51
|
Marabitti V, Lillo G, Malacaria E, Palermo V, Pichierri P, Franchitto A. Checkpoint Defects Elicit a WRNIP1-Mediated Response to Counteract R-Loop-Associated Genomic Instability. Cancers (Basel) 2020; 12:cancers12020389. [PMID: 32046194 PMCID: PMC7072626 DOI: 10.3390/cancers12020389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/04/2022] Open
Abstract
Conflicts between replication and transcription are a common source of genomic instability, a characteristic of almost all human cancers. Aberrant R-loops can cause a block to replication fork progression. A growing number of factors are involved in the resolution of these harmful structures and many perhaps are still unknown. Here, we reveal that the Werner interacting protein 1 (WRNIP1)-mediated response is implicated in counteracting aberrant R-loop accumulation. Using human cellular models with compromised Ataxia-Telangiectasia and Rad3-Related (ATR)-dependent checkpoint activation, we show that WRNIP1 is stabilized in chromatin and is needed for maintaining genome integrity by mediating the Ataxia Telangiectasia Mutated (ATM)-dependent phosphorylation of Checkpoint kinase 1 (CHK1). Furthermore, we demonstrated that loss of Werner Syndrome protein (WRN) or ATR signaling leads to formation of R-loop-dependent parental ssDNA upon mild replication stress, which is covered by Radiorestistance protein 51 (RAD51). We prove that Werner helicase-interacting protein 1 (WRNIP1) chromatin retention is also required to stabilize the association of RAD51 with ssDNA in proximity of R-loops. Therefore, in these pathological contexts, ATM inhibition or WRNIP1 abrogation is accompanied by increased levels of genomic instability. Overall, our findings suggest a novel function for WRNIP1 in preventing R-loop-driven genome instability, providing new clues to understand the way replication–transcription conflicts are handled.
Collapse
|
52
|
Carrasco-Salas Y, Malapert A, Sulthana S, Molcrette B, Chazot-Franguiadakis L, Bernard P, Chédin F, Faivre-Moskalenko C, Vanoosthuyse V. The extruded non-template strand determines the architecture of R-loops. Nucleic Acids Res 2020; 47:6783-6795. [PMID: 31066439 PMCID: PMC6648340 DOI: 10.1093/nar/gkz341] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 01/05/2023] Open
Abstract
Three-stranded R-loop structures have been associated with genomic instability phenotypes. What underlies their wide-ranging effects on genome stability remains poorly understood. Here we combined biochemical and atomic force microscopy approaches with single molecule R-loop footprinting to demonstrate that R-loops formed at the model Airn locus in vitro adopt a defined set of three-dimensional conformations characterized by distinct shapes and volumes, which we call R-loop objects. Interestingly, we show that these R-loop objects impose specific physical constraints on the DNA, as revealed by the presence of stereotypical angles in the surrounding DNA. Biochemical probing and mutagenesis experiments revealed that the formation of R-loop objects at Airn is dictated by the extruded non-template strand, suggesting that R-loops possess intrinsic sequence-driven properties. Consistent with this, we show that R-loops formed at the fission yeast gene sum3 do not form detectable R-loop objects. Our results reveal that R-loops differ by their architectures and that the organization of the non-template strand is a fundamental characteristic of R-loops, which could explain that only a subset of R-loops is associated with replication-dependent DNA breaks.
Collapse
Affiliation(s)
- Yeraldinne Carrasco-Salas
- Université de Lyon, ENSL, UCBL, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007 Lyon, France
| | - Amélie Malapert
- Université de Lyon, ENSL, UCBL, CNRS, Laboratory of Biology and Modelling of the Cell (LBMC), 46 Allée d'Italie, 69007 Lyon, France
| | - Shaheen Sulthana
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Bastien Molcrette
- Université de Lyon, ENSL, UCBL, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007 Lyon, France
| | - Léa Chazot-Franguiadakis
- Université de Lyon, ENSL, UCBL, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007 Lyon, France
| | - Pascal Bernard
- Université de Lyon, ENSL, UCBL, CNRS, Laboratory of Biology and Modelling of the Cell (LBMC), 46 Allée d'Italie, 69007 Lyon, France
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | - Vincent Vanoosthuyse
- Université de Lyon, ENSL, UCBL, CNRS, Laboratory of Biology and Modelling of the Cell (LBMC), 46 Allée d'Italie, 69007 Lyon, France
| |
Collapse
|
53
|
Drugging the R-loop interactome: RNA-DNA hybrid binding proteins as targets for cancer therapy. DNA Repair (Amst) 2019; 84:102642. [DOI: 10.1016/j.dnarep.2019.102642] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/16/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
|
54
|
R Loops: From Physiological to Pathological Roles. Cell 2019; 179:604-618. [PMID: 31607512 DOI: 10.1016/j.cell.2019.08.055] [Citation(s) in RCA: 434] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
DNA-RNA hybrids play a physiological role in cellular processes, but often, they represent non-scheduled co-transcriptional structures with a negative impact on transcription, replication and DNA repair. Accumulating evidence suggests that they constitute a source of replication stress, DNA breaks and genome instability. Reciprocally, DNA breaks facilitate DNA-RNA hybrid formation by releasing the double helix torsional conformation. Cells avoid DNA-RNA accumulation by either preventing or removing hybrids directly or by DNA repair-coupled mechanisms. Given the R-loop impact on chromatin and genome organization and its potential relation with genetic diseases, we review R-loop homeostasis as well as their physiological and pathological roles.
