51
|
Salmonella Tol-Pal Reduces Outer Membrane Glycerophospholipid Levels for Envelope Homeostasis and Survival during Bacteremia. Infect Immun 2018; 86:IAI.00173-18. [PMID: 29735519 PMCID: PMC6013679 DOI: 10.1128/iai.00173-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022] Open
Abstract
Salmonellae regulate membrane lipids during infection, but the exact proteins and mechanisms that promote their survival during bacteremia remain largely unknown. Mutations in genes encoding the conserved Salmonella enterica serovar Typhimurium (S. Typhimurium) Tol-Pal apparatus caused the outer membrane (OM) sensor lipoprotein, RcsF, to become activated. The capsule activation phenotype for the mutants suggested that Tol-Pal might influence envelope lipid homeostasis. The mechanism involves reducing OM glycerophospholipid (GPL) levels, since the mutant salmonellae similarly accumulated phosphatidylglycerols (PGl) and phosphatidylethanolamines (PE) within the OM in comparison to the wild type. The data support the Escherichia coli model, whereby Tol-Pal directs retrograde GPL translocation across the periplasm. The S. Typhimurium mechanism involves contributions from YbgC, a cytoplasmic acyl coenzyme A (acyl-CoA) thioesterase, and CpoB, a periplasmic TolA-binding protein. The functional relationship between Tol-Pal and YbgC and CpoB was previously unresolved. The S. Typhimurium Tol-Pal proteins contribute similarly toward promoting OM-GPL homeostasis and Rcs signaling inactivity but differently toward promoting bacterial morphology, rifampin resistance, survival in macrophages, and survival in mice. For example, tolQ, tolR, tolA, and cpoB mutants were significantly more attenuated than ybgC, tolB, and pal mutants in a systemic mouse model of disease. Therefore, key roles exist for TolQ, TolR, TolA, and CpoB during murine bacteremia, which are independent of maintaining GPL homeostasis. The ability of TolQR to channel protons across the inner membrane (IM) is necessary for S. Typhimurium TolQRA function, since mutating conserved channel-facing residues rendered TolQ ineffective at rescuing deletion mutant phenotypes. Therefore, Tol-Pal promotes S. Typhimurium survival during bacteremia, in part, by reducing OM GPL concentrations, while TolQRA and CpoB enhance systemic virulence by additional mechanisms.
Collapse
|
52
|
Walpole GFW, Grinstein S, Westman J. The role of lipids in host-pathogen interactions. IUBMB Life 2018; 70:384-392. [PMID: 29573124 DOI: 10.1002/iub.1737] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/27/2018] [Indexed: 11/07/2022]
Abstract
Innate immunity relies on the effective recognition and elimination of pathogenic microorganisms. This entails sequestration of pathogens into phagosomes that promptly acquire microbicidal and degradative properties. This complex series of events, which involve cytoskeletal reorganization, membrane remodeling and the activation of multiple enzymes, is orchestrated by lipid signaling. To overcome this immune response, intracellular pathogens acquired mechanisms to subvert phosphoinositide-mediated signaling and use host lipids, notably cholesterol, as nutrients. We present brief overviews of the role of phosphoinositides in phagosome formation and maturation as well as of cholesterol handling by host cells, and selected Salmonella, Shigella, Chlamydia and Mycobacterium tuberculosis to exemplify the mechanisms whereby intracellular pathogens co-opt lipid metabolism in host cells. © 2018 IUBMB Life, 70(5):384-392, 2018.
Collapse
Affiliation(s)
- Glenn F W Walpole
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Ontario, Canada
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Ontario, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Johannes Westman
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
53
|
Abstract
Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is commonly used to identify essential genes. Single gene deletion libraries are considered the gold standard for identifying essential genes. Currently, the TraDIS method has not been benchmarked against such libraries, and therefore, it remains unclear whether the two methodologies are comparable. To address this, a high-density transposon library was constructed in Escherichia coli K-12. Essential genes predicted from sequencing of this library were compared to existing essential gene databases. To decrease false-positive identification of essential genes, statistical data analysis included corrections for both gene length and genome length. Through this analysis, new essential genes and genes previously incorrectly designated essential were identified. We show that manual analysis of TraDIS data reveals novel features that would not have been detected by statistical analysis alone. Examples include short essential regions within genes, orientation-dependent effects, and fine-resolution identification of genome and protein features. Recognition of these insertion profiles in transposon mutagenesis data sets will assist genome annotation of less well characterized genomes and provides new insights into bacterial physiology and biochemistry. Incentives to define lists of genes that are essential for bacterial survival include the identification of potential targets for antibacterial drug development, genes required for rapid growth for exploitation in biotechnology, and discovery of new biochemical pathways. To identify essential genes in Escherichia coli, we constructed a transposon mutant library of unprecedented density. Initial automated analysis of the resulting data revealed many discrepancies compared to the literature. We now report more extensive statistical analysis supported by both literature searches and detailed inspection of high-density TraDIS sequencing data for each putative essential gene for the E. coli model laboratory organism. This paper is important because it provides a better understanding of the essential genes of E. coli, reveals the limitations of relying on automated analysis alone, and provides a new standard for the analysis of TraDIS data.
