51
|
Albakova Z, Armeev GA, Kanevskiy LM, Kovalenko EI, Sapozhnikov AM. HSP70 Multi-Functionality in Cancer. Cells 2020; 9:cells9030587. [PMID: 32121660 PMCID: PMC7140411 DOI: 10.3390/cells9030587] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
The 70-kDa heat shock proteins (HSP70s) are abundantly present in cancer, providing malignant cells selective advantage by suppressing multiple apoptotic pathways, regulating necrosis, bypassing cellular senescence program, interfering with tumor immunity, promoting angiogenesis and supporting metastasis. This direct involvement of HSP70 in most of the cancer hallmarks explains the phenomenon of cancer "addiction" to HSP70, tightly linking tumor survival and growth to the HSP70 expression. HSP70 operates in different states through its catalytic cycle, suggesting that it can multi-function in malignant cells in any of these states. Clinically, tumor cells intensively release HSP70 in extracellular microenvironment, resulting in diverse outcomes for patient survival. Given its clinical significance, small molecule inhibitors were developed to target different sites of the HSP70 machinery. Furthermore, several HSP70-based immunotherapy approaches were assessed in clinical trials. This review will explore different roles of HSP70 on cancer progression and emphasize the importance of understanding the flexibility of HSP70 nature for future development of anti-cancer therapies.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; (G.A.A.); (A.M.S.)
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
- Correspondence:
| | - Grigoriy A. Armeev
- Department of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; (G.A.A.); (A.M.S.)
| | - Leonid M. Kanevskiy
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
| | - Elena I. Kovalenko
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
| | - Alexander M. Sapozhnikov
- Department of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia; (G.A.A.); (A.M.S.)
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.M.K.); (E.I.K.)
| |
Collapse
|
52
|
Autophagic Inhibition via Lysosomal Integrity Dysfunction Leads to Antitumor Activity in Glioma Treatment. Cancers (Basel) 2020; 12:cancers12030543. [PMID: 32120820 PMCID: PMC7139627 DOI: 10.3390/cancers12030543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
Manipulating autophagy is a promising strategy for treating cancer as several autophagy inhibitors are shown to induce autophagic cell death. One of these, autophagonizer (APZ), induces apoptosis-independent cell death by binding an unknown target via an unknown mechanism. To identify APZ targets, we used a label-free drug affinity responsive target stability (DARTS) approach with a liquid chromatography/tandem mass spectrometry (LC–MS/MS) readout. Of 35 protein interactors, we identified Hsp70 as a key target protein of unmodified APZ in autophagy. Either APZ treatment or Hsp70 inhibition attenuates integrity of lysosomes, which leads to autophagic cell death exhibiting an excellent synergism with a clinical drug, temozolomide, in vitro, in vivo, and orthotropic glioma xenograft model. These findings demonstrate the potential of APZ to induce autophagic cell death and its development to combinational chemotherapeutic agent for glioma treatment. Collectively, our study demonstrated that APZ, a new autophagy inhibitor, can be used as a potent antitumor drug candidate to get over unassailable glioma and revealed a novel function of Hsp70 in lysosomal integrity regulation of autophagy.
Collapse
|
53
|
Peng S, He Q, Vargas-Zúñiga GI, Qin L, Hwang I, Kim SK, Heo NJ, Lee CH, Dutta R, Sessler JL. Strapped calix[4]pyrroles: from syntheses to applications. Chem Soc Rev 2020; 49:865-907. [PMID: 31957756 DOI: 10.1039/c9cs00528e] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supramolecular chemistry is a central topic in modern chemistry. It touches on many traditional disciplines, such as organic chemistry, inorganic chemistry, physical chemistry, materials chemistry, environmental chemistry, and biological chemistry. Supramolecular hosts, inter alia macrocyclic hosts, play critical roles in supramolecular chemistry. Calix[4]pyrroles, non-aromatic tetrapyrrolic macrocycles defined by sp3 hybridized meso bridges, have proved to be versatile receptors for neutral species, anions, and cations, as well as ion pairs. Compared to the parent system, octamethylcalix[4]pyrrole and its derivatives bearing simple appended functionalities, strapped calix[4]pyrroles typically display enhanced binding affinities and selectivities. In this review, we summarize advances in the design and synthesis of strapped calix[4]pyrroles, as well as their broad utility in molecular recognition, supramolecular extraction, separation technology, ion transport, and as agents capable of inhibiting cancer cell proliferation. Future challenges within this sub-field are also discussed.
Collapse
Affiliation(s)
- Sangshan Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Gabriela I Vargas-Zúñiga
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, USA.
| | - Lei Qin
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, USA.
| | - Inhong Hwang
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, USA.
| | - Sung Kuk Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701, Korea.
| | - Nam Jung Heo
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701, Korea.
| | - Chang-Hee Lee
- Department of Chemistry, Kangwon National University and IMSFT, Chun-Cheon 24341, Korea.
| | - Ranjan Dutta
- Department of Chemistry, Kangwon National University and IMSFT, Chun-Cheon 24341, Korea.
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, USA. and Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
54
|
HSC70 regulates cold-induced caspase-1 hyperactivation by an autoinflammation-causing mutant of cytoplasmic immune receptor NLRC4. Proc Natl Acad Sci U S A 2019; 116:21694-21703. [PMID: 31597739 DOI: 10.1073/pnas.1905261116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
NLRC4 [nucleotide-binding domain and leucine-rich repeat (NLR) family, caspase recruitment domain (CARD) containing 4] is an innate immune receptor, which, upon detection of certain pathogens or internal distress signals, initiates caspase-1-mediated interleukin-1β maturation and an inflammatory response. A gain-of-function mutation, H443P in NLRC4, causes familial cold autoinflammatory syndrome (FCAS) characterized by cold-induced hyperactivation of caspase-1, enhanced interleukin-1β maturation, and inflammation. Although the H443P mutant shows constitutive activity, the mechanism involved in hyperactivation of caspase-1 by NLRC4-H443P upon exposure of cells to lower temperature is not known. Here, we show that heat shock cognate protein 70 (HSC70) complexes with NLRC4 and negatively regulates caspase-1 activation by NLRC4-H443P in human cells. Compared with NLRC4, the structurally altered NLRC4-H443P shows enhanced interaction with HSC70. Nucleotide binding- and leucine-rich repeat domains of NLRC4, but not its CARD, can engage in complex formation with HSC70. Knockdown of HSC70 enhances apoptosis-associated speck-like protein containing a CARD (ASC)-speck formation and caspase-1 activation by NLRC4-H443P. Exposure to subnormal temperature results in reduced interaction of NLRC4-H443P with HSC70, and an increase in its ability to form ASC specks and activate caspase-1. Unlike the NLRC4-H443P mutant, another constitutively active mutant (NLRC4-V341A) associated with autoinflammatory diseases, but not FCAS, showed neither enhanced interaction with HSC70 nor an increase in inflammasome formation upon exposure to subnormal temperature. Our results identify HSC70 as a negative regulator of caspase-1 activation by the temperature-sensitive NLRC4-H443P mutant. We also show that low-temperature-induced hyperactivation of caspase-1 by NLRC4-H443P is due to loss of inhibition by HSC70.
