51
|
Ribosomal protein S7 ubiquitination during ER stress in yeast is associated with selective mRNA translation and stress outcome. Sci Rep 2020; 10:19669. [PMID: 33184379 PMCID: PMC7661504 DOI: 10.1038/s41598-020-76239-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/16/2020] [Indexed: 01/03/2023] Open
Abstract
eIF2α phosphorylation-mediated translational regulation is crucial for global translation repression by various stresses, including the unfolded protein response (UPR). However, translational control during UPR has not been demonstrated in yeast. This study investigated ribosome ubiquitination-mediated translational controls during UPR. Tunicamycin-induced ER stress enhanced the levels of ubiquitination of the ribosomal proteins uS10, uS3 and eS7. Not4-mediated monoubiquitination of eS7A was required for resistance to tunicamycin, whereas E3 ligase Hel2-mediated ubiquitination of uS10 was not. Ribosome profiling showed that the monoubiquitination of eS7A was crucial for translational regulation, including the upregulation of the spliced form of HAC1 (HAC1i) mRNA and the downregulation of Histidine triad NucleoTide-binding 1 (HNT1) mRNA. Downregulation of the deubiquitinating enzyme complex Upb3-Bre5 increased the levels of ubiquitinated eS7A during UPR in an Ire1-independent manner. These findings suggest that the monoubiquitination of ribosomal protein eS7A plays a crucial role in translational controls during the ER stress response in yeast.
Collapse
|
52
|
The interaction of DNA repair factors ASCC2 and ASCC3 is affected by somatic cancer mutations. Nat Commun 2020; 11:5535. [PMID: 33139697 PMCID: PMC7608686 DOI: 10.1038/s41467-020-19221-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
The ASCC3 subunit of the activating signal co-integrator complex is a dual-cassette Ski2-like nucleic acid helicase that provides single-stranded DNA for alkylation damage repair by the α-ketoglutarate-dependent dioxygenase AlkBH3. Other ASCC components integrate ASCC3/AlkBH3 into a complex DNA repair pathway. We mapped and structurally analyzed interacting ASCC2 and ASCC3 regions. The ASCC3 fragment comprises a central helical domain and terminal, extended arms that clasp the compact ASCC2 unit. ASCC2–ASCC3 interfaces are evolutionarily highly conserved and comprise a large number of residues affected by somatic cancer mutations. We quantified contributions of protein regions to the ASCC2–ASCC3 interaction, observing that changes found in cancers lead to reduced ASCC2–ASCC3 affinity. Functional dissection of ASCC3 revealed similar organization and regulation as in the spliceosomal RNA helicase Brr2. Our results delineate functional regions in an important DNA repair complex and suggest possible molecular disease principles. The DNA helicase ASCC3 is the largest subunit of the activating signal co-integrator complex (ASCC), and its DNA unwinding activity is required for the AlkBH3/ASCC-dependent DNA de-alkylation repair pathway. Here, the authors identify a minimal stable complex of the two ASCC subunits ASCC2 and ASCC3, determine the complex crystal structure and further show that cancer-related mutations at the interface between both proteins reduce ASCC2–ASCC3 affinity.
Collapse
|
53
|
Abstract
Stalled protein synthesis produces defective nascent chains that can harm cells. In response, cells degrade these nascent chains via a process called ribosome-associated quality control (RQC). Here, we review the irregularities in the translation process that cause ribosomes to stall as well as how cells use RQC to detect stalled ribosomes, ubiquitylate their tethered nascent chains, and deliver the ubiquitylated nascent chains to the proteasome. We additionally summarize how cells respond to RQC failure.