Collapse
|
54
|
López-Lara IM, Geiger O. Bacterial lipid diversity. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1287-1299. [DOI: 10.1016/j.bbalip.2016.10.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 11/25/2022]
|
55
|
Zheng L, Lin Y, Lu S, Zhang J, Bogdanov M. Biogenesis, transport and remodeling of lysophospholipids in Gram-negative bacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1404-1413. [PMID: 27956138 PMCID: PMC6162059 DOI: 10.1016/j.bbalip.2016.11.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 11/18/2022]
Abstract
Lysophospholipids (LPLs) are metabolic intermediates in bacterial phospholipid turnover. Distinct from their diacyl counterparts, these inverted cone-shaped molecules share physical characteristics of detergents, enabling modification of local membrane properties such as curvature. The functions of LPLs as cellular growth factors or potent lipid mediators have been extensively demonstrated in eukaryotic cells but are still undefined in bacteria. In the envelope of Gram-negative bacteria, LPLs are derived from multiple endogenous and exogenous sources. Although several flippases that move non-glycerophospholipids across the bacterial inner membrane were characterized, lysophospholipid transporter LplT appears to be the first example of a bacterial protein capable of facilitating rapid retrograde translocation of lyso forms of glycerophospholipids across the cytoplasmic membrane in Gram-negative bacteria. LplT transports lyso forms of the three bacterial membrane phospholipids with comparable efficiency, but excludes other lysolipid species. Once a LPL is flipped by LplT to the cytoplasmic side of the inner membrane, its diacyl form is effectively regenerated by the action of a peripheral enzyme, acyl-ACP synthetase/LPL acyltransferase (Aas). LplT-Aas also mediates a novel cardiolipin remodeling by converting its two lyso derivatives, diacyl or deacylated cardiolipin, to a triacyl form. This coupled remodeling system provides a unique bacterial membrane phospholipid repair mechanism. Strict selectivity of LplT for lyso lipids allows this system to fulfill efficient lipid repair in an environment containing mostly diacyl phospholipids. A rocker-switch model engaged by a pair of symmetric ion-locks may facilitate alternating substrate access to drive LPL flipping into bacterial cells. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Lei Zheng
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA.
| | - Yibin Lin
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Shuo Lu
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Jiazhe Zhang
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
56
|
Abstract
Cardiolipin, an anionic phospholipid that resides at the poles of the inner and outer membranes, is synthesized primarily by the putative cardiolipin synthase ClsA in Shigella flexneri. An S. flexneri clsA mutant had no cardiolipin detected within its membrane, grew normally in vitro, and invaded cultured epithelial cells, but it failed to form plaques in epithelial cell monolayers, indicating that cardiolipin is required for virulence. The clsA mutant was initially motile within the host cell cytoplasm but formed filaments and lost motility during replication and failed to spread efficiently to neighboring cells. Mutation of pbgA, which encodes the transporter for cardiolipin from the inner membrane to the outer membrane, also resulted in loss of plaque formation. The S. flexneri pbgA mutant had normal levels of cardiolipin in the inner membrane, but no cardiolipin was detected in the outer membrane. The pbgA mutant invaded and replicated normally within cultured epithelial cells but failed to localize the actin polymerization protein IcsA properly on the bacterial surface and was unable to spread to neighboring cells. The clsA mutant, but not the pbgA mutant, had increased phosphatidylglycerol in the outer membrane. This appeared to compensate partially for the loss of cardiolipin in the outer membrane, allowing some IcsA localization in the outer membrane of the clsA mutant. We propose a dual function for cardiolipin in S. flexneri pathogenesis. In the inner membrane, cardiolipin is essential for proper cell division during intracellular growth. In the outer membrane, cardiolipin facilitates proper presentation of IcsA on the bacterial surface. The human pathogen Shigella flexneri causes bacterial dysentery by invading colonic epithelial cells, rapidly multiplying within their cytoplasm, and then spreading intercellularly to neighboring cells. Worldwide, Shigella spp. infect hundreds of millions of people annually, with fatality rates up to 15%. Antibiotic treatment of Shigella infections is compromised by increasing antibiotic resistance, and there is no approved vaccine to prevent future infections. This has created a growing need to understand Shigella pathogenesis and identify new targets for antimicrobial therapeutics. Here we show a previously unknown role of phospholipids in S. flexneri pathogenesis. We demonstrate that cardiolipin is required in the outer membrane for proper surface localization of IcsA and in the inner membrane for cell division during growth in the host cell cytoplasm.
