51
|
Wilkinson AC, Nakauchi H. Stabilizing hematopoietic stem cells in vitro. Curr Opin Genet Dev 2020; 64:1-5. [PMID: 32570191 DOI: 10.1016/j.gde.2020.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
Hematopoietic stem cells (HSCs) can regenerate all lineages of the adult blood and immune systems long-term following transplantation via a combination of self-renewal and multipotent differentiation. HSCs are therefore an important cell type in both basic research and in the clinic, where HSC transplantation is a curative therapy for a range of diseases. However, as a rare bone marrow cell population, the characterization and collection of HSCs can often be challenging. This has led to a large search for in vitro culture conditions that support the growth of functional HSCs and the in vitro stabilization of the HSC state represents a major goal in the field. Here, we review recent progress towards stabilizing HSCs in vitro.
Collapse
Affiliation(s)
- Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
52
|
Abstract
The self-renewal capacity of multipotent haematopoietic stem cells (HSCs) supports blood system homeostasis throughout life and underlies the curative capacity of clinical HSC transplantation therapies. However, despite extensive characterization of the HSC state in the adult bone marrow and embryonic fetal liver, the mechanism of HSC self-renewal has remained elusive. This Review presents our current understanding of HSC self-renewal in vivo and ex vivo, and discusses important advances in ex vivo HSC expansion that are providing new biological insights and offering new therapeutic opportunities.
Collapse
|
53
|
Dupard SJ, Grigoryan A, Farhat S, Coutu DL, Bourgine PE. Development of Humanized Ossicles: Bridging the Hematopoietic Gap. Trends Mol Med 2020; 26:552-569. [PMID: 32470383 DOI: 10.1016/j.molmed.2020.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/16/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Ectopic 'humanized ossicles' (hOss) are miniaturized, engineered human bone organs in mice displaying a similar structure and function to native mouse bones. However, they are composed of human mesenchymal derived cells forming a humanized bone marrow niche. This in vivo reconstitution of human skeletal and hematopoietic compartments provides an opportunity to investigate the cellular and molecular processes involved in their establishment and functions in a human setting. However, current hOs strategies vary in their engineering methods and their downstream applications, undermining comprehensive exploitation of their potential. This review describes the specificities of the hOs models and highlights their potential and limits. Ultimately, we propose directions for the development of hOss as a technological platform for human hematopoietic studies.
Collapse
Affiliation(s)
- Steven J Dupard
- Laboratory for Cell, Tissue, and Organ engineering, Department of Clinical Sciences, Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Stem Cell Center, Lund University, Lund, Sweden
| | - Ani Grigoryan
- Laboratory for Cell, Tissue, and Organ engineering, Department of Clinical Sciences, Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Stem Cell Center, Lund University, Lund, Sweden
| | - Stephanie Farhat
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Division of Orthopedic Surgery, The Ottawa Hospital, Ottawa, ON, Canada
| | - Daniel L Coutu
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Division of Orthopedic Surgery, The Ottawa Hospital, Ottawa, ON, Canada
| | - Paul E Bourgine
- Laboratory for Cell, Tissue, and Organ engineering, Department of Clinical Sciences, Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|