Collapse
Affiliation(s)
- Cole S Sitron
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
54
|
Ghosh A, Williams LD, Pestov DG, Shcherbik N. Proteotoxic stress promotes entrapment of ribosomes and misfolded proteins in a shared cytosolic compartment. Nucleic Acids Res 2020; 48:3888-3905. [PMID: 32030400 PMCID: PMC7144922 DOI: 10.1093/nar/gkaa068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 11/23/2022] Open
Abstract
Cells continuously monitor protein synthesis to prevent accumulation of aberrant polypeptides. Insufficient capacity of cellular degradative systems, chaperone shortage or high levels of mistranslation by ribosomes can result in proteotoxic stress and endanger proteostasis. One of the least explored reasons for mistranslation is the incorrect functioning of the ribosome itself. To understand how cells deal with ribosome malfunction, we introduced mutations in the Expansion Segment 7 (ES7L) of 25S rRNA that allowed the formation of mature, translationally active ribosomes but induced proteotoxic stress and compromised cell viability. The ES7L-mutated ribosomes escaped nonfunctional rRNA Decay (NRD) and remained stable. Remarkably, ES7L-mutated ribosomes showed increased segregation into cytoplasmic foci containing soluble misfolded proteins. This ribosome entrapment pathway, termed TRAP (Translational Relocalization with Aberrant Polypeptides), was generalizable beyond the ES7L mutation, as wild-type ribosomes also showed increased relocalization into the same compartments in cells exposed to proteotoxic stressors. We propose that during TRAP, assembled ribosomes associated with misfolded nascent chains move into cytoplasmic compartments enriched in factors that facilitate protein quality control. In addition, TRAP may help to keep translation at its peak efficiency by preventing malfunctioning ribosomes from active duty in translation.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department for Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Dimitri G Pestov
- Department for Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| |
Collapse
|
55
|
Wang J, Zhang ZQ, Li FQ, Chen JN, Gong X, Cao BB, Wang W. Triptolide interrupts rRNA synthesis and induces the RPL23‑MDM2‑p53 pathway to repress lung cancer cells. Oncol Rep 2020; 43:1863-1874. [PMID: 32236588 PMCID: PMC7160537 DOI: 10.3892/or.2020.7569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Lung cancer has one of the highest mortalities of any cancer worldwide. Triptolide (TP) is a promising tumor suppressor extracted from the Chinese herb Tripterygium wilfordii. Our previous proteomics analysis revealed that TP significantly interfered with the ribosome biogenesis pathway; however, the underlying molecular mechanism remains poorly understood. The aim of the present study was to determine the molecular mechanism of TP's anticancer effect by investigating the association between ribosomal stress and p53 activation. It was found that TP induces nucleolar disintegration together with RNA polymerase I (Pol I) and upstream binding factor (UBF) translocation. TP interrupted ribosomal (r)RNA synthesis through inhibition of RNA Pol I and UBF transcriptional activation. TP treatment increased the binding of ribosomal protein L23 (RPL23) to mouse double minute 2 protein (MDM2), resulting in p53 being released from MDM2 and stabilized. Activation of p53 induced apoptosis and cell cycle arrest by enhancing the activation of p53 upregulated modulator of apoptosis, caspase 9 and caspase 3, and suppressing BCL2. In vivo experiments showed that TP significantly reduced xenograft tumor size and increased mouse body weight. Immunohistochemical assays confirmed that TP significantly increased the p53 level and induced nucleolus disintegration, during which nucleolin distribution moved from the nucleolus to the nucleoplasm, and RPL23 clustered at the edge of the cell membrane. Therefore, it was proposed that TP induces ribosomal stress, which leads to nucleolus disintegration, and inhibition of rRNA transcription and synthesis, resulting in increased binding of RPL23 with MDM2. Consequently, p53 is activated, which induces apoptosis and cell cycle arrest.
Collapse
Affiliation(s)
- Juan Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Zhi-Qian Zhang
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Fang-Qiong Li
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Jia-Ning Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaoting Gong
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Bei-Bei Cao
- Department of Clinical Laboratory, Hangzhou Linan District People's Hospital, Hangzhou, Zhejiang 311300, P.R. China
| | - Wei Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
56
|
Hashimoto S, Sugiyama T, Yamazaki R, Nobuta R, Inada T. Identification of a novel trigger complex that facilitates ribosome-associated quality control in mammalian cells. Sci Rep 2020; 10:3422. [PMID: 32099016 PMCID: PMC7042231 DOI: 10.1038/s41598-020-60241-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/13/2020] [Indexed: 11/09/2022] Open
Abstract
Ribosome stalling triggers the ribosome-associated quality control (RQC) pathway, which targets collided ribosomes and leads to subunit dissociation, followed by proteasomal degradation of the nascent peptide. In yeast, RQC is triggered by Hel2-dependent ubiquitination of uS10, followed by subunit dissociation mediated by the RQC-trigger (RQT) complex. In mammals, ZNF598-dependent ubiquitination of collided ribosomes is required for RQC, and activating signal cointegrator 3 (ASCC3), a component of the ASCC complex, facilitates RQC. However, the roles of other components and associated factors of the ASCC complex remain unknown. Here, we demonstrate that the human RQC-trigger (hRQT) complex, an ortholog of the yeast RQT complex, plays crucial roles in RQC. The hRQT complex is composed of ASCC3, ASCC2, and TRIP4, which are orthologs of the RNA helicase Slh1(Rqt2), ubiquitin-binding protein Cue3(Rqt3), and zinc-finger type protein yKR023W(Rqt4), respectively. The ATPase activity of ASCC3 and the ubiquitin-binding activity of ASCC2 are crucial for triggering RQC. Given the proposed function of the RQT complex in yeast, we propose that the hRQT complex recognizes the ubiquitinated stalled ribosome and induces subunit dissociation to facilitate RQC.
