51
|
Nasrollahzadeh M, Shafiei N, Orooji Y. Magnetic chitosan stabilized Cu(II)-tetrazole complex: an effective nanocatalyst for the synthesis of 3-imino-2-phenylisoindolin-1-one derivatives under ultrasound irradiation. Sci Rep 2022; 12:6724. [PMID: 35468913 PMCID: PMC9038735 DOI: 10.1038/s41598-022-10591-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/11/2022] [Indexed: 01/04/2023] Open
Abstract
In the present research, a recyclable catalyst has been prepared via a simple approach using chitosan as a linear polysaccharide. This paper reports the synthesis of novel copper(II) complex of 5-phenyl-1H-tetrazole immobilized on magnetic chitosan (MCS@PhTet@Cu(II)) as an effective catalyst. Transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), vibrating sample magnetometer (VSM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and inductively coupled plasma mass spectrometry (ICP-MS) techniques were applied for the characterization of the catalyst. The catalytic activity of MCS@PhTet@Cu(II) was evaluated in the ultrasound-assisted synthesis of 3-imino-2-phenylisoindolin-1-one derivatives via the reaction between benzoyl chloride and arylcyanamides in ethanol at ambient temperature. Utilizing a wide variety of arylcyanamides under mild conditions, no use of toxic organic solvents, moderate reaction time, high yields along with catalyst excellent reusability and easy separation of the products without any tedious separation techniques, made this method a novel and simple process. The resulting heterogeneous catalyst showed valuable advantages such as easier work-up, better stability, and greater separation ability using an external magnet. The catalyst showed high efficacy and recyclability even after five cycles with no significant loss of its efficacy. The present methodology provides a path for the preparation of structurally diverse heterocyclic compounds, which may exhibit important biological activity.
Collapse
Affiliation(s)
| | - Nasrin Shafiei
- Department of Chemistry, Faculty of Science, University of Qom, 37185-359, Qom, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| |
Collapse
|
52
|
Abstract
Nanosponges have shown promising capabilities for efficient removal of organic/inorganic pollutants from water based on absorption/adsorption and disinfection processes. The application of nanosponges (especially cyclodextrin-based nanosponges) can be considered a cost-effective strategy with minimal energy and time requirements in comparison to other routinely deployed water treatment modalities. These polymers with unique physicochemical properties, architectures, and highly cross-linked three-dimensional networks need to be further explored for removing pollutants with simultaneous eliminations of microbial contaminants from wastewater. Additionally, the surface functionalization of these nanosponges utilizing magnetic, titanium dioxide, and silver nanomaterials can significantly improve their properties for water remediation purposes, although nanosponges altered with carbon nanotubes and metallic nanomaterials/nanocatalysts for water treatment appliances are barely explored. Notably, crucial factors such as adsorbent type/dosage, contact time, competing ions, adsorption isotherm models, kinetics, thermodynamics, and reaction/experimental conditions (e.g., molar ratios, temperature, and pH) are important aspects affecting the adsorption and removal of pollutants using nanosponges. Furthermore, the nanotoxicity and biosafety of these nanosponge-based systems utilized for water treatment should be comprehensively evaluated. Herein, recent advancements in the design and deployment of nanosponge-based systems for removing organic/inorganic pollutants from water and wastewater are deliberated with an emphasis on challenges and perspectives.