Collapse
|
55
|
Park S, Ko W, Park S, Lee HS, Shin I. Evaluation of the Interaction between Bax and Hsp70 in Cells by Using a FRET System Consisting of a Fluorescent Amino Acid and YFP as a FRET Pair. Chembiochem 2019; 21:59-63. [DOI: 10.1002/cbic.201900293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Seong‐Hyun Park
- Department of ChemistryYonsei University Seoul 03722 South Korea
| | - Wooseok Ko
- Department of ChemistrySogang University Seoul 04107 South Korea
| | - Sang‐Hyun Park
- Department of ChemistryYonsei University Seoul 03722 South Korea
| | - Hyun Soo Lee
- Department of ChemistrySogang University Seoul 04107 South Korea
| | - Injae Shin
- Department of ChemistryYonsei University Seoul 03722 South Korea
| |
Collapse
|
56
|
Moradi-Marjaneh R, Paseban M, Moradi Marjaneh M. Hsp70 inhibitors: Implications for the treatment of colorectal cancer. IUBMB Life 2019; 71:1834-1845. [PMID: 31441584 DOI: 10.1002/iub.2157] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/12/2019] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies in the world. Despite intensive advances in diagnosis and treatment of CRC, it is yet one of the leading cause of cancer related morbidity and mortality. Therefore, there is an urgent medical need for alternative therapeutic approaches to treat CRC. The 70 kDa heat shock proteins (Hsp70s) are a family of evolutionary conserved heat shock proteins, which play an important role in cell homeostasis and survival. They overexpress in various types of malignancy including CRC and are typically accompanied with poor prognosis. Hence, inhibition of Hsp70 may be considered as a striking chemotherapeutic avenue. This review summarizes the current knowledge on the progress made so far to discover compounds, which target the Hsp70 family, with particular emphasis on their efficacy in treatment of CRC. We also briefly explain the induction of Hsp70 as a strategy to prevent CRC.
Collapse
Affiliation(s)
| | - Maryam Paseban
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Moradi Marjaneh
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
57
|
Kim Chiaw P, Hantouche C, Wong MJH, Matthes E, Robert R, Hanrahan JW, Shrier A, Young JC. Hsp70 and DNAJA2 limit CFTR levels through degradation. PLoS One 2019; 14:e0220984. [PMID: 31408507 PMCID: PMC6692068 DOI: 10.1371/journal.pone.0220984] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/26/2019] [Indexed: 11/18/2022] Open
Abstract
Cystic Fibrosis is caused by mutations in the CFTR anion channel, many of which cause its misfolding and degradation. CFTR folding depends on the Hsc70 and Hsp70 chaperones and their co-chaperone DNAJA1, but Hsc70/Hsp70 is also involved in CFTR degradation. Here, we address how these opposing functions are balanced. DNAJA2 and DNAJA1 were both important for CFTR folding, however overexpressing DNAJA2 but not DNAJA1 enhanced CFTR degradation at the endoplasmic reticulum by Hsc70/Hsp70 and the E3 ubiquitin ligase CHIP. Excess Hsp70 also promoted CFTR degradation, but this occurred through the lysosomal pathway and required CHIP but not complex formation with HOP and Hsp90. Notably, the Hsp70 inhibitor MKT077 enhanced levels of mature CFTR and the most common disease variant ΔF508-CFTR, by slowing turnover and allowing delayed maturation, respectively. MKT077 also boosted the channel activity of ΔF508-CFTR when combined with the corrector compound VX809. Thus, the Hsp70 system is the major determinant of CFTR degradation, and its modulation can partially relieve the misfolding phenotype.
Collapse
Affiliation(s)
- Patrick Kim Chiaw
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Christine Hantouche
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Michael J. H. Wong
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Elizabeth Matthes
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Renaud Robert
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - John W. Hanrahan
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Alvin Shrier
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Jason C. Young
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
58
|
Bonam SR, Ruff M, Muller S. HSPA8/HSC70 in Immune Disorders: A Molecular Rheostat that Adjusts Chaperone-Mediated Autophagy Substrates. Cells 2019; 8:E849. [PMID: 31394830 PMCID: PMC6721745 DOI: 10.3390/cells8080849] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
HSPA8/HSC70 is a molecular chaperone involved in a wide variety of cellular processes. It plays a crucial role in protein quality control, ensuring the correct folding and re-folding of selected proteins, and controlling the elimination of abnormally-folded conformers and of proteins daily produced in excess in our cells. HSPA8 is a crucial molecular regulator of chaperone-mediated autophagy, as a detector of substrates that will be processed by this specialized autophagy pathway. In this review, we shortly summarize its structure and overall functions, dissect its implication in immune disorders, and list the known pharmacological tools that modulate its functions. We also exemplify the interest of targeting HSPA8 to regulate pathological immune dysfunctions.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Neuroimmunology & peptide therapy, Biotechnology and cell signaling, CNRS-University of Strasbourg, Illkirch 67412, France/Laboratory of excellence Medalis, 67000 Strasbourg, France
| | - Marc Ruff
- Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404 Strasbourg, France
| | - Sylviane Muller
- Neuroimmunology & peptide therapy, Biotechnology and cell signaling, CNRS-University of Strasbourg, Illkirch 67412, France/Laboratory of excellence Medalis, 67000 Strasbourg, France.
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France.
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, 67000 Strasbourg, France.
| |
Collapse
|
59
|
Park SH, Shin I, Park SH, Kim ND, Shin I. An Inhibitor of the Interaction of Survivin with Smac in Mitochondria Promotes Apoptosis. Chem Asian J 2019; 14:4035-4041. [PMID: 31251464 DOI: 10.1002/asia.201900587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/28/2019] [Indexed: 12/24/2022]
Abstract
Herein we report the first small molecule that disrupts the survivin-Smac interaction taking place in mitochondria. The inhibitor, PZ-6-QN, was identified by initially screening a phenothiazine library using a fluorescence anisotropy assay and then conducting a structure-activity relationship study. Mutagenesis and molecular docking studies suggest that PZ-6-QN binds to survivin similarly to the known Smac peptide, AVPI. The results of the effort also show that PZ-6-QN exhibits good anticancer activity against various cancer cells. Moreover, cell-based mechanistic studies provide evidence for the proposal that PZ-6-QN enters mitochondria to inhibit the survivin-Smac interaction and promotes release of Smac and cytochrome c from mitochondria into the cytosol, a process that induces apoptosis in cancer cells. Overall, the present study suggests that PZ-6-QN can serve as a novel chemical probe for study of processes associated with the mitochondrial survivin-Smac interaction and it will aid the discovery of novel anticancer agents.
Collapse
Affiliation(s)
- Seong-Hyun Park
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Insu Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Sang-Hyun Park
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Nam Doo Kim
- NDBio Therapeutics Inc., Incheon, 21984, Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
60
|
Luo LL, Li YF, Shan HM, Wang LP, Yuan F, Ma YY, Li WL, He TT, Wang YY, Qu MJ, Liang HB, Zhang ZJ, Yang GY, Tang YH, Wang YT. L-glutamine protects mouse brain from ischemic injury via up-regulating heat shock protein 70. CNS Neurosci Ther 2019; 25:1030-1041. [PMID: 31218845 PMCID: PMC6698979 DOI: 10.1111/cns.13184] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/17/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION L-glutamine is an antioxidant that plays a role in a variety of biochemical processes. Given that oxidative stress is a key component of stroke pathology, the potential of L-glutamine in the treatment of ischemic stroke is worth exploring. AIMS In this study, we investigated the effect and mechanisms of action of L-glutamine after cerebral ischemic injury. RESULTS L-glutamine reduced brain infarct volume and promoted neurobehavioral recovery in mice. L-glutamine administration increased the expression of heat-shock protein 70 (HSP70) in astrocytes and endothelial cells. Such effects were abolished by the coadministration of Apoptozole, an inhibitor of the ATPase activity of HSP70. L-glutamine also reduced oxidative stress and neuronal apoptosis, and increased the level of superoxide dismutase, glutathione, and brain-derived neurotrophic factor. Cotreatment with Apoptozole abolished these effects. Cell culture study further revealed that the conditioned medium from astrocytes cultured with L-glutamine reduced the apoptosis of neurons after oxygen-glucose deprivation. CONCLUSION L-glutamine attenuated ischemic brain injury and promoted functional recovery via HSP70, suggesting its potential in ischemic stroke therapy.
Collapse
Affiliation(s)
- Long-Long Luo
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yong-Fang Li
- Department of Neurology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Min Shan
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Ping Wang
- Department of Neurology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Yuan
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan-Yuan Ma
- Department of Neurology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wan-Lu Li
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ting-Ting He
- Department of Neurology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Yang Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Mei-Jie Qu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Huai-Bin Liang
- Department of Neurology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Jun Zhang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yao-Hui Tang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yong-Ting Wang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
61
|
When Small Molecules Are Like Real Estate: It's All about Location, Location, Location. Cell Chem Biol 2019; 25:1169-1170. [PMID: 30339956 DOI: 10.1016/j.chembiol.2018.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this issue of Cell Chemical Biology, Park et al. (2018) demonstrate that targeting apoptazole, an Hsp70 inhibitor, to mitochondria induces apoptosis by a distinct mechanism of action different from unmodified apoptazole, which accumulates in the lysosome. These results highlight the power of subcellular localization in small-molecule selectivity.