Collapse
|
57
|
Isom GL, Davies NJ, Chong ZS, Bryant JA, Jamshad M, Sharif M, Cunningham AF, Knowles TJ, Chng SS, Cole JA, Henderson IR. MCE domain proteins: conserved inner membrane lipid-binding proteins required for outer membrane homeostasis. Sci Rep 2017; 7:8608. [PMID: 28819315 PMCID: PMC5561183 DOI: 10.1038/s41598-017-09111-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/20/2017] [Indexed: 01/12/2023] Open
Abstract
Bacterial proteins with MCE domains were first described as being important for Mammalian Cell Entry. More recent evidence suggests they are components of lipid ABC transporters. In Escherichia coli, the single-domain protein MlaD is known to be part of an inner membrane transporter that is important for maintenance of outer membrane lipid asymmetry. Here we describe two multi MCE domain-containing proteins in Escherichia coli, PqiB and YebT, the latter of which is an orthologue of MAM-7 that was previously reported to be an outer membrane protein. We show that all three MCE domain-containing proteins localise to the inner membrane. Bioinformatic analyses revealed that MCE domains are widely distributed across bacterial phyla but multi MCE domain-containing proteins evolved in Proteobacteria from single-domain proteins. Mutants defective in mlaD, pqiAB and yebST were shown to have distinct but partially overlapping phenotypes, but the primary functions of PqiB and YebT differ from MlaD. Complementing our previous findings that all three proteins bind phospholipids, results presented here indicate that multi-domain proteins evolved in Proteobacteria for specific functions in maintaining cell envelope homeostasis.
Collapse
Affiliation(s)
- Georgia L Isom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Nathaniel J Davies
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Zhi-Soon Chong
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jack A Bryant
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Mohammed Jamshad
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Maria Sharif
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Adam F Cunningham
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Timothy J Knowles
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jeffrey A Cole
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
58
|
Abstract
In this issue of the Journal of Bacteriology, V. W. Rowlett et al. unveil new Escherichia coli circuitry linking membrane glycerophospholipid (GPL) homeostasis to bacterial stress response and adaptation mechanisms (J Bacteriol 199:e00849-16, 2017, https://doi.org/10.1128/JB.00849-16). Glycerophospholipids comprise critical components of the dual-membrane envelope of Gram-negative bacteria and participate in many processes. The new evidence suggests that, in some instances, distinct E. coli GPL molecules function for distinct biochemistry and bacteria sense perturbations in membrane GPL concentrations to coordinate survival strategies. Understanding GPL sensing and remodeling mechanisms will be important moving forward, given the breadth of function for these molecules in bacteriology.
Collapse
|
59
|
Lopalco P, Stahl J, Annese C, Averhoff B, Corcelli A. Identification of unique cardiolipin and monolysocardiolipin species in Acinetobacter baumannii. Sci Rep 2017; 7:2972. [PMID: 28592862 PMCID: PMC5462836 DOI: 10.1038/s41598-017-03214-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/20/2017] [Indexed: 01/05/2023] Open
Abstract
Acidic glycerophospholipids play an important role in determining the resistance of Gram-negative bacteria to stress conditions and antibiotics. Acinetobacter baumannii, an opportunistic human pathogen which is responsible for an increasing number of nosocomial infections, exhibits broad antibiotic resistances. Here lipids of A. baumannii have been analyzed by combined MALDI-TOF/MS and TLC analyses; in addition GC-MS analyses of fatty acid methyl esters released by methanolysis of membrane phospholipids have been performed. The main glycerophospholipids are phosphatidylethanolamine, phosphatidylglycerol, acyl-phosphatidylglycerol and cardiolipin together with monolysocardiolipin, a lysophospholipid only rarely detected in bacterial membranes. The major acyl chains in the phospholipids are C16:0 and C18:1, plus minor amounts of short chain fatty acids. The structures of the cardiolipin and monolysocardiolipin have been elucidated by post source decay mass spectrometry analysis. A large variety of cardiolipin and monolysocardiolipin species were found in A. baumannii. Similar lysocardiolipin levels were found in the two clinical strains A. baumannii ATCC19606T and AYE whereas in the nonpathogenic strain Acinetobacter baylyi ADP1 lysocardiolipin levels were highly reduced.