Collapse
|
53
|
Mosaddegh Anis S, Habibullah Hashemi S, Nasri A, Sajjadi M, Eslamipanah M, Jaleh B. Decorated ZrO2 by Au nanoparticles as a potential nanocatalyst for the reduction of organic dyes in water. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
54
|
Nagasundari SM, Murugan K, Jeyakumar P, Muthu K. Plant ( Pedalium murex L.) mucilage green synthesized and capped silver nanoparticles: in vitro biological and solar-driven photocatalytic dye degradation activity. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.2012675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Kasi Murugan
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Palanisamy Jeyakumar
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Karuppiah Muthu
- Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| |
Collapse
|
55
|
Shafiee A, Iravani S, Varma RS. Graphene and graphene oxide with anticancer applications: Challenges and future perspectives. MedComm (Beijing) 2022; 3:e118. [PMID: 35281783 PMCID: PMC8906468 DOI: 10.1002/mco2.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/22/2023] Open
Abstract
Graphene-based materials have shown immense pertinence for sensing/imaging, gene/drug delivery, cancer therapy/diagnosis, and tissue engineering/regenerative medicine. Indeed, the large surface area, ease of functionalization, high drug loading capacity, and reactive oxygen species induction potentials have rendered graphene- (G-) and graphene oxide (GO)-based (nano)structures promising candidates for cancer therapy applications. Various techniques namely liquid-phase exfoliation, Hummer's method, chemical vapor deposition, chemically reduced GO, mechanical cleavage of graphite, arc discharge of graphite, and thermal fusion have been deployed for the production of G-based materials. Additionally, important criteria such as biocompatibility, bio-toxicity, dispersibility, immunological compatibility, and inflammatory reactions of G-based structures need to be systematically assessed for additional clinical and biomedical appliances. Furthermore, surface properties (e.g., lateral dimension, charge, corona influence, surface structure, and oxygen content), concentration, detection strategies, and cell types are vital for anticancer activities of these structures. Notably, the efficient accumulation of anticancer drugs in tumor targets/tissues, controlled cellular uptake properties, tumor-targeted drug release behavior, and selective toxicity toward the cells are crucial criteria that need to be met for developing future anticancer G-based nanosystems. Herein, important challenges and future perspectives of cancer therapy using G- and GO-based nanosystems have been highlighted, and the recent advancements are deliberated.
Collapse
Affiliation(s)
- Ali Shafiee
- Department of ChemistryCape Breton UniversitySydneyCanada
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahanIran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research InstitutePalacky University in OlomoucOlomoucCzech Republic
| |
Collapse
|
56
|
Humayun M, Wang C, Luo W. Recent Progress in the Synthesis and Applications of Composite Photocatalysts: A Critical Review. SMALL METHODS 2022; 6:e2101395. [PMID: 35174987 DOI: 10.1002/smtd.202101395] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Photocatalysis is an advanced technique that transforms solar energy into sustainable fuels and oxidizes pollutants via the aid of semiconductor photocatalysts. The main scientific and technological challenges for effective photocatalysis are the stability, robustness, and efficiency of semiconductor photocatalysts. For practical applications, researchers are trying to develop highly efficient and stable photocatalysts. Since the literature is highly scattered, it is urgent to write a critical review that summarizes the state-of-the-art progress in the design of a variety of semiconductor composite photocatalysts for energy and environmental applications. Herein, a comprehensive review is presented that summarizes an overview, history, mechanism, advantages, and challenges of semiconductor photocatalysis. Further, the recent advancements in the design of heterostructure photocatalysts including alloy quantum dots based composites, carbon based composites including carbon nanotubes, carbon quantum dots, graphitic carbon nitride, and graphene, covalent-organic frameworks based composites, metal based composites including metal carbides, metal halide perovskites, metal nitrides, metal oxides, metal phosphides, and metal sulfides, metal-organic frameworks based composites, plasmonic materials based composites and single atom based composites for CO2 conversion, H2 evolution, and pollutants oxidation are discussed elaborately. Finally, perspectives for further improvement in the design of composite materials for efficient photocatalysis are provided.
Collapse
Affiliation(s)
- Muhammad Humayun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wei Luo
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
57
|
Highly Efficient and Recyclable Au/Aniline-Pentamer-Based Electroactive Polyurea Catalyst for the Reduction of 4-Nitrophenol. Catal Letters 2022. [DOI: 10.1007/s10562-021-03876-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
58
|
Adsorption of cationic dyes onto chemically modified activated carbon: Kinetics and thermodynamic study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
59
|
Abstract
MXenes and their related nanocomposites with superior physicochemical properties such as high surface area, ease of synthesis and functionalization, high drug loading capacity, collective therapy potentials, pH-triggered drug release behavior,...