Collapse
|
62
|
Abstract
Recently, we showed that synthetic anion transporters DSC4P-1 and SA-3 had activity related to cancer cell death. They were found to increase intracellular chloride and sodium ion concentrations. They were also found to induce apoptosis (DSC4P-1) and both induce apoptosis and inhibit autophagy (SA-3). However, determinants underlying these phenomenological findings were not elucidated. The absence of mechanistic understanding has limited the development of yet-improved systems. Here, we show that three synthetic anion transporters, DSC4P-1, SA-3, and 8FC4P, induce osmotic stress in cells by increasing intracellular ion concentrations. This triggers the generation of reactive oxygen species via a sequential process and promotes caspase-dependent apoptosis. In addition, two of the transporters, SA-3 and 8FC4P, induce autophagy by increasing the cytosolic calcium ion concentration promoted by osmotic stress. However, they eventually inhibit the autophagy process as a result of their ability to disrupt lysosome function through a transporter-mediated decrease in a lysosomal chloride ion concentration and an increase in the lysosomal pH.
Collapse
|
63
|
Park SH, Ko W, Lee HS, Shin I. Analysis of Protein–Protein Interaction in a Single Live Cell by Using a FRET System Based on Genetic Code Expansion Technology. J Am Chem Soc 2019; 141:4273-4281. [DOI: 10.1021/jacs.8b10098] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Seong-Hyun Park
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Wooseok Ko
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Injae Shin
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
64
|
Hwang CS, Ellis B, Zhou B, Janda KD. Heat shock proteins: A dual carrier-adjuvant for an anti-drug vaccine against heroin. Bioorg Med Chem 2019; 27:125-132. [PMID: 30497790 PMCID: PMC6442938 DOI: 10.1016/j.bmc.2018.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
Heroin is a highly abused opioid that has reached epidemic status within the United States. Yet, existing therapies to treat addiction are inadequate and frequently result into rates of high recidivism. Vaccination against heroin offers a promising alternative therapeutic option but requires further development to enhance the vaccine's performance. Hsp70 is a conserved protein with known immunomodulatory properties and is considered an excellent immunodominant antigen. Within an antidrug vaccine context, we envisioned Hsp70 as a potential dual carrier-adjuvant, wherein immunogenicity would be increased by co-localization of adjuvant and antigenic drug hapten. Recombinant Mycobacterium tuberculosis Hsp70 was appended with heroin haptens and the resulting immunoconjugate granted anti-heroin antibody production and blunted heroin-induced antinociception. Moreover, Hsp70 as a carrier protein surpassed our benchmark Her-KLH cocktail through antibody-mediated blockade of 6-acetylmorphine, the main mediator of heroin's psychoactivity. The work presents a new avenue for exploration in the use of hapten-Hsp70 conjugates to elicit anti-drug immune responses.
Collapse
Affiliation(s)
- Candy S Hwang
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Beverly Ellis
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bin Zhou
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kim D Janda
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
65
|
Park SH, Hyun JY, Shin I. A lysosomal chloride ion-selective fluorescent probe for biological applications. Chem Sci 2018; 10:56-66. [PMID: 30746073 PMCID: PMC6334773 DOI: 10.1039/c8sc04084b] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/08/2018] [Indexed: 01/07/2023] Open
Abstract
Lysosomal pHs are maintained at low values by the cooperative action of a proton pump and a chloride channel to maintain electroneutrality. Owing to the biological significance of lysosomal chloride ions, measurements of their levels are of great importance to understand lysosome-associated biological events. However, appropriate probes to selectively detect Cl- ions within acidic lysosomes have not been developed to date. In this study, we prepared MQAE-MP, a lysosomal Cl--selective fluorescent probe, and applied it to gain information about biological processes associated with lysosomes. The fluorescence of MQAE-MP is pH-insensitive over physiological pH ranges and is quenched by Cl- with a Stern-Volmer constant of 204 M-1. Because MQAE-MP detects lysosomal Cl- selectively, it was employed to assess the effects of eleven substances on lysosomal Cl- concentrations. The results show that lysosomal Cl- concentrations decrease in cells treated with substances that inhibit proteins responsible for lysosomal membrane stabilization, induce lysosomal membrane permeabilization, and transport lysosomal Cl- to the cytosol. In addition, we investigated the effect of lysosomal chloride ions on the fusion of autophagosomes with lysosomes to generate autolysosomes during autophagy inhibition promoted by substances. It was found that changes in lysosomal Cl- concentrations did not affect the fusion of autophagosomes with lysosomes but an increase in the cytosolic Ca2+ concentration blocked the fusion process. We demonstrate from the current study that MQAE-MP has great potential as a lysosomal Cl--selective fluorescent probe for studies of biological events associated with lysosomes.
Collapse
Affiliation(s)
- Sang-Hyun Park
- Center for Biofunctional Molecules , Department of Chemistry , Yonsei University , Seoul 03722 , Republic of Korea .
| | - Ji Young Hyun
- Center for Biofunctional Molecules , Department of Chemistry , Yonsei University , Seoul 03722 , Republic of Korea .
| | - Injae Shin
- Center for Biofunctional Molecules , Department of Chemistry , Yonsei University , Seoul 03722 , Republic of Korea .
| |
Collapse
|
66
|
Proteostasis by STUB1/HSP70 complex controls sensitivity to androgen receptor targeted therapy in advanced prostate cancer. Nat Commun 2018; 9:4700. [PMID: 30446660 PMCID: PMC6240084 DOI: 10.1038/s41467-018-07178-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Protein homeostasis (proteostasis) is a potential mechanism that contributes to cancer cell survival and drug resistance. Constitutively active androgen receptor (AR) variants confer anti-androgen resistance in advanced prostate cancer. However, the role of proteostasis involved in next generation anti-androgen resistance and the mechanisms of AR variant regulation are poorly defined. Here we show that the ubiquitin-proteasome-system (UPS) is suppressed in enzalutamide/abiraterone resistant prostate cancer. AR/AR-V7 proteostasis requires the interaction of E3 ubiquitin ligase STUB1 and HSP70 complex. STUB1 disassociates AR/AR-V7 from HSP70, leading to AR/AR-V7 ubiquitination and degradation. Inhibition of HSP70 significantly inhibits prostate tumor growth and improves enzalutamide/abiraterone treatments through AR/AR-V7 suppression. Clinically, HSP70 expression is upregulated and correlated with AR/AR-V7 levels in high Gleason score prostate tumors. Our results reveal a novel mechanism of anti-androgen resistance via UPS alteration which could be targeted through inhibition of HSP70 to reduce AR-V7 expression and overcome resistance to AR-targeted therapies.
Collapse
|
67
|
Sanchala D, Bhatt LK, Pethe P, Shelat R, Kulkarni YA. Anticancer activity of methylene blue via inhibition of heat shock protein 70. Biomed Pharmacother 2018; 107:1037-1045. [PMID: 30257315 DOI: 10.1016/j.biopha.2018.08.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/07/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) chaperones are indispensable to lung cancer cells for their survival and proliferation. In this study we evaluated and compared anticancer potential of methylene blue (MB) as an Hsp70 inhibitor, novobiocin (NB) a well-known Hsp90 inhibitor and their combination. METHODS In vitro evaluation was done by cell viability assays, fluorescent staining, and flow cytometry analysis using A549 non-small cell lung cancer cells. In vivo anticancer activity was investigated by evaluating oxidative stress, tumor biomarkers, weight, lung microarchitecture, and Hsp70 and Hsp90 inhibitions via immunoblotting in benzo[a]pyrene induced lung carcinogenesis mice model. RESULTS Using A549 NSCLC cells, we found MB demonstrated lower cell viability versus NB. Together, MB + NB resulted in further decrease in cell viability. SRB assay revealed significantly superior and similar potency for MB versus NB and MB + NB (1:1) versus MB, respectively. Fluorescent staining and flow cytometry analysis displayed early apoptosis by MB (11.4%); early and late apoptosis by MB + NB (13.8%). In vivo, MB significantly inhibited Hsp70. Furthermore, MB significantly alleviated tumor biomarkers (ADA and LDH) and improved lung histopathological features more than NB. Additionally, MB significantly improved SOD, not more than MB + NB or NB and improved LPO. CONCLUSION MB demonstrated potent anticancer activity in vitro and in vivo via inhibition of Hsp70 in benzo[a]pyrene induced lung carcinogenesis in mice.