Collapse
|
55
|
Wells JP, White J, Stirling PC. R Loops and Their Composite Cancer Connections. Trends Cancer 2019; 5:619-631. [DOI: 10.1016/j.trecan.2019.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022]
|
56
|
Barroso S, Herrera‐Moyano E, Muñoz S, García‐Rubio M, Gómez‐González B, Aguilera A. The DNA damage response acts as a safeguard against harmful DNA-RNA hybrids of different origins. EMBO Rep 2019; 20:e47250. [PMID: 31338941 PMCID: PMC6726908 DOI: 10.15252/embr.201847250] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022] Open
Abstract
Despite playing physiological roles in specific situations, DNA-RNA hybrids threat genome integrity. To investigate how cells do counteract spontaneous DNA-RNA hybrids, here we screen an siRNA library covering 240 human DNA damage response (DDR) genes and select siRNAs causing DNA-RNA hybrid accumulation and a significant increase in hybrid-dependent DNA breakage. We identify post-replicative repair and DNA damage checkpoint factors, including those of the ATM/CHK2 and ATR/CHK1 pathways. Thus, spontaneous DNA-RNA hybrids are likely a major source of replication stress, but they can also accumulate and menace genome integrity as a consequence of unrepaired DSBs and post-replicative ssDNA gaps in normal cells. We show that DNA-RNA hybrid accumulation correlates with increased DNA damage and chromatin compaction marks. Our results suggest that different mechanisms can lead to DNA-RNA hybrids with distinct consequences for replication and DNA dynamics at each cell cycle stage and support the conclusion that DNA-RNA hybrids are a common source of spontaneous DNA damage that remains unsolved under a deficient DDR.
Collapse
Affiliation(s)
- Sonia Barroso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Emilia Herrera‐Moyano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Sergio Muñoz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - María García‐Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Belén Gómez‐González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| |
Collapse
|
57
|
Mersaoui SY, Yu Z, Coulombe Y, Karam M, Busatto FF, Masson J, Richard S. Arginine methylation of the DDX5 helicase RGG/RG motif by PRMT5 regulates resolution of RNA:DNA hybrids. EMBO J 2019; 38:e100986. [PMID: 31267554 PMCID: PMC6669924 DOI: 10.15252/embj.2018100986] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/15/2019] [Accepted: 05/28/2019] [Indexed: 01/09/2023] Open
Abstract
Aberrant transcription-associated RNA:DNA hybrid (R-loop) formation often causes catastrophic conflicts during replication, resulting in DNA double-strand breaks and genomic instability. Preventing such conflicts requires hybrid dissolution by helicases and/or RNase H. Little is known about how such helicases are regulated. Herein, we identify DDX5, an RGG/RG motif-containing DEAD-box family RNA helicase, as crucial player in R-loop resolution. In vitro, recombinant DDX5 resolves R-loops in an ATP-dependent manner, leading to R-loop degradation by the XRN2 exoribonuclease. DDX5-deficient cells accumulate R-loops at loci with propensity to form such structures based on RNA:DNA immunoprecipitation (DRIP)-qPCR, causing spontaneous DNA double-strand breaks and hypersensitivity to replication stress. DDX5 associates with XRN2 and resolves R-loops at transcriptional termination regions downstream of poly(A) sites, to facilitate RNA polymerase II release associated with transcriptional termination. Protein arginine methyltransferase 5 (PRMT5) binds and methylates DDX5 at its RGG/RG motif. This motif is required for DDX5 interaction with XRN2 and repression of cellular R-loops, but not essential for DDX5 helicase enzymatic activity. PRMT5-deficient cells accumulate R-loops, resulting in increased formation of γH2AX foci. Our findings exemplify a mechanism by which an RNA helicase is modulated by arginine methylation to resolve R-loops, and its potential role in regulating transcription.
Collapse
Affiliation(s)
- Sofiane Y Mersaoui
- Departments of Oncology and MedicineSegal Cancer CenterLady Davis Institute for Medical ResearchMcGill UniversityMontréalQCCanada
| | - Zhenbao Yu
- Departments of Oncology and MedicineSegal Cancer CenterLady Davis Institute for Medical ResearchMcGill UniversityMontréalQCCanada
| | - Yan Coulombe
- Genome Stability LaboratoryOncology DivisionCHU de Québec‐Université LavalQuébecQCCanada
- Department of Molecular Biology, Medical Biochemistry and PathologyLaval University Cancer Research CenterQuébecQCCanada
| | - Martin Karam
- Departments of Oncology and MedicineSegal Cancer CenterLady Davis Institute for Medical ResearchMcGill UniversityMontréalQCCanada
| | - Franciele F Busatto
- Genome Stability LaboratoryOncology DivisionCHU de Québec‐Université LavalQuébecQCCanada
- Department of Molecular Biology, Medical Biochemistry and PathologyLaval University Cancer Research CenterQuébecQCCanada
| | - Jean‐Yves Masson
- Genome Stability LaboratoryOncology DivisionCHU de Québec‐Université LavalQuébecQCCanada
- Department of Molecular Biology, Medical Biochemistry and PathologyLaval University Cancer Research CenterQuébecQCCanada
| | - Stéphane Richard
- Departments of Oncology and MedicineSegal Cancer CenterLady Davis Institute for Medical ResearchMcGill UniversityMontréalQCCanada
| |
Collapse
|
58
|
Okamoto Y, Hejna J, Takata M. Regulation of R-loops and genome instability in Fanconi anemia. J Biochem 2019; 165:465-470. [DOI: 10.1093/jb/mvz019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yusuke Okamoto
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Graduate School of Biostudies, Radiation Biology Center, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, Japan
| | - James Hejna
- Laboratory of Science Communication, Department of Biology Education and Heredity, Graduate School of Biostudies, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Graduate School of Biostudies, Radiation Biology Center, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|