Collapse
|
60
|
Kumari M, Tetala KKR. A review on recent advances in the enrichment of glycopeptides and glycoproteins by liquid chromatographic methods: 2016-Present. Electrophoresis 2021; 43:388-402. [PMID: 34757643 DOI: 10.1002/elps.202100172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/06/2023]
Abstract
Among various protein post-translational modifications (PTMs), glycosylation has received special attention due to its immense role in molecular interactions, cellular signal transduction, immune response, etc. Aberration in glycan moieties of a glycoprotein is associated with cancer, diabetes, and bacterial and viral infections. In biofluids (plasma, saliva, urine, milk, etc.), glycoproteins are low in abundance and are masked by the presence of high abundant proteins. Hence, prior to their identification using mass spectrometry methods, liquid chromatography (LC)-based approaches were widely used. A general enrichment strategy involves a protein digestion step, followed by LC-based enrichment and desorption of glycopeptides, and enzymatic excision of the glycans. The focus of this review article is to highlight the articles published since 2016 that dealt with different LC-based approaches for glycopeptide and glycoprotein enrichment. The preparation of stationary phases, their surface activation, and ligand immobilization strategies have been discussed in detail. Finally, the major developments and future trends in the field have been summarized.
Collapse
Affiliation(s)
- Mona Kumari
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India
| | - Kishore K R Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India
| |
Collapse
|
61
|
Wang Z, Lü S, Yang F, Kabir SF, Mahmud S, Liu H. Hyaluronate macromolecules reduced-stabilized colloidal palladium nanocatalyst for azo contaminated wastewater treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
62
|
|
63
|
Phytosynthesis of Prosopis farcta fruit-gold nanoparticles using infrared and thermal devices and their catalytic efficacy. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
64
|
Naz F, Saeed K. Photocatalytic degradation of Eosin B dye in aqueous solution by cadmium oxide nanoparticles. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cadmium oxide (CdO) and potassium (K) doped CdO nanoparticles (NPs) were synthesized by the chemical co-precipitation method and were used as photocatalysts for the degradation of Eosin B dye. The X-ray diffraction results presented that the crystallite size of undoped CdO and K doped CdO NPs were 43.74 and 42.31 nm, respectively. The morphological study and percent composition of synthesized undoped CdO and K doped CdO NPs was done by scanning electron microscope and energy dispersive X-ray analysis. The formation of NPs was confirmed by Fourier transform infrared spectroscopy. The precursor decomposition to CdO after annealing at ∼500 °C was studied by thermogravimetric analysis. The undoped CdO and K doped CdO nanoparticles degraded about 80% and 90% of the dye, respectively, in 140 min. The maximum degradation efficiency of the dye was achieved at a pH of 4, dye initial concentration of 15 ppm, catalyst dose of 20 mg, and a temperature of 45 °C. The degradation efficiency observed for recovered undoped CdO and recovered doped CdO nanoparticles was found to be 63% and 77%, respectively.
Collapse
Affiliation(s)
- Falak Naz
- Department of Chemistry, Bacha Khan University Charsadda, Khyber Pakhtunkhwa 24420, Pakistan
- Department of Chemistry, Bacha Khan University Charsadda, Khyber Pakhtunkhwa 24420, Pakistan
| | - Khalid Saeed
- Department of Chemistry, Bacha Khan University Charsadda, Khyber Pakhtunkhwa 24420, Pakistan
- Department of Chemistry, Bacha Khan University Charsadda, Khyber Pakhtunkhwa 24420, Pakistan
| |
Collapse
|
65
|
Jamalipour Soufi G, Iravani P, Hekmatnia A, Mostafavi E, Khatami M, Iravani S. MXenes and MXene-based Materials with Cancer Diagnostic Applications: Challenges and Opportunities. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1990890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Parisa Iravani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Hekmatnia
- Radiology Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
66
|
Manoharan C, Rammohan R, Subramanian R, Umashanker V. Synthesis of α-Bismuth oxide nanoparticles, spectral characterization and their photocatalytic activity. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1986526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- C. Manoharan
- Department of Physics, Annamalai University, Tamilnadu, India
| | - R. Rammohan
- Department of Physics, Annamalai University, Tamilnadu, India
- Department of Physics, Sun Arts and Science College, Tamil Nadu, India
| | - R. Subramanian
- Department of Chemistry, Sun Arts and Science College, Tamil Nadu, India
| | - V. Umashanker
- Department of Physics, Annamalai University, Tamilnadu, India
| |