Collapse
Affiliation(s)
- Dhaval Sanchala
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, Maharashtra, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, Maharashtra, India.
| | - Prasad Pethe
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS, Mumbai 400 056, India
| | - Ruchita Shelat
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS, Mumbai 400 056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L.Mehta road, Vile Parle (W), Mumbai 400 056, India
| |
Collapse
|
68
|
Park SH, Baek KH, Shin I, Shin I. Subcellular Hsp70 Inhibitors Promote Cancer Cell Death via Different Mechanisms. Cell Chem Biol 2018; 25:1242-1254.e8. [DOI: 10.1016/j.chembiol.2018.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/10/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
|
69
|
Gestwicki JE, Shao H. Inhibitors and chemical probes for molecular chaperone networks. J Biol Chem 2018; 294:2151-2161. [PMID: 30213856 DOI: 10.1074/jbc.tm118.002813] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The molecular chaperones are central mediators of protein homeostasis. In that role, they engage in widespread protein-protein interactions (PPIs) with each other and with their "client" proteins. Together, these PPIs form the backbone of a network that ensures proper vigilance over the processes of protein folding, trafficking, quality control, and degradation. The core chaperones, such as the heat shock proteins Hsp60, Hsp70, and Hsp90, are widely expressed in most tissues, yet there is growing evidence that the PPIs among them may be re-wired in disease conditions. This possibility suggests that these PPIs, and perhaps not the individual chaperones themselves, could be compelling drug targets. Indeed, recent efforts have yielded small molecules that inhibit (or promote) a subset of inter-chaperone PPIs. These chemical probes are being used to study chaperone networks in a range of models, and the successes with these approaches have inspired a community-wide objective to produce inhibitors for a broader set of targets. In this Review, we discuss progress toward that goal and point out some of the challenges ahead.
Collapse
Affiliation(s)
- Jason E Gestwicki
- From the Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, California 94158
| | - Hao Shao
- From the Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, California 94158
| |
Collapse
|
70
|
Heat shock protein 70 protects cardiomyocytes through suppressing SUMOylation and nucleus translocation of phosphorylated eukaryotic elongation factor 2 during myocardial ischemia and reperfusion. Apoptosis 2018; 22:608-625. [PMID: 28205128 DOI: 10.1007/s10495-017-1355-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Myocardial ischemia and reperfusion (MIR) results in cardiomyocyte apoptosis with severe outcomes, which blocks cardiac tissue recovering from myocardial ischemia diseases. Heat shock protein 70 (HSP70) is one of protective molecule chaperones which could regulate the nucleus translocation of other proteins. In addition, eukaryotic elongation factor 2 (eEF2), which modulates protein translation process, is vital to the recovery of heart during MIR. However, the relationship between HSP70 and eEF2 and its effects on MIR are unclear. The expression and relationship between HSP70 and eEF2 is confirmed by western blot, immunoprecipitation in vitro using cardiomyocyte cell line H9c2 and in vivo rat MIR model. The further investigation was conducted in H9c2 cells with detection for cell-cycle and apoptosis. It is revealed that eEF2 interacted and be regulated by HSP70, which kept eEF2 as dephosphorylated status and preserved the function of eEF2 during MIR. In addition, HSP70 suppressed the nucleus translocation of phosphorylated eEF2, which inhibited cardiomyocyte apoptosis during myocardial reperfusion stage. Furthermore, HSP70 also interacted with C-terminal fragment of eEF2, which could reverse the nucleus translocation and cardiomyocyte apoptosis caused by N-terminal fragment of eEF2. HSP70 draw on advantage and avoid defect of MIR through regulating phosphorylation and nucleus translocation of eEF2.
Collapse
|
71
|
Abstract
Mitochondrial dysfunction underlines a multitude of pathologies; however, studies are scarce that rescue the mitochondria for cellular resuscitation. Exploration into the protective role of mitochondrial transcription factor A (TFAM) and its mitochondrial functions respective to cardiomyocyte death are in need of further investigation. TFAM is a gene regulator that acts to mitigate calcium mishandling and ROS production by wrapping around mitochondrial DNA (mtDNA) complexes. TFAM's regulatory functions over serca2a, NFAT, and Lon protease contribute to cardiomyocyte stability. Calcium- and ROS-dependent proteases, calpains, and matrix metalloproteinases (MMPs) are abundantly found upregulated in the failing heart. TFAM's regulatory role over ROS production and calcium mishandling leads to further investigation into the cardioprotective role of exogenous TFAM. In an effort to restabilize physiological and contractile activity of cardiomyocytes in HF models, we propose that TFAM-packed exosomes (TFAM-PE) will act therapeutically by mitigating mitochondrial dysfunction. Notably, this is the first mention of exosomal delivery of transcription factors in the literature. Here we elucidate the role of TFAM in mitochondrial rescue and focus on its therapeutic potential.
Collapse
Affiliation(s)
- George H Kunkel
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA
| | - Pankaj Chaturvedi
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA.
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA
| |
Collapse
|
72
|
Miyakoshi J, Matsubara E, Narita E, Koyama S, Shimizu Y, Kawai S. [Suppressive Effects of Extract of Cedar Wood on Heat-induced Expression of Cellular Heat Shock Protein]. YAKUGAKU ZASSHI 2018; 138:97-106. [PMID: 28931786 DOI: 10.1248/yakushi.17-00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent years, highly antimicrobial properties of cedar heartwood essential oil against the wood-rotting fungi and pathogenic fungi have been reported in several papers. Antimicrobial properties against oral bacteria by hinokitiol contained in Thujopsis have been also extensively studied. The relation of naturally derived components and human immune system has been studied in some previous papers. In the present study, we focused on Japanese cedar, which has the widest artificial afforestation site in the country among various tree species. Extract oil was obtained from mixture of sapwood and heartwood of about 40-year cedar grown in Oguni, Kumamoto, Japan. We examined the influence of extract components from Japanese cedar woods on the expression of heat shock protein 70 (Hsp70) during heating, and on the micronucleus formation induced by the treatment of bleomycin as a DNA damaging agent. Cell lines used in this study were human fetal glial cells (SVGp12) and human glioma cells (MO54). Remarkable suppression of the Hsp70 expression induced by heating at 43°C was detected by the treatment of cedar extract in both SVGp12 and MO54 cells. We also found that cedar extract had an inhibitory tendency to reduce the micronucleus formation induced by bleomycin. From these results, the extract components from Japanese cedar woods would have an inhibitory effect of the stress response as a suppression of the heat-induced Hsp70 expression, and might have a reductive effect on carcinogenicity.
Collapse
Affiliation(s)
- Junji Miyakoshi
- Division of Creative Research and Development of Humanosphere, Research Institute for Sustainable Humanosphere, Kyoto University
| | - Eri Matsubara
- Department of Wood-Based Materials, Forestry and Forest Products Research Institute
| | - Eijiro Narita
- Division of Creative Research and Development of Humanosphere, Research Institute for Sustainable Humanosphere, Kyoto University
| | - Shin Koyama
- Division of Creative Research and Development of Humanosphere, Research Institute for Sustainable Humanosphere, Kyoto University
| | - Yoko Shimizu
- Division of Creative Research and Development of Humanosphere, Research Institute for Sustainable Humanosphere, Kyoto University
| | - Shuichi Kawai
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University
| |
Collapse
|
73
|
Wang LC, Liao LX, Lv HN, Liu D, Dong W, Zhu J, Chen JF, Shi ML, Fu G, Song XM, Jiang Y, Zeng KW, Tu PF. Highly Selective Activation of Heat Shock Protein 70 by Allosteric Regulation Provides an Insight into Efficient Neuroinflammation Inhibition. EBioMedicine 2017; 23:160-172. [PMID: 28807514 PMCID: PMC5605382 DOI: 10.1016/j.ebiom.2017.08.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022] Open
Abstract
Heat shock protein 70 (Hsp70) is widely involved in immune disorders, making it as an attractive drug target for inflammation diseases. Nonselective induction of Hsp70 upregulation for inflammation therapy could cause extensive interference in inflammation-unrelated protein functions, potentially resulting in side effects. Nevertheless, direct pharmacological activation of Hsp70 via targeting specific functional amino acid residue may provide an insight into precise Hsp70 function regulation and a more satisfactory treatment effect for inflammation, which has not been extensively focused. Here we show a cysteine residue (Cys306) for selective Hsp70 activation using natural small-molecule handelin. Covalent modification of Cys306 significantly elevates Hsp70 activity and shows more satisfactory anti-neuroinflammation effects. Mechanism study reveals Cys306 modification by handelin induces an allosteric regulation to facilitate adenosine triphosphate hydrolysis capacity of Hsp70, which leads to the effective blockage of subsequent inflammation signaling pathway. Collectively, our study offers some insights into direct pharmacological activation of Hsp70 by specially targeting functional cysteine residue, thus providing a powerful tool for accurately modulating neuroinflammation pathogenesis in human with fewer undesirable adverse effects. Cys306 is a druggable residue for direct pharmacological activation of Hsp70. Covalent modification of Cys306 promotes direct Hsp70 activation via allosteric effect. Pharmacological activation of Hsp70 exerts satisfactory inhibition on neuroinflammation with fewer side effects.
Accumulated evidence reveals that Hsp70, a stress response protein, is highly involved in various neuroimmunological diseases. Hsp70 herein serves as a tempting target for anti-inflammation therapy. In this work, we identified an herb-derived guaianolide dimer compound handelin as a potent activator of Hsp70 with anti-neuroinflammatory effects. Handelin covalently modified Cys306 residue of Hsp70, and then activated Hsp70 by allosteric effect. These results can provide an insight into the direct pharmacological regulation of Hsp70 function by targeting specific amino acid residue and also guide future rational drug design to treat human neuroimmunological diseases.
Collapse
Affiliation(s)
- Li-Chao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Xi Liao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hai-Ning Lv
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing 100191, China
| | - Wei Dong
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jian Zhu
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jin-Feng Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Meng-Ling Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ge Fu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Min Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
74
|
Busschaert N, Park SH, Baek KH, Choi YP, Park J, Howe ENW, Hiscock JR, Karagiannidis LE, Marques I, Félix V, Namkung W, Sessler JL, Gale PA, Shin I. A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations. Nat Chem 2017. [PMID: 28644464 DOI: 10.1038/nchem.2706;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Perturbations in cellular chloride concentrations can affect cellular pH and autophagy and lead to the onset of apoptosis. With this in mind, synthetic ion transporters have been used to disturb cellular ion homeostasis and thereby induce cell death; however, it is not clear whether synthetic ion transporters can also be used to disrupt autophagy. Here, we show that squaramide-based ion transporters enhance the transport of chloride anions in liposomal models and promote sodium chloride influx into the cytosol. Liposomal and cellular transport activity of the squaramides is shown to correlate with cell death activity, which is attributed to caspase-dependent apoptosis. One ion transporter was also shown to cause additional changes in lysosomal pH, which leads to impairment of lysosomal enzyme activity and disruption of autophagic processes. This disruption is independent of the initiation of apoptosis by the ion transporter. This study provides the first experimental evidence that synthetic ion transporters can disrupt both autophagy and induce apoptosis.
Collapse
Affiliation(s)
| | - Seong-Hyun Park
- Department of Chemistry, Yonsei University, 03722 Seoul, Korea
| | - Kyung-Hwa Baek
- Department of Chemistry, Yonsei University, 03722 Seoul, Korea
| | - Yoon Pyo Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Korea
| | - Jinhong Park
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 21983 Incheon, Korea
| | - Ethan N W Howe
- Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | | | | | - Igor Marques
- Department of Chemistry, CICECO - Aveiro Institute of Materials, Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vítor Félix
- Department of Chemistry, CICECO - Aveiro Institute of Materials, Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Wan Namkung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 21983 Incheon, Korea
| | - Jonathan L Sessler
- Department of Chemistry, University of Texas at Austin, 78712-1224 Austin, Texas, USA
| | - Philip A Gale
- Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Korea
| |
Collapse
|
75
|
Hyun JY, Park CW, Liu Y, Kwon D, Park SH, Park S, Pai J, Shin I. Carbohydrate Analogue Microarrays for Identification of Lectin-Selective Ligands. Chembiochem 2017; 18:1077-1082. [PMID: 28422419 DOI: 10.1002/cbic.201700091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 01/15/2023]
Abstract
Fifty-five mono- and disaccharide analogues were prepared and used for the construction of microarrays to uncover lectin-selective ligands. The microarray study showed that two disaccharide analogues, 28' and 44', selectively bind to Solanum tuberosum lectin (STL) and wheat germ agglutinin (WGA), respectively. Cell studies indicated that 28' and 44' selectively block the binding of STL and WGA to mammalian cells, unlike the natural ligand LacNAc, which suppresses binding of both STL and WGA to cells.
Collapse
Affiliation(s)
- Ji Young Hyun
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Cheol Wan Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Yanna Liu
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Daeun Kwon
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Seong-Hyun Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Sungjin Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Jaeyoung Pai
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
76
|
Anti-leukemia activity of a Hsp70 inhibitor and its hybrid molecules. Sci Rep 2017; 7:3537. [PMID: 28615625 PMCID: PMC5471252 DOI: 10.1038/s41598-017-03814-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/03/2017] [Indexed: 02/04/2023] Open
Abstract
In this study we examined the anti-leukemia activity of a small molecule inhibitor of Hsp70 proteins, apoptozole (Az), and hybrids in which it is linked to an inhibitor of either Hsp90 (geldanamycin) or Abl kinase (imatinib). The results of NMR studies revealed that Az associates with an ATPase domain of Hsc70 and thus blocks ATP binding to the protein. Observations made in the cell study indicated that Az treatment promotes leukemia cell death by activating caspase-dependent apoptosis without affecting the caspase-independent apoptotic pathway. Importantly, the hybrids composed of Az and geldanamycin, which have high inhibitory activities towards both Hsp70 and Hsp90, exhibit enhanced anti-leukemia activity relative to the individual inhibitors. However, the Az and imatinib hybrids have weak inhibitory activities towards Hsp70 and Abl, and display lower cytotoxicity against leukemia cells compared to those of the individual constituents. The results of a mechanistic study showed that the active hybrid molecules promote leukemia cell death through a caspase-dependent apoptotic pathway. Taken together, the findings suggest that Hsp70 inhibitors as well as their hybrids can serve as potential anti-leukemia agents.
Collapse
|
77
|
A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations. Nat Chem 2017. [PMID: 28644464 DOI: 10.1038/nchem.2706] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Perturbations in cellular chloride concentrations can affect cellular pH and autophagy and lead to the onset of apoptosis. With this in mind, synthetic ion transporters have been used to disturb cellular ion homeostasis and thereby induce cell death; however, it is not clear whether synthetic ion transporters can also be used to disrupt autophagy. Here, we show that squaramide-based ion transporters enhance the transport of chloride anions in liposomal models and promote sodium chloride influx into the cytosol. Liposomal and cellular transport activity of the squaramides is shown to correlate with cell death activity, which is attributed to caspase-dependent apoptosis. One ion transporter was also shown to cause additional changes in lysosomal pH, which leads to impairment of lysosomal enzyme activity and disruption of autophagic processes. This disruption is independent of the initiation of apoptosis by the ion transporter. This study provides the first experimental evidence that synthetic ion transporters can disrupt both autophagy and induce apoptosis.
Collapse
|
78
|
Liu J, Liu J, Guo SY, Liu HL, Li SZ. HSP70 inhibitor combined with cisplatin suppresses the cervical cancer proliferation in vitro and transplanted tumor growth: An experimental study. ASIAN PAC J TROP MED 2017; 10:184-188. [PMID: 28237487 DOI: 10.1016/j.apjtm.2017.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/18/2016] [Accepted: 01/09/2017] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To study the regulating effect of HSP70 inhibitor (PES) combined with cisplatin on cervical cancer proliferation in vitro and transplanted tumor growth. METHODS Cervical cancer Hela cell lines were cultured and divided into control group, cisplatin group, PES group and cisplatin + PES group that were treated with serum-free DMEM, cisplatin with final concentration of 10 μmol/L, PES 20 μmol/L and cisplatin 10 μmol/L combined with PES with 20 μmol/L, respectively; animal models with cervical cancer xenografts were established and divided into control group, cisplatin group, PES group and cisplatin + PES group who received intra-tumor injection of normal saline, 10 μmol/L cisplatin, 20 μmol/L PES as well as 10 μmol/L cisplatin + 20 μmol/L PES, respectively. Cell proliferation activity, transplanted tumor volume and mitochondria apoptosis molecule expression were detected. RESULTS Cell viability value and Bcl-2 mRNA expression in cells of cisplatin group, PES group and cisplatin + PES group were significantly lower than those of control group while Bax, Caspase-3 and Caspase-9 mRNA expression in cells were significantly higher than those of control group; transplanted tumor volume and the Bcl-2 mRNA expression in transplanted tumor tissue of cisplatin group, PES group and cisplatin + PES group were significantly lower than those of control group while Bax, Caspase-3 and Caspase-9 mRNA expression in transplanted tumor tissue were significantly higher than those of control group. CONCLUSIONS HSP70 inhibitor combined with cisplatin can inhibit cervical cancer cell proliferation in vitro and transplanted tumor growth through mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Jian Liu
- Gynecological Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City 233004, Anhui Province, China.
| | - Jing Liu
- Gynecological Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City 233004, Anhui Province, China
| | - Su-Yang Guo
- Gynecological Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City 233004, Anhui Province, China
| | - Hong-Li Liu
- Gynecological Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City 233004, Anhui Province, China
| | - Sheng-Ze Li
- Gynecological Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City 233004, Anhui Province, China
| |
Collapse
|
79
|
Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat Shock Proteins and Cancer. Trends Pharmacol Sci 2016; 38:226-256. [PMID: 28012700 DOI: 10.1016/j.tips.2016.11.009] [Citation(s) in RCA: 477] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Heat shock proteins (HSPs) constitute a large family of proteins involved in protein folding and maturation whose expression is induced by heat shock or other stressors. The major groups are classified based on their molecular weights and include HSP27, HSP40, HSP60, HSP70, HSP90, and large HSPs. HSPs play a significant role in cellular proliferation, differentiation, and carcinogenesis. In this article we comprehensively review the roles of major HSPs in cancer biology and pharmacology. HSPs are thought to play significant roles in the molecular mechanisms leading to cancer development and metastasis. HSPs may also have potential clinical uses as biomarkers for cancer diagnosis, for assessing disease progression, or as therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tuoen Liu
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA.
| | - Zechary Rios
- University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Qibing Mei
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
80
|
Shrestha L, Patel HJ, Chiosis G. Chemical Tools to Investigate Mechanisms Associated with HSP90 and HSP70 in Disease. Cell Chem Biol 2016; 23:158-172. [PMID: 26933742 DOI: 10.1016/j.chembiol.2015.12.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 01/22/2023]
Abstract
The chaperome is a large and diverse protein machinery composed of chaperone proteins and a variety of helpers, such as the co-chaperones, folding enzymes, and scaffolding and adapter proteins. Heat shock protein 90s and 70s (HSP90s and HSP70s), the most abundant chaperome members in human cells, are also the most complex. As we have learned to appreciate, their functions are context dependent and manifested through a variety of conformations that each recruit a subset of co-chaperone, scaffolding, and folding proteins and which are further diversified by the posttranslational modifications each carry, making their study through classic genetic and biochemical techniques quite a challenge. Chemical biology tools and techniques have been developed over the years to help decipher the complexities of the HSPs and this review provides an overview of such efforts with focus on HSP90 and HSP70.
Collapse
Affiliation(s)
- Liza Shrestha
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Hardik J Patel
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Gabriela Chiosis
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
81
|
Modulation of Molecular Chaperones in Huntington’s Disease and Other Polyglutamine Disorders. Mol Neurobiol 2016; 54:5829-5854. [DOI: 10.1007/s12035-016-0120-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022]
|
82
|
Tylophorine Analog DCB-3503 Inhibited Cyclin D1 Translation through Allosteric Regulation of Heat Shock Cognate Protein 70. Sci Rep 2016; 6:32832. [PMID: 27596272 PMCID: PMC5011780 DOI: 10.1038/srep32832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023] Open
Abstract
Tylophorine analog DCB-3503 is a potential anticancer and immunosuppressive agent that suppresses the translation of cellular regulatory proteins, including cyclin D1, at the elongation step. However, the molecular mechanism underlying this phenomenon remains unknown. This study demonstrates that DCB-3503 preferentially binds to heat shock cognate protein 70 (HSC70), which is a determinant for cyclin D1 translation by binding to the 3′-untranslated region (3′ UTR) of its mRNA. DCB-3503 allosterically regulates the ATPase and chaperone activities of HSC70 by promoting ATP hydrolysis in the presence of specific RNA binding motifs (AUUUA) of cyclin D1 mRNA. The suppression of cyclin D1 translation by DCB-3503 is not solely caused by perturbation of the homeostasis of microRNAs, although the microRNA processing complex is dissociated with DCB-3503 treatment. This study highlights a novel regulatory mechanism of protein translation with AUUUA motifs in the 3′ UTR of mRNA by HSC70, and its activity can be allosterically modulated by DCB-3503. DCB-3503 may be used to treat malignancies, such as hepatocellular carcinoma or breast cancer with elevated expression of cyclin D1.
Collapse
|
83
|
Ban HS, Naik R, Kim HM, Kim BK, Lee H, Kim I, Ahn H, Jang Y, Jang K, Eo Y, Song KB, Lee K, Won M. Identification of Targets of the HIF-1 Inhibitor IDF-11774 Using Alkyne-Conjugated Photoaffinity Probes. Bioconjug Chem 2016; 27:1911-20. [PMID: 27386732 DOI: 10.1021/acs.bioconjchem.6b00305] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We developed a hypoxia-inducible factor-1 (HIF-1) inhibitor, IDF-11774, as a clinical candidate for cancer therapy. To understand the mechanism of action of IDF-11774, we attempted to isolate target proteins of IDF-11774 using bioconjugated probes. Multifunctional chemical probes containing sites for click conjugation and photoaffinity labeling were designed and synthesized. After fluorescence and photoaffinity labeling of proteins, two-dimensional electrophoresis (2DE) was performed to isolate specific molecular targets of IDF-11774. Heat shock protein (HSP) 70 was identified as a target protein of IDF-11774. We revealed that IDF-11774 inhibited HSP70 chaperone activity by binding to its allosteric pocket, rather than the ATP-binding site in its nucleotide-binding domain (NBD). Moreover, IDF-11774 reduced the oxygen consumption rate (OCR) and ATP production, thereby increasing intracellular oxygen tension. This result suggests that the inhibition of HSP70 chaperone activity by IDF-11774 suppresses HIF-1α refolding and stimulates HIF-1α degradation. Taken together, these findings indicate that IDF-11774-derived chemical probes successfully identified IDF-11774's target molecule, HSP70, and elucidated the mode of action of IDF-11774 in inhibiting HSP70 chaperone activity and stimulating HIF-1α degradation in cancer cells.
Collapse
Affiliation(s)
| | - Ravi Naik
- College of Pharmacy, Dongguk University-Seoul , Goyang 410-820, Korea
| | - Hwan Mook Kim
- Gachon University , College of Pharmacy, Incheon 406-840, Korea
| | | | - Hongsub Lee
- ILDONG Pharmaceutical Co. Ltd. , Hwaseong, Kyungi-do 445-811, Korea
| | | | - Heechul Ahn
- College of Pharmacy, Dongguk University-Seoul , Goyang 410-820, Korea
| | - Yerin Jang
- College of Pharmacy, Dongguk University-Seoul , Goyang 410-820, Korea
| | - Kyusik Jang
- College of Pharmacy, Dongguk University-Seoul , Goyang 410-820, Korea
| | - Yumi Eo
- College of Pharmacy, Dongguk University-Seoul , Goyang 410-820, Korea
| | - Kyung Bin Song
- Department of Food Science and Technology, Chungnam National University , Daejeon 305-764, Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul , Goyang 410-820, Korea
| | | |
Collapse
|
84
|
刘 健, 刘 静, 李 胜, 郑 迎, 郭 苏, 王 秀. [Inhibiting HSP70 expression enhances cisplatin sensitivity of cervical cancer cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:475-481. [PMID: 28446399 PMCID: PMC6744087 DOI: 10.3969/j.issn.1673-4254.2017.04.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the relationship between sensitivity to cisplatin (DDP) and the expression of HSP70 in cervical cancer cells in vitro. METHODS Cervical cancer Hela229 cells treated with different concentrations of DDP and the HSP70 inhibitor (PFT-µ) were examined for cell viability using MTT assay and colony forming ability. The cell apoptosis was analyzed by flow cytometry with propidium iodide staining and DAPI staining, and JC-1 staining was used to determine mitochondrial membrane potential. The expressions of HSP70, Bcl-2, Bax and caspase-3 were measured with Western blotting. A nude mouse model bearing Hela229 cell xenograft was used to evaluate the effect of DDP and PFT-µ on tumor growth. RESULTS Hela229 cells expressed a higher level of HSP70 than normal cervical cells. The combined use of PFT-µ significantly enhanced the inhibitory effect of DDP (P<0.01) and increased the cell apoptosis in Hela229 cells. JC-1 staining demonstrated that DDP combined with PFT-µ more obviously reduced mitochondrial membrane potential. DDP combined with PFT-µ more strongly lowered Bcl-2 expression and increased the expressions of casepase-3 and Bax than DDP alone. In the nude mouse model, PFT-µ significantly enhanced DDP sensitivity of Hela229 cell xenografts (P<0.01). CONCLUSIONS Inhibition of HSP70 expression can enhance the sensitivity of cervical cancer cell to DDP both in vivo and in vitro possibly by promoting cell apoptosis, suggesting the potential of HSP70 as a new target for gene therapy of cervical cancer.
Collapse
Affiliation(s)
- 健 刘
- 蚌埠医学院药学院,安徽 蚌埠 233000Bengbu Medical College, Bengbu 233030, China
- 蚌埠医学院第一附属医院妇瘤科,安徽 蚌埠 233004Department of Gynecological Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 静 刘
- 蚌埠医学院药学院,安徽 蚌埠 233000Bengbu Medical College, Bengbu 233030, China
- 蚌埠医学院第一附属医院妇瘤科,安徽 蚌埠 233004Department of Gynecological Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 胜泽 李
- 蚌埠医学院药学院,安徽 蚌埠 233000Bengbu Medical College, Bengbu 233030, China
- 蚌埠医学院第一附属医院妇瘤科,安徽 蚌埠 233004Department of Gynecological Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 迎奥 郑
- 蚌埠医学院药学院,安徽 蚌埠 233000Bengbu Medical College, Bengbu 233030, China
- 蚌埠医学院第一附属医院妇瘤科,安徽 蚌埠 233004Department of Gynecological Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 苏阳 郭
- 蚌埠医学院药学院,安徽 蚌埠 233000Bengbu Medical College, Bengbu 233030, China
- 蚌埠医学院第一附属医院妇瘤科,安徽 蚌埠 233004Department of Gynecological Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 秀 王
- 蚌埠医学院药学院,安徽 蚌埠 233000Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
85
|
Li L, Mo H, Zhang J, Zhou Y, Peng X, Luo X. The Role of Heat Shock Protein 90B1 in Patients with Polycystic Ovary Syndrome. PLoS One 2016; 11:e0152837. [PMID: 27046189 PMCID: PMC4821534 DOI: 10.1371/journal.pone.0152837] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 02/25/2016] [Indexed: 12/01/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogenetic disorder in women that is characterized by arrested follicular growth and anovulatory infertility. The altered protein expression levels in the ovarian tissues reflect the molecular defects in folliculogenesis. To identify aberrant protein expression in PCOS, we analyzed protein expression profiles in the ovarian tissues of patients with PCOS. We identified a total of 18 protein spots that were differentially expressed in PCOS compared with healthy ovarian samples. A total of 13 proteins were upregulated and 5 proteins were downregulated. The expression levels of heat shock protein 90B1 (HSP90B1) and calcium signaling activator calmodulin 1 (CALM1) were increased by at least two-fold. The expression levels of HSP90B1 and CALM1 were positively associated with ovarian cell survival and negatively associated with caspase-3 activation and apoptosis. Knock-down of HSP90B1 with siRNA attenuated ovarian cell survival and increased apoptosis. In contrast, ovarian cell survival was improved and cell apoptosis was decreased in cells over-expressing HSP90B1. These results demonstrated the pivotal role of HSP90B1 in the proliferation and survival of ovarian cells, suggesting a critical role for HSP90B1 in the pathogenesis of PCOS. We also observed a downregulation of anti-inflammatory activity-related annexin A6 (ANXA6) and tropomyosin 2 (TPM2) compared with the normal controls, which could affect cell division and folliculogenesis in PCOS. This is the first study to identify novel altered gene expression in the ovarian tissues of patients with PCOS. These findings may have significant implications for future diagnostic and treatment strategies for PCOS using molecular interventions.
Collapse
Affiliation(s)
- Li Li
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
- Laboratory of Chinese Medicine Quality Research, Macau University of Science and Technology, Macau, China
| | - Hui Mo
- Laboratory of Chinese Medicine Quality Research, Macau University of Science and Technology, Macau, China
| | - Jing Zhang
- Guangzhou Family Planning Specialty Hospital, Guangzhou, Guangdong, China
| | - Yongxian Zhou
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Xiuhong Peng
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Xiping Luo
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
86
|
Pai J, Hyun S, Hyun JY, Park SH, Kim WJ, Bae SH, Kim NK, Yu J, Shin I. Screening of Pre-miRNA-155 Binding Peptides for Apoptosis Inducing Activity Using Peptide Microarrays. J Am Chem Soc 2016; 138:857-67. [PMID: 26771315 DOI: 10.1021/jacs.5b09216] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
MicroRNA-155, one of the most potent miRNAs that suppress apoptosis in human cancer, is overexpressed in numerous cancers, and it displays oncogenic activity. Peptide microarrays, constructed by immobilizing 185 peptides containing the C-terminal hydrazide onto epoxide-derivatized glass slides, were employed to evaluate peptide binding properties of pre-miRNA-155 and to identify its binding peptides. Two peptides, which were identified based on the results of peptide microarray and in vitro Dicer inhibition studies, were found to inhibit generation of mature miRNA-155 catalyzed by Dicer and to enhance expression of miRNA-155 target genes in cells. In addition, the results of cell experiments indicate that peptide inhibitors promote apoptotic cell death via a caspase-dependent pathway. Finally, observations made in NMR and molecular modeling studies suggest that a peptide inhibitor preferentially binds to the upper bulge and apical stem-loop region of pre-miRNA-155, thereby suppressing Dicer-mediated miRNA-155 processing.