Collapse
Affiliation(s)
- Satoshi Hashimoto
- From the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Takato Sugiyama
- From the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Reina Yamazaki
- From the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Risa Nobuta
- From the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Toshifumi Inada
- From the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
57
|
Inada T. Quality controls induced by aberrant translation. Nucleic Acids Res 2020; 48:1084-1096. [PMID: 31950154 PMCID: PMC7026593 DOI: 10.1093/nar/gkz1201] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/01/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022] Open
Abstract
During protein synthesis, translating ribosomes encounter many challenges imposed by various types of defective mRNAs that can lead to reduced cellular fitness and, in some cases, even threaten cell viability. Aberrant translation leads to activation of one of several quality control pathways depending on the nature of the problem. These pathways promote the degradation of the problematic mRNA as well as the incomplete translation product, the nascent polypeptide chain. Many of these quality control systems feature critical roles for specialized regulatory factors that work in concert with conventional factors. This review focuses on the mechanisms used by these quality control pathways to recognize aberrant ribosome stalling and discusses the conservation of these systems.
Collapse
Affiliation(s)
- Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
58
|
Dougherty SE, Maduka AO, Inada T, Silva GM. Expanding Role of Ubiquitin in Translational Control. Int J Mol Sci 2020; 21:E1151. [PMID: 32050486 PMCID: PMC7037965 DOI: 10.3390/ijms21031151] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
The eukaryotic proteome has to be precisely regulated at multiple levels of gene expression, from transcription, translation, and degradation of RNA and protein to adjust to several cellular conditions. Particularly at the translational level, regulation is controlled by a variety of RNA binding proteins, translation and associated factors, numerous enzymes, and by post-translational modifications (PTM). Ubiquitination, a prominent PTM discovered as the signal for protein degradation, has newly emerged as a modulator of protein synthesis by controlling several processes in translation. Advances in proteomics and cryo-electron microscopy have identified ubiquitin modifications of several ribosomal proteins and provided numerous insights on how this modification affects ribosome structure and function. The variety of pathways and functions of translation controlled by ubiquitin are determined by the various enzymes involved in ubiquitin conjugation and removal, by the ubiquitin chain type used, by the target sites of ubiquitination, and by the physiologic signals triggering its accumulation. Current research is now elucidating multiple ubiquitin-mediated mechanisms of translational control, including ribosome biogenesis, ribosome degradation, ribosome-associated protein quality control (RQC), and redox control of translation by ubiquitin (RTU). This review discusses the central role of ubiquitin in modulating the dynamism of the cellular proteome and explores the molecular aspects responsible for the expanding puzzle of ubiquitin signals and functions in translation.
Collapse
Affiliation(s)
- Shannon E. Dougherty
- Department of Biology, Duke University, Durham, NC 27708-0338, USA; (S.E.D.); (A.O.M.)
| | - Austin O. Maduka
- Department of Biology, Duke University, Durham, NC 27708-0338, USA; (S.E.D.); (A.O.M.)
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Gustavo M. Silva
- Department of Biology, Duke University, Durham, NC 27708-0338, USA; (S.E.D.); (A.O.M.)