Collapse
|
67
|
Zaib M, Jamil M, Shahzadi T, Farooq U. Ultrasonic green synthesis of different nickel nanoparticles and their application in Cr(VI) removal studies. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1983836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Maria Zaib
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Misbah Jamil
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Tayyaba Shahzadi
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Umar Farooq
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
68
|
El‐Attar HG, Salem MA, Bakr EA. Facile synthesis of recoverable superparamagnetic AgFeO
2
@Polypyrrole/SiO
2
nanocomposite as an excellent catalyst for reduction and oxidation of different dyes in wastewater. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Heba G. El‐Attar
- Department of Chemistry, Faculty of Science Tanta University Tanta 31527 Egypt
| | - Mohamed A. Salem
- Department of Chemistry, Faculty of Science Tanta University Tanta 31527 Egypt
| | - Eman A. Bakr
- Department of Chemistry, Faculty of Science Tanta University Tanta 31527 Egypt
| |
Collapse
|
69
|
Rego RM, Sriram G, Ajeya KV, Jung HY, Kurkuri MD, Kigga M. Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125941. [PMID: 34492868 DOI: 10.1016/j.jhazmat.2021.125941] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Herein, we demonstrate the use of cerium (Ce)-UiO-66 metal organic framework (MOF) for the removal of a variety of potentially toxic pollutants. The Ce-UiO-66 MOF, with similar framework topologies to Zr-UiO-66, has not been explored for its adsorptive properties in water remediation. The replacement of Zr metal center with Ce yields a MOF that can be synthesized in shorter durations with lesser energy consumptions and with excellent multipollutant adsorption properties. Further, the Ce-UiO-66 MOF was also studied for its adsorption abilities in the binary component system. Interestingly, the adsorbent showed higher adsorption capacities in the presence of other pollutants. Removal studies for other potentially toxic anionic and cationic dyes showed that the Ce-UiO-66 MOF has a wide range of contaminant removal abilities. Investigations of individual adsorption capacities revealed that the Ce-UiO-66 MOF has a maximum adsorption capacity of 793.7 mg/g for congo red (CR), 110 mg/g for methylene blue (MB), 66.1 mg/g for fluoride (F-), 30 mg/g for Cr6+ and 485.4 mg/g for the pharmaceutical waste diclofenac sodium (DCF). To imply the practical applications of the Ce-UiO-66 MOF we have also demonstrated an adaptable filter that could separate all the potentially toxic pollutants.
Collapse
Affiliation(s)
- Richelle M Rego
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Ganesan Sriram
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Kanalli V Ajeya
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Ho-Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Mahaveer D Kurkuri
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India.
| | - Madhuprasad Kigga
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru 562112, Karnataka, India.
| |
Collapse
|
70
|
Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, Inayat A, Mahlia TMI, Ong HC, Chia WY, Show PL. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125912. [PMID: 34492846 DOI: 10.1016/j.jhazmat.2021.125912] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 05/25/2023]
Abstract
Emerging contaminants (ECs) in wastewater have recently attracted the attention of researchers as they pose significant risks to human health and wildlife. This paper presents the state-of-art technologies used to remove ECs from wastewater through a comprehensive review. It also highlights the challenges faced by existing EC removal technologies in wastewater treatment plants and provides future research directions. Many treatment technologies like biological, chemical, and physical approaches have been advanced for removing various ECs. However, currently, no individual technology can effectively remove ECs, whereas hybrid systems have often been found to be more efficient. A hybrid technique of ozonation accompanied by activated carbon was found significantly effective in removing some ECs, particularly pharmaceuticals and pesticides. Despite the lack of extensive research, nanotechnology may be a promising approach as nanomaterial incorporated technologies have shown potential in removing different contaminants from wastewater. Nevertheless, most existing technologies are highly energy and resource-intensive as well as costly to maintain and operate. Besides, most proposed advanced treatment technologies are yet to be evaluated for large-scale practicality. Complemented with techno-economic feasibility studies of the treatment techniques, comprehensive research and development are therefore necessary to achieve a full and effective removal of ECs by wastewater treatment plants.