Collapse
Affiliation(s)
- Jaeyoung Pai
- National Creative Research Center for Biofunctional Molecules, Department of Chemistry, Yonsei University , Seoul 03722, Korea
| | - Soonsil Hyun
- Department of Chemistry and Education, Seoul National University , Seoul 08826, Korea
| | - Ji Young Hyun
- National Creative Research Center for Biofunctional Molecules, Department of Chemistry, Yonsei University , Seoul 03722, Korea
| | - Seong-Hyun Park
- National Creative Research Center for Biofunctional Molecules, Department of Chemistry, Yonsei University , Seoul 03722, Korea
| | - Won-Je Kim
- Advanced Analysis Center, Korea Institute of Science and Technology , Seoul 02792, Korea
| | - Sung-Hun Bae
- CKD Research Institute , 315-20, Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17006, Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology , Seoul 02792, Korea
| | - Jaehoon Yu
- Department of Chemistry and Education, Seoul National University , Seoul 08826, Korea
| | - Injae Shin
- National Creative Research Center for Biofunctional Molecules, Department of Chemistry, Yonsei University , Seoul 03722, Korea
| |
Collapse
|
87
|
Patel A, Sharp SY, Hall K, Lewis W, Stevens MFG, Workman P, Moody CJ. Fused imidazoles as potential chemical scaffolds for inhibition of heat shock protein 70 and induction of apoptosis. Synthesis and biological evaluation of phenanthro[9,10-d]imidazoles and imidazo[4,5-f][1,10]phenanthrolines. Org Biomol Chem 2016; 14:3889-905. [DOI: 10.1039/c6ob00471g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fused imidazoles inhibit growth of human cancer cell lines, and the Hsp70 pathway in cells, and induce apoptosis.
Collapse
Affiliation(s)
- Alpa Patel
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | - Swee Y. Sharp
- Cancer Research UK Cancer Therapeutics Unit
- Division of Cancer Therapeutics
- The Institute of Cancer Research
- London
- UK
| | - Katelan Hall
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | - William Lewis
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | | | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit
- Division of Cancer Therapeutics
- The Institute of Cancer Research
- London
- UK
| | | |
Collapse
|
88
|
Roundhill E, Turnbull D, Burchill S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. FASEB J 2015; 30:1712-23. [PMID: 26722004 DOI: 10.1096/fj.15-283408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/08/2015] [Indexed: 12/29/2022]
Abstract
Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, <0.9). For the first time, we have demonstrated that mitochondrial MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.
Collapse
Affiliation(s)
- Elizabeth Roundhill
- Children's Cancer Research Group, Leeds Institute of Cancer and Pathology, St. James's University Hospital, Leeds, United Kingdom; and
| | - Doug Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Susan Burchill
- Children's Cancer Research Group, Leeds Institute of Cancer and Pathology, St. James's University Hospital, Leeds, United Kingdom; and
| |
Collapse
|
89
|
A small molecule inhibitor for ATPase activity of Hsp70 and Hsc70 enhances the immune response to protein antigens. Sci Rep 2015; 5:17642. [PMID: 26631605 PMCID: PMC4668564 DOI: 10.1038/srep17642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/03/2015] [Indexed: 02/05/2023] Open
Abstract
The ATPase activities of Hsp70 and Hsc70 are known to be responsible for regulation of various biological processes. However, little is known about the roles of Hsp70 and Hsc70 in modulation of immune responses to antigens. In the present study, we investigated the effect of apoptozole (Az), a small molecule inhibitor of Hsp70 and Hsc70, on immune responses to protein antigens. The results show that mice administered with both protein antigen and Az produce more antibodies than those treated with antigen alone, showing that Az enhances immune responses to administered antigens. Treatment of mice with Az elicits production of antibodies with a high IgG2c/IgG1 ratio and stimulates the release of Th1 and Th2-type cytokines, suggesting that Az activates the Th1 and Th2 immune responses. The observations made in the present study suggest that inhibition of Hsp70 and Hsc70 activities could be a novel strategy designing small molecule-based adjuvants in protein vaccines.
Collapse
|
90
|
Park SH, Choi YP, Park J, Share A, Francesconi O, Nativi C, Namkung W, Sessler JL, Roelens S, Shin I. Synthetic aminopyrrolic receptors have apoptosis inducing activity. Chem Sci 2015; 6:7284-7292. [PMID: 28757987 PMCID: PMC5512143 DOI: 10.1039/c5sc03200h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/25/2015] [Indexed: 12/18/2022] Open
Abstract
We report two synthetic aminopyrrolic compounds that induce apoptotic cell death. These compounds have been previously shown to act as receptors for mannosides. The extent of receptor-induced cell death is greater in cells expressing a high level of high-mannose oligosaccharides than in cells producing lower levels of high-mannose glycans. The ability of synthetic receptors to induce cell death is attenuated in the presence of external mannosides. The present results provide support for the suggestion that the observed cell death reflects an ability of the receptors to bind mannose displayed on the cell surface. Signaling pathway studies indicate that the synthetic receptors of the present study promote JNK activation, induce Bax translocation to the mitochondria, and cause cytochrome c release from the mitochondria into the cytosol, thus promoting caspase-dependent apoptosis. Such effects are also observed in cells treated with mannose-binding ConA. The present results thus serve to highlight what may be an attractive new approach to triggering apoptosis via modes of action that differ from those normally used to promote apoptosis.
Collapse
Affiliation(s)
- Seong-Hyun Park
- Center for Biofunctional Molecules , Department of Chemistry , Yonsei University , 03722 Seoul , Korea .
| | - Yoon Pyo Choi
- Center for Biofunctional Molecules , Department of Chemistry , Yonsei University , 03722 Seoul , Korea .
| | - Jinhong Park
- College of Pharmacy , Yonsei Institute of Pharmaceutical Sciences , Yonsei University , 21983 Incheon , Korea
| | - Andrew Share
- Department of Chemistry , The University of Texas at Austin , 78712-1224 Austin , Texas , USA
| | - Oscar Francesconi
- Department of Chemistry and INSTM , University of Florence , Polo Scientifico e Tecnologico, 50019 Sesto Fiorentino , Firenze , Italy
| | - Cristina Nativi
- Department of Chemistry and INSTM , University of Florence , Polo Scientifico e Tecnologico, 50019 Sesto Fiorentino , Firenze , Italy
| | - Wan Namkung
- College of Pharmacy , Yonsei Institute of Pharmaceutical Sciences , Yonsei University , 21983 Incheon , Korea
| | - Jonathan L Sessler
- Department of Chemistry , The University of Texas at Austin , 78712-1224 Austin , Texas , USA
| | - Stefano Roelens
- Istituto di Metodologie Chimiche (IMC) , Consiglio Nazionale delle Ricerche (CNR) , Department of Chemistry and INSTM , University of Florence , Polo Scientifico e Tecnologico, 50019 Sesto Fiorentino , Firenze , Italy
| | - Injae Shin
- Center for Biofunctional Molecules , Department of Chemistry , Yonsei University , 03722 Seoul , Korea .
| |
Collapse
|
91
|
Investigating Apoptozole as a Chemical Probe for HSP70 Inhibition. PLoS One 2015; 10:e0140006. [PMID: 26458144 PMCID: PMC4601772 DOI: 10.1371/journal.pone.0140006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/02/2015] [Indexed: 11/26/2022] Open
Abstract
The use of chemical tools to validate clinical targets has gained in popularity over recent years and the importance of understanding the activity, selectivity and mechanism of action of these compounds is well recognized. Dysregulation of the HSP70 protein family has been linked to multiple cancer types and drug resistance, highlighting their importance as popular targets for anti-cancer drug development. Apoptozole is a recently identified small molecule, which has been reported to possess strong affinity for the HSP70 isoforms HSP72 and HSC70. We investigated apoptozole as a potential chemical tool for HSP70 inhibition. Unfortunately, using both biochemical and biophysical techniques, we were unable to find any experimental evidence that apoptozole binds to HSP70 in a specific and developable way. Instead, we provide experimental evidence that apoptozole forms aggregates under aqueous conditions that could interact with HSP70 proteins in a non-specific manner.
Collapse
|