| |
Collapse
|
59
|
Garshott DM, Sundaramoorthy E, Leonard M, Bennett EJ. Distinct regulatory ribosomal ubiquitylation events are reversible and hierarchically organized. eLife 2020; 9:54023. [PMID: 32011234 PMCID: PMC7064338 DOI: 10.7554/elife.54023] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/01/2020] [Indexed: 11/13/2022] Open
Abstract
Activation of the integrated stress response (ISR) or the ribosome-associated quality control (RQC) pathway stimulates regulatory ribosomal ubiquitylation (RRub) on distinct 40S ribosomal proteins, yet the cellular role and fate of ubiquitylated proteins remain unclear. We demonstrate that uS10 and uS5 ubiquitylation are dependent upon eS10 or uS3 ubiquitylation, respectively, suggesting that a hierarchical relationship exists among RRub events establishing a ubiquitin code on ribosomes. We show that stress dependent RRub events diminish after initial stimuli and that demodification by deubiquitylating enzymes contributes to reduced RRub levels during stress recovery. Utilizing an optical RQC reporter we identify OTUD3 and USP21 as deubiquitylating enzymes that antagonize ZNF598-mediated 40S ubiquitylation and can limit RQC activation. Critically, cells lacking USP21 or OTUD3 have altered RQC activity and delayed eS10 deubiquitylation indicating a functional role for deubiquitylating enzymes within the RQC pathway. Ribosomes are cellular machines that build proteins by latching on and then reading template molecules known as mRNAs. Several ribosomes may be moving along the same piece of mRNA at the same time, each making their own copy of the same protein. Damage to an mRNA or other problems may cause a ribosome to stall, leading to subsequent collisions. A quality control pathway exists to identify stalled ribosomes and fix the ‘traffic jams’. It relies on enzymes that tag halted ribosomes with molecules known as ubiquitin. The cell then removes these ribosomes from the mRNA and destroys the proteins they were making. Afterwards, additional enzymes take off the ubiquitin tags so the cell can recycle the ribosomes. These enzymes are key to signaling the end of the quality control event, yet their identity was still unclear. Garshott et al. used genetic approaches to study traffic jams of ribosomes in mammalian cells. The experiments showed that cells added sets of ubiquitin tags to stalled ribosomes in a specific order. Two enzymes, known as USP21 and OTUD3, could stop this process; this allowed ribosomes to carry on reading mRNA. Further work revealed that the ribosomes in cells that produce higher levels of USP21 and OTUD3 were less likely to stall on mRNA. On the other hand, ribosomes in cells lacking USP1 and OTUD3 retained their ubiquitin tags for longer and were more likely to stall. The findings of Garshott et al. reveal that USP21 and OTUD3 are involved in the quality control pathway which fixes ribosome traffic jams. In mice, problems in this pathway have been linked with neurons dying or being damaged because toxic protein products start to accumulate in cells; this is similar to what happens in human conditions such as Alzheimer's and Parkinson's diseases. Using ubiquitin to target and potentially fix the pathway could therefore open the door to new therapies.
Collapse
Affiliation(s)
- Danielle M Garshott
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Elayanambi Sundaramoorthy
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Marilyn Leonard
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
60
|
Meyer C, Garzia A, Morozov P, Molina H, Tuschl T. The G3BP1-Family-USP10 Deubiquitinase Complex Rescues Ubiquitinated 40S Subunits of Ribosomes Stalled in Translation from Lysosomal Degradation. Mol Cell 2020; 77:1193-1205.e5. [PMID: 31981475 DOI: 10.1016/j.molcel.2019.12.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/11/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023]
Abstract
Ribosome-associated quality control (RQC) purges aberrant mRNAs and nascent polypeptides in a multi-step molecular process initiated by the E3 ligase ZNF598 through sensing of ribosomes collided at aberrant mRNAs and monoubiquitination of distinct small ribosomal subunit proteins. We show that G3BP1-family-USP10 complexes are required for deubiquitination of RPS2, RPS3, and RPS10 to rescue modified 40S subunits from programmed degradation. Knockout of USP10 or G3BP1 family proteins increased lysosomal ribosomal degradation and perturbed ribosomal subunit stoichiometry, both of which were rescued by a single K214R substitution of RPS3. While the majority of RPS2 and RPS3 monoubiquitination resulted from ZNF598-dependent sensing of ribosome collisions initiating RQC, another minor pathway contributed to their monoubiquitination. G3BP1 family proteins have long been considered RNA-binding proteins, however, our results identified 40S subunits and associated mRNAs as their predominant targets, a feature shared by stress granules to which G3BP1 family proteins localize under stress.