Collapse
Affiliation(s)
- Patrizia Lopalco
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Julia Stahl
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Cosimo Annese
- Italian National Council for Research - Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), Bari, Italy
| | - Beate Averhoff
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Angela Corcelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy. .,Italian National Council for Research - Institute for Chemical-Physical Processes (CNR- IPCF), Bari, Italy.
| |
Collapse
|
60
|
Liu X, Lieberman J. A Mechanistic Understanding of Pyroptosis: The Fiery Death Triggered by Invasive Infection. Adv Immunol 2017; 135:81-117. [PMID: 28826530 DOI: 10.1016/bs.ai.2017.02.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Immune cells and skin and mucosal epithelial cells recognize invasive microbes and other signs of danger to sound alarms that recruit responder cells and initiate an immediate "innate" immune response. An especially powerful alarm is triggered by cytosolic sensors of invasive infection that assemble into multimolecular complexes, called inflammasomes, that activate the inflammatory caspases, leading to maturation and secretion of proinflammatory cytokines and pyroptosis, an inflammatory death of the infected cell. Work in the past year has defined the molecular basis of pyroptosis. Activated inflammatory caspases cleave Gasdermin D (GSDMD), a cytosolic protein in immune antigen-presenting cells and epithelia. Cleavage separates the autoinhibitory C-terminal fragment from the active N-terminal fragment, which moves to the cell membrane, binds to lipids on the inside of the cell membrane, and oligomerizes to form membrane pores that disrupt cell membrane integrity, causing death and leakage of small molecules, including the proinflammatory cytokines and GSDMD itself. GSDMD also binds to cardiolipin on bacterial membranes and kills the very bacteria that activate the inflammasome. GSDMD belongs to a family of poorly studied gasdermins, expressed in the skin and mucosa, which can also form membrane pores. Spontaneous mutations that disrupt the binding of the N- and C-terminal domains of other gasdermins are associated with alopecia and asthma. Here, we review recent studies that identified the roles of the inflammasome, inflammatory caspases, and GSDMD in pyroptosis and highlight some of the outstanding questions about their roles in innate immunity, control of infection, and sepsis.
Collapse
Affiliation(s)
- Xing Liu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
61
|
May KL, Silhavy TJ. Making a membrane on the other side of the wall. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1386-1393. [PMID: 27742351 DOI: 10.1016/j.bbalip.2016.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/20/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria is positioned at the frontline of the cell's interaction with its environment and provides a barrier against influx of external toxins while still allowing import of nutrients and excretion of wastes. It is a remarkable asymmetric bilayer with a glycolipid surface-exposed leaflet and a glycerophospholipid inner leaflet. Lipid asymmetry is key to OM barrier function and several different systems actively maintain this lipid asymmetry. All OM components are synthesized in the cytosol before being secreted and assembled into a contiguous membrane on the other side of the cell wall. Work in recent years has uncovered the pathways that transport and assemble most of the OM components. However, our understanding of how phospholipids are delivered to the OM remains notably limited. Here we will review seminal works in phospholipid transfer performed some 40years ago and place more recent insights in their context. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Kerrie L May
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
62
|
Structural insights into cardiolipin transfer from the Inner membrane to the outer membrane by PbgA in Gram-negative bacteria. Sci Rep 2016; 6:30815. [PMID: 27487745 PMCID: PMC4973235 DOI: 10.1038/srep30815] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/08/2016] [Indexed: 11/17/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is a unique asymmetric lipid bilayer in which the outer leaflet is composed of lipopolysaccharide (LPS) and the inner leaflet is formed by glycerophospholipid (GPL). The OM plays a fundamental role in protecting Gram-negative bacteria from harsh environments and toxic compounds. The transport and assembly pathways for phospholipids of bacterial OM are unknown. Cardiolipin (CL) plays an important role in OM biogenesis and pathogenesis, and the inner membrane (IM) protein PbgA, containing five transmembrane domains and a globular domain in periplasm has been recently identified as a CL transporter from the IM to the OM with an unknown mechanism. Here we present the first two crystal structures of soluble periplasmic globular domain of PbgA from S. typhimurium and E. coli, which revealed that the globular domains of PbgA resemble the structures of the arylsulfatase protein family and contains a novel core hydrophobic pocket that may be responsible for binding and transporting CLs. Our structural and functional studies shed an important light on the mechanism of CL transport in Gram-negative bacteria from the IM to the OM, which offers great potