51
|
Tang L, Li T, Xie J, Huo Y. Diversity and heterogeneity in human breast cancer adipose tissue revealed at single-nucleus resolution. Front Immunol 2023; 14:1158027. [PMID: 37153595 PMCID: PMC10160491 DOI: 10.3389/fimmu.2023.1158027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction There is increasing awareness of the role of adipose tissue in breast cancer occurrence and development, but no comparison of adipose adjacent to breast cancer tissues and adipose adjacent to normal breast tissues has been reported. Methods Single-nucleus RNA sequencing (snRNA-seq) was used to analyze cancer-adjacent and normal adipose tissues from the same breast cancer patient to characterize heterogeneity. SnRNA-seq was performed on 54513 cells from six samples of normal breast adipose tissue (N) distant from the tumor and tumor-adjacent adipose tissue (T) from the three patients (all surgically resected). Results and discussion Significant diversity was detected in cell subgroups, differentiation status and, gene expression profiles. Breast cancer induces inflammatory gene profiles in most adipose cell types, such as macrophages, endothelial cells, and adipocytes. Furthermore, breast cancer decreased lipid uptake and the lipolytic phenotype and caused a switch to lipid biosynthesis and an inflammatory state in adipocytes. The in vivo trajectory of adipogenesis revealed distinct transcriptional stages. Breast cancer induced reprogramming across many cell types in breast cancer adipose tissues. Cellular remodeling was investigated by alterations in cell proportions, transcriptional profiles and cell-cell interactions. Breast cancer biology and novel biomarkers and therapy targets may be exposed.
Collapse
Affiliation(s)
- Lina Tang
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- *Correspondence: Lina Tang, ; Yanping Huo,
| | - Tingting Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, Liaoning, China
| | - Jing Xie
- Department of Breast Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yanping Huo
- Department of Breast Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- *Correspondence: Lina Tang, ; Yanping Huo,
| |
Collapse
|
52
|
Ennis CS, Llevenes P, Qiu Y, Dries R, Denis GV. The crosstalk within the breast tumor microenvironment in type II diabetes: Implications for cancer disparities. Front Endocrinol (Lausanne) 2022; 13:1044670. [PMID: 36531496 PMCID: PMC9751481 DOI: 10.3389/fendo.2022.1044670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity-driven (type 2) diabetes (T2D), the most common metabolic disorder, both increases the incidence of all molecular subtypes of breast cancer and decreases survival in postmenopausal women. Despite this clear link, T2D and the associated dysfunction of diverse tissues is often not considered during the standard of care practices in oncology and, moreover, is treated as exclusion criteria for many emerging clinical trials. These guidelines have caused the biological mechanisms that associate T2D and breast cancer to be understudied. Recently, it has been illustrated that the breast tumor microenvironment (TME) composition and architecture, specifically the surrounding cellular and extracellular structures, dictate tumor progression and are directly relevant for clinical outcomes. In addition to the epithelial cancer cell fraction, the breast TME is predominantly made up of cancer-associated fibroblasts, adipocytes, and is often infiltrated by immune cells. During T2D, signal transduction among these cell types is aberrant, resulting in a dysfunctional breast TME that communicates with nearby cancer cells to promote oncogenic processes, cancer stem-like cell formation, pro-metastatic behavior and increase the risk of recurrence. As these cells are non-malignant, despite their signaling abnormalities, data concerning their function is never captured in DNA mutational databases, thus we have limited insight into mechanism from publicly available datasets. We suggest that abnormal adipocyte and immune cell exhaustion within the breast TME in patients with obesity and metabolic disease may elicit greater transcriptional plasticity and cellular heterogeneity within the expanding population of malignant epithelial cells, compared to the breast TME of a non-obese, metabolically normal patient. These challenges are particularly relevant to cancer disparities settings where the fraction of patients seen within the breast medical oncology practice also present with co-morbid obesity and metabolic disease. Within this review, we characterize the changes to the breast TME during T2D and raise urgent molecular, cellular and translational questions that warrant further study, considering the growing prevalence of T2D worldwide.
Collapse
Affiliation(s)
- Christina S. Ennis
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, United States
| | - Pablo Llevenes
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Yuhan Qiu
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
| | - Ruben Dries
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, United States
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, United States
| | - Gerald V. Denis
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Shipley Prostate Cancer Research Professor, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
53
|
Obesity-Associated ECM Remodeling in Cancer Progression. Cancers (Basel) 2022; 14:cancers14225684. [PMID: 36428776 PMCID: PMC9688387 DOI: 10.3390/cancers14225684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Adipose tissue, an energy storage and endocrine organ, is emerging as an essential player for ECM remodeling. Fibrosis is one of the hallmarks of obese adipose tissue, featuring excessive ECM deposition and enhanced collagen alignment. A variety of ECM components and ECM-related enzymes are produced by adipocytes and myofibroblasts in obese adipose tissue. Data from lineage-tracing models and a single-cell analysis indicate that adipocytes can transform or de-differentiate into myofibroblast/fibroblast-like cells. This de-differentiation process has been observed under normal tissue development and pathological conditions such as cutaneous fibrosis, wound healing, and cancer development. Accumulated evidence has demonstrated that adipocyte de-differentiation and myofibroblasts/fibroblasts play crucial roles in obesity-associated ECM remodeling and cancer progression. In this review, we summarize the recent progress in obesity-related ECM remodeling, the mechanism underlying adipocyte de-differentiation, and the function of obesity-associated ECM remodeling in cancer progression.
Collapse
|