Collapse
Affiliation(s)
- Cindy Meyer
- Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, NY 10065, USA
| | - Aitor Garzia
- Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, NY 10065, USA
| | - Pavel Morozov
- Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, 1230 York Ave, Box 105, New York, NY 10065, USA
| | - Thomas Tuschl
- Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, NY 10065, USA.
| |
Collapse
|
61
|
An H, Harper JW. Ribosome Abundance Control Via the Ubiquitin-Proteasome System and Autophagy. J Mol Biol 2020; 432:170-184. [PMID: 31195016 PMCID: PMC6904543 DOI: 10.1016/j.jmb.2019.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
Abstract
Ribosomes are central to the life of a cell, as they translate the genetic code into the amino acid language of proteins. Moreover, ribosomal abundance within the cell is coordinated with protein production required for cell function or processes such as cell division. As such, it is not surprising that these elegant machines are both highly regulated at the level of both their output of newly translated proteins but also at the level of ribosomal protein expression, ribosome assembly, and ribosome turnover. In this review, we focus on mechanisms that regulate ribosome abundance through both the ubiquitin-proteasome system and forms of autophagy referred to as "ribophagy." We discussed mechanisms employed in both yeast and mammalian cells, including the various machineries that are important for recognition and degradation of ribosomal components. In addition, we discussed controversies in the field and how the development of new approaches for examining flux through the proteasomal and autophagic systems in the context of a systematic inventory of ribosomal components is necessary to fully understand how ribosome abundance is controlled under various physiological conditions.
Collapse
Affiliation(s)
- Heeseon An
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
62
|
The Ins and Outs of Autophagic Ribosome Turnover. Cells 2019; 8:cells8121603. [PMID: 31835634 PMCID: PMC6952998 DOI: 10.3390/cells8121603] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023] Open
Abstract
Ribosomes are essential for protein synthesis in all organisms and their biogenesis and number are tightly controlled to maintain homeostasis in changing environmental conditions. While ribosome assembly and quality control mechanisms have been extensively studied, our understanding of ribosome degradation is limited. In yeast or animal cells, ribosomes are degraded after transfer into the vacuole or lysosome by ribophagy or nonselective autophagy, and ribosomal RNA can also be transferred directly across the lysosomal membrane by RNautophagy. In plants, ribosomal RNA is degraded by the vacuolar T2 ribonuclease RNS2 after transport by autophagy-related mechanisms, although it is unknown if a selective ribophagy pathway exists in plants. In this review, we describe mechanisms of turnover of ribosomal components in animals and yeast, and, then, discuss potential pathways for degradation of ribosomal RNA and protein within the vacuole in plants.
Collapse
|
63
|
Yan LL, Simms CL, McLoughlin F, Vierstra RD, Zaher HS. Oxidation and alkylation stresses activate ribosome-quality control. Nat Commun 2019; 10:5611. [PMID: 31819057 PMCID: PMC6901537 DOI: 10.1038/s41467-019-13579-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Oxidation and alkylation of nucleobases are known to disrupt their base-pairing properties within RNA. It is, however, unclear whether organisms have evolved general mechanism(s) to deal with this damage. Here we show that the mRNA-surveillance pathway of no-go decay and the associated ribosome-quality control are activated in response to nucleobase alkylation and oxidation. Our findings reveal that these processes are important for clearing chemically modified mRNA and the resulting aberrant-protein products. In the absence of Xrn1, the level of damaged mRNA significantly increases. Furthermore, deletion of LTN1 results in the accumulation of protein aggregates in the presence of oxidizing and alkylating agents. This accumulation is accompanied by Hel2-dependent regulatory ubiquitylation of ribosomal proteins. Collectively, our data highlight the burden of chemically damaged mRNA on cellular homeostasis and suggest that organisms evolved mechanisms to counter their accumulation.
Collapse
Affiliation(s)
- Liewei L Yan
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Carrie L Simms
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
64
|
Erath J, Djuranovic S, Djuranovic SP. Adaptation of Translational Machinery in Malaria Parasites to Accommodate Translation of Poly-Adenosine Stretches Throughout Its Life Cycle. Front Microbiol 2019; 10:2823. [PMID: 31866984 PMCID: PMC6908487 DOI: 10.3389/fmicb.2019.02823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Abstract
Malaria is caused by unicellular apicomplexan parasites of the genus Plasmodium, which includes the major human parasite Plasmodium falciparum. The complex cycle of the malaria parasite in both mosquito and human hosts has been studied extensively. There is tight control of gene expression in each developmental stage, and at every level of gene synthesis: from RNA transcription, to its subsequent translation, and finally post-translational modifications of the resulting protein. Whole-genome sequencing of P. falciparum has laid the foundation for significant biological advances by revealing surprising genomic information. The P. falciparum genome is extremely AT-rich (∼80%), with a substantial portion of genes encoding intragenic polyadenosine (polyA) tracks being expressed throughout the entire parasite life cycle. In most eukaryotes, intragenic polyA runs act as negative regulators of gene expression. Recent studies have shown that translation of mRNAs containing 12 or more consecutive adenosines results in ribosomal stalling and frameshifting; activating mRNA surveillance mechanisms. In contrast, P. falciparum translational machinery can efficiently and accurately translate polyA tracks without activating mRNA surveillance pathways. This unique feature of P. falciparum raises interesting questions: (1) How is P. falciparum able to efficiently and correctly translate polyA track transcripts, and (2) What are the specifics of the translational machinery and mRNA surveillance mechanisms that separate P. falciparum from other organisms? In this review, we analyze possible evolutionary shifts in P. falciparum protein synthesis machinery that allow efficient translation of an AU rich-transcriptome. We focus on physiological and structural differences of P. falciparum stage specific ribosomes, ribosome-associated proteins, and changes in mRNA surveillance mechanisms throughout the complete parasite life cycle, with an emphasis on the mosquito and liver stages.