Collapse
Affiliation(s)
- S F Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| | - Samiha Nuzhat
- Environmental Sciences Program, Asian University for Women, Chattogram 4000, Bangladesh; Water and Life Bangladesh, Dhaka, Bangladesh
| | | | - Nazifa Rafa
- Environmental Sciences Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Md Alhaz Uddin
- Department of Civil Engineering, College of Engineering, Jouf University, Sakaka, Saudi Arabia
| | - Abrar Inayat
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; Biomass & Bioenergy Research Group, Center for Sustainable Energy and Power Systems Research, Research Institute of Sciences and Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - T M I Mahlia
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Hwai Chyuan Ong
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Wen Yi Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
71
|
Bakhsh EM, Akhtar K, Fagieh TM, Khan SB, Asiri AM. Development of alginate@tin oxide-cobalt oxide nanocomposite based catalyst for the treatment of wastewater. Int J Biol Macromol 2021; 187:386-398. [PMID: 34284055 DOI: 10.1016/j.ijbiomac.2021.07.100] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
In this study, tin oxide‑cobalt oxide nanocatalyst was prepared by a simple method, which grew in spherical particles with an average diameter of 30 nm. Tin oxide-cobalt oxide was further wrapped in alginate polymer hydrogel (Alg@tin oxide-cobalt oxide), and both materials were utilized as nanocatalysts for the catalytic transformation of different pollutants. Tin oxide-cobalt oxide and Alg@tin oxide-cobalt oxide nanocatalysts were tested for the catalytic reduction of 4-nitrophenol, congo red, methyl orange, methylene blue (MB) and potassium ferricyanide in which sodium borohydride was used as a reducing agent. Tin oxide-cobalt oxide and Alg@tin oxide-cobalt oxide nanocatalysts synergistically reduced MB in shorter time (2.0 and 4.0 min) compared to other dyes. The reduction conditions were optimized by changing different parameters. The rate constants for MB reduction were calculated and found to be 1.5714 min-1 and 0.6033 min-1 using tin oxide-cobalt oxide and Alg@tin oxide-cobalt oxide nanocatalysts, respectively. Implementing Alg@tin oxide-cobalt oxide nanocatalyst toward MB reduction in real samples proved its efficacy in sea and well water samples. The catalyst could be easily recovered, recycled and revealed a minimal loss of nanoparticles, which offering a competition and replacement with reputable commercial catalysts.
Collapse
Affiliation(s)
- Esraa M Bakhsh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Kalsoom Akhtar
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Taghreed M Fagieh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
72
|
Suresh R, Rajendran S, Kumar PS, Vo DVN, Cornejo-Ponce L. Recent advancements of spinel ferrite based binary nanocomposite photocatalysts in wastewater treatment. CHEMOSPHERE 2021; 274:129734. [PMID: 33548641 DOI: 10.1016/j.chemosphere.2021.129734] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/09/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
A lot of studies on spinel ferrites (MFe2O4, M = divalent metal ion) and their binary nanocomposites as photocatalysts in the decontamination of wastewater have been performed, because MFe2O4 nanoparticles are relatively stable, biocompatible and low-cost efficient photocatalyst. The separation of MFe2O4 photocatalyst is easy owing to its excellent magnetic behavior. With this background, the recent developments on photocatalytic performances of MFe2O4 based binary nanocomposites were comprehensively reviewed. Especially, a focus on MFe2O4/metal oxides, MFe2O4/carbon based materials, MFe2O4/polymers, MFe2O4/metal nanoparticles and MFe2O4/other compounds for the photocatalytic degradation of dyes, emerging contaminants and inorganic pollutants has been thoroughly given. The advantages of MFe2O4 based nanocomposites as photocatalysts were also discussed. In addition, the possible pathway of active free radical generation by these photocatalysts under visible and ultraviolet irradiation has been explained. A comparison of photocatalytic activities of MFe2O4 based binary nanocomposites with recent reports has been carried out. This review concludes that MFe2O4 based binary nanocomposites have potential capacity in water purification technology. Nevertheless, their practical utilization in water treatment plants still needs to be further studied.
Collapse
Affiliation(s)
- R Suresh
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Lorena Cornejo-Ponce
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| |
Collapse
|
73
|
Fallah Z, Zare EN, Ghomi M, Ahmadijokani F, Amini M, Tajbakhsh M, Arjmand M, Sharma G, Ali H, Ahmad A, Makvandi P, Lichtfouse E, Sillanpää M, Varma RS. Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials. CHEMOSPHERE 2021; 275:130055. [PMID: 33984903 PMCID: PMC8588192 DOI: 10.1016/j.chemosphere.2021.130055] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 05/04/2023]
Abstract
The worldwide development of agriculture and industry has resulted in contamination of water bodies by pharmaceuticals, pesticides and other xenobiotics. Even at trace levels of few micrograms per liter in waters, these contaminants induce public health and environmental issues, thus calling for efficient removal methods such as adsorption. Recent adsorption techniques for wastewater treatment involve metal oxide compounds, e.g. Fe2O3, ZnO, Al2O3 and ZnO-MgO, and carbon-based materials such as graphene oxide, activated carbon, carbon nanotubes, and carbon/graphene quantum dots. Here, the small size of metal oxides and the presence various functional groups has allowed higher adsorption efficiencies. Moreover, carbon-based adsorbents exhibit unique properties such as high surface area, high porosity, easy functionalization, low price, and high surface reactivity. Here we review the cytotoxic effects of pharmaceutical drugs and pesticides in terms of human risk and ecotoxicology. We also present remediation techniques involving adsorption on metal oxides and carbon-based materials.
