN4) or one of its binding partners, amyloid precursor protein (APP), a subset of direction-selective RGCs fail to target the nucleus of the optic tract (NOT)--the accessory optic system (AOS) target controlling horizontal image stabilization. Conversely, ectopic expression of CNTN4 biases RGCs to arborize in the NOT, and that process also requires APP. Our data reveal critical and novel roles for CNTN4/APP in promoting target-specific axon arborization, and they highlight the importance of this process for functional development of a behaviorally relevant parallel visual pathway.
Collapse
|
60
|
Soares CA, Mason CA. Transient ipsilateral retinal ganglion cell projections to the brain: Extent, targeting, and disappearance. Dev Neurobiol 2015; 75:1385-401. [PMID: 25788284 DOI: 10.1002/dneu.22291] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/13/2015] [Accepted: 03/15/2015] [Indexed: 12/27/2022]
Abstract
During development of the mammalian eye, the first retinal ganglion cells (RGCs) that extend to the brain are located in the dorsocentral (DC) retina. These RGCs extend to either ipsilateral or contralateral targets, but the ipsilateral projections do not survive into postnatal periods. The function and means of disappearance of the transient ipsilateral projection are not known. We have followed the course of this transient early ipsilateral cohort of RGCs, paying attention to how far they extend, whether they enter targets and if so, which ones, and the time course of their disappearance. The DC ipsilateral RGC axons were traced using DiI labeling at E13.5 and E15.5 to compare the proportion of ipsi- versus contralateral projections during the first period of growth. In utero electroporation of E12.5 retina with GFP constructs was used to label axons that could be visualized at succeeding time points into postnatal ages. Our results show that the earliest ipsilateral axons grow along the cellular border of the brain, and are segregated from the laterally positioned contralateral axons from the same retinal origin. In agreement with previous reports, although many early RGCs extend ipsilaterally, after E16 their number rapidly declines. Nonetheless, some ipsilateral axons from the DC retina enter the superior colliculus and arborize minimally, but very few enter the dorsal lateral geniculate nucleus and those that do extend only short branches. While the mechanism of selective axonal disappearance remains elusive, these data give further insight into establishment of the visual pathways.
Collapse
Affiliation(s)
- Célia A Soares
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York.,Life and Health Science Research Institute, School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carol A Mason
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York.,Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York.,Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York
| |
Collapse
|
61
|
Sweeney NT, James KN, Sales EC, Feldheim DA. Ephrin-As are required for the topographic mapping but not laminar choice of physiologically distinct RGC types. Dev Neurobiol 2015; 75:584-93. [PMID: 25649160 DOI: 10.1002/dneu.22265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/08/2015] [Accepted: 01/25/2015] [Indexed: 02/02/2023]
Abstract
In the retinocollicular projection, the axons from functionally distinct retinal ganglion cell (RGC) types form synapses in a stereotypical manner along the superficial to deep axis of the superior colliculus (SC). Each lamina contains an orderly topographic map of the visual scene but different laminae receive inputs from distinct sets of RGCs, and inputs to each lamina are aligned with the others to integrate parallel streams of visual information. To determine the relationship between laminar organization and topography of physiologically defined RGC types, we used genetic and anatomical axon tracing techniques in wild type and ephrin-A mutant mice. We find that adjacent RGCs of the same physiological type can send axons to both ectopic and normal topographic locations, supporting a penetrance model for ephrin-A independent mapping cues. While the overall laminar organization in the SC is unaffected in ephrin-A2/A5 double mutant mice, analysis of the laminar locations of ectopic terminations shows that the topographic maps of different RGC types are misaligned. These data lend support to the hypothesis that the retinocollicular projection is a superimposition of a number of individual two-dimensional topographic maps that originate from specific types of RGCs, require ephrin-A signaling, and form independently of the other maps.
Collapse
Affiliation(s)
- Neal T Sweeney
- Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, 95064
| | - Kiely N James
- Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, 95064
| | - Emily C Sales
- Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, 95064
| | - David A Feldheim
- Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, 95064
| |
Collapse
|
62
|
|