Collapse
Affiliation(s)
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Slavica Pavlovic Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
65
|
Shcherbik N, Pestov DG. The Impact of Oxidative Stress on Ribosomes: From Injury to Regulation. Cells 2019; 8:cells8111379. [PMID: 31684095 PMCID: PMC6912279 DOI: 10.3390/cells8111379] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
The ribosome is a complex ribonucleoprotein-based molecular machine that orchestrates protein synthesis in the cell. Both ribosomal RNA and ribosomal proteins can be chemically modified by reactive oxygen species, which may alter the ribosome′s functions or cause a complete loss of functionality. The oxidative damage that ribosomes accumulate during their lifespan in a cell may lead to reduced or faulty translation and contribute to various pathologies. However, remarkably little is known about the biological consequences of oxidative damage to the ribosome. Here, we provide a concise summary of the known types of changes induced by reactive oxygen species in rRNA and ribosomal proteins and discuss the existing experimental evidence of how these modifications may affect ribosome dynamics and function. We emphasize the special role that redox-active transition metals, such as iron, play in ribosome homeostasis and stability. We also discuss the hypothesis that redox-mediated ribosome modifications may contribute to adaptive cellular responses to stress.
Collapse
Affiliation(s)
- Natalia Shcherbik
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| |
Collapse
|
66
|
Kampinga HH, Mayer MP, Mogk A. Protein quality control: from mechanism to disease : EMBO Workshop, Costa de la Calma (Mallorca), Spain, April 28 - May 03, 2019. Cell Stress Chaperones 2019; 24:1013-1026. [PMID: 31713048 PMCID: PMC6882752 DOI: 10.1007/s12192-019-01040-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
The cellular protein quality control machinery with its central constituents of chaperones and proteases is vital to maintain protein homeostasis under physiological conditions and to protect against acute stress conditions. Imbalances in protein homeostasis also are keys to a plethora of genetic and acquired, often age-related, diseases as well as aging in general. At the EMBO Workshop, speakers covered all major aspects of cellular protein quality control, from basic mechanisms at the molecular, cellular, and organismal level to medical translation. In this report, the highlights of the meeting will be summarized.
Collapse
Affiliation(s)
- Harm H Kampinga
- Department of Biomedical Science of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Matthias P Mayer
- Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
| | - Axel Mogk
- Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
| |
Collapse
|
67
|
Hui KK, Chen YK, Endo R, Tanaka M. Translation from the Ribosome to the Clinic: Implication in Neurological Disorders and New Perspectives from Recent Advances. Biomolecules 2019; 9:E680. [PMID: 31683805 PMCID: PMC6920867 DOI: 10.3390/biom9110680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
De novo protein synthesis by the ribosome and its multitude of co-factors must occur in a tightly regulated manner to ensure that the correct proteins are produced accurately at the right time and, in some cases, also in the proper location. With novel techniques such as ribosome profiling and cryogenic electron microscopy, our understanding of this basic biological process is better than ever and continues to grow. Concurrently, increasing attention is focused on how translational regulation in the brain may be disrupted during the progression of various neurological disorders. In fact, translational dysregulation is now recognized as the de facto pathogenic cause for some disorders. Novel mechanisms including ribosome stalling, ribosome-associated quality control, and liquid-liquid phase separation are closely linked to translational regulation, and may thus be involved in the pathogenic process. The relationships between translational dysregulation and neurological disorders, as well as the ways through which we may be able to reverse those detrimental effects, will be examined in this review.
Collapse
Affiliation(s)
- Kelvin K Hui
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Yi-Kai Chen
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Ryo Endo
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| |
Collapse
|