Collapse
Affiliation(s)
- Zari Fallah
- Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | | | - Matineh Ghomi
- School of Chemistry, Damghan University, Damghan, 36716-41167, Iran
| | - Farhad Ahmadijokani
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Majed Amini
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mahmood Tajbakhsh
- Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mohammad Arjmand
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Gaurav Sharma
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab. for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
| | - Hamna Ali
- Department of Chemistry, The University of Lahore, Lahore, 54590, Pakistan
| | - Awais Ahmad
- Department of Chemistry, The University of Lahore, Lahore, 54590, Pakistan
| | - Pooyan Makvandi
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia (IIT), Viale R. Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Eric Lichtfouse
- Aix-Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, 13100, Aix en Provence, France.
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA; Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Š lechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
74
|
Dong L, Wu Y, Bian Y, Zheng X, Chen L, Chen Y, Zhang X. Carbon nanotubes mitigate copper-oxide nanoparticles-induced inhibition to acidogenic metabolism of Propionibacterium acidipropionici by regulating carbon source utilization. BIORESOURCE TECHNOLOGY 2021; 330:125003. [PMID: 33770734 DOI: 10.1016/j.biortech.2021.125003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
This study demonstrated that multi-walled carbon nanotubes (MWCNTs) could mitigate copper oxide nanoparticles (CuO NPs)-induced inhibition to acidogenic metabolism of propionic acid bacteria (i.e., Propionibacterium acidipropionici) by regulating carbon source utilization. CuO NPs severely inhibited the growth of P. acidipropionici, damaged its cell membrane, and down-regulated gene expressions and enzyme activities involved in acidogenic metabolism, thereby decreasing propionate production. However, although MWCNTs had a slightly negative impact on the growth and cell membrane, the gene expressions and catalytic activities were enhanced (glycolysis and pyruvate metabolism), resulting in the improved propionate production. Additionally, the gene expressions and catalytic activities of key enzymes (e.g., tpiA, pgk, PK, OTTAC, etc.) related to acidogenic metabolism were also enhanced by the co-existence of both nanomaterials, thereby promoting propionate production towards P. acidipropionici. This work demonstrated that the presence of MWCNTs could affect the inhibition of CuO NPs to fermentation processes via regulating carbon source utilization.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Municipal Engineering Design Institute (Group) Co., LTD, 901 Zhongshan North Second Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yaozhi Bian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Lang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xin Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD, 901 Zhongshan North Second Road, Shanghai 200092, China
| |
Collapse
|
75
|
García-Valdivieso G, Arenas-Sánchez E, Horta-Fraijo P, Simakov A, Navarro-Contreras HR, Acosta B. Ag@ZnO/MWCNT ternary nanocomposite as an active and stable catalyst for the 4-nitrophenol reduction in water. NANOTECHNOLOGY 2021; 32:315713. [PMID: 33873162 DOI: 10.1088/1361-6528/abf96b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
The nitroaromatic compounds, known as organic pollutants, have arising attention due to their carcinogenic character, highly dangerous to human health. In this work, the Ag@ZnO/MWCNT ternary nanocomposite synthesized via conjugation of sonochemical and solvothermal treatments manifests high performance in the reduction of 4-nitrophenol in the aqueous media (TOF value of 246 min-1μmol metal-1). The incorporation of MWCNT onto the nanocomposite structure favored the reusing of the catalysts even after eight consecutive catalytic runs without catalysts cleaning nor product removal. Obtained samples were characterized by XRD, TEM, UV-vis, Raman and FTIR spectroscopies. It was found that ultrasonic treatment at relatively moderate conditions leads to functionalization of MWCNT, the appearance of C=C and OH groups and change of electronic properties of Ag@ZnO/MWCNT composite which provide its stable material dispersion in aqueous solution and high catalytic performance in the 4-nitrophenol reduction. This technique may be effectively applied for the functionalization of carbon including materials for their usage in an aqueous media.
Collapse
Affiliation(s)
- Guadalupe García-Valdivieso
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Eduardo Arenas-Sánchez
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Patricia Horta-Fraijo
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Andrey Simakov
- Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Tijuana a Ensenada, C.P. 22860, Ensenada, Baja California, Mexico
| | - Hugo R Navarro-Contreras
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Brenda Acosta
- Cátedra-CONACYT, Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210, San Luis Potosí, SLP, Mexico
| |
Collapse
|
76
|
Khatami M, Iravani S. MXenes and MXene-based Materials for the Removal of Water Pollutants: Challenges and Opportunities. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1922396] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
77
|
Khatami M, Iravani S. Green and Eco-Friendly Synthesis of Nanophotocatalysts: An Overview. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1895127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
78
|
Gutiérrez-Serpa A, González-Martín R, Sajid M, Pino V. Greenness of magnetic nanomaterials in miniaturized extraction techniques: A review. Talanta 2020; 225:122053. [PMID: 33592775 DOI: 10.1016/j.talanta.2020.122053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
Green analytical chemistry principles should be followed, as much as possible, and particularly during the development of analytical sample preparation methods. In the past few years, outstanding materials such as ionic liquids, metal-organic frameworks, carbonaceous materials, molecularly imprinted materials, and many others, have been introduced in a wide variety of miniaturized techniques in order to reduce the amount of solvents and sorbents required during the analytical sample preparation step while pursuing more efficient extraction methods. Among them, magnetic nanomaterials (MNMs) have gained special attention due to their versatile properties. Mainly, their ability to be separated from the sample matrix using an external magnetic field (thus enormously simplifying the entire process) and their easy combination with other materials, which implies the inclusion of a countless number of different functionalities, highly specific in some cases. Therefore, MNMs can be used as sorbents or as magnetic support for other materials which do not have magnetic properties, the latter permiting their combination with novel materials. The greenness of these magnetic sorbents in miniaturized extractions techniques is generally demonstrated in terms of their ease of separation and amount of sorbent required, while the nature of the material itself is left unnoticed. However, the synthesis of MNMs is not always as green as their applications, and the resulting MNMs are not always as safe as desired. Is the analytical sample preparation field ready for using green magnetic nanomaterials? This review offers an overview, from a green analytical chemistry perspective, of the current state of the use of MNMs as sorbents in microextraction strategies, their preparation, and the analytical performance offered, together with a critical discussion on where efforts should go.
Collapse
Affiliation(s)
- Adrián Gutiérrez-Serpa
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain
| | - Raúl González-Martín
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain
| | - Muhammad Sajid
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Verónica Pino
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain.
| |
Collapse
|
79
|
Recent Developments in the Application of Nanomaterials in Agroecosystems. NANOMATERIALS 2020; 10:nano10122411. [PMID: 33276643 PMCID: PMC7761570 DOI: 10.3390/nano10122411] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Nanotechnology implies the scientific research, development, and manufacture, along with processing, of materials and structures on a nano scale. Presently, the contamination of metalloids and metals in the soil has gained substantial attention. The consolidation of nanomaterials and plants in ecological management has received considerable research attention because certain nanomaterials could enhance plant seed germination and entire plant growth. Conversely, when the nanomaterial concentration is not properly controlled, toxicity will definitely develop. This paper discusses the role of nanomaterials as: (1) nano-pesticides (for improving the plant resistance against the biotic stress); and (2) nano-fertilizers (for promoting the plant growth by providing vital nutrients). This review analyzes the potential usages of nanomaterials in agroecosystem. In addition, the adverse effects of nanomaterials on soil organisms are discussed. We mostly examine the beneficial effects of nanomaterials such as nano-zerovalent iron, iron oxide, titanium dioxide, nano-hydroxyapatite, carbon nanotubes, and silver- and copper-based nanomaterials. Some nanomaterials can affect the growth, survival, and reproduction of soil organisms. A change from testing/using nanomaterials in plants for developing nanomaterials depending on agricultural requirements would be an important phase in the utilization of nanomaterials in sustainable agriculture. Conversely, the transport as well as ecological toxicity of nanomaterials should be seriously examined for guaranteeing its benign usage in agriculture.
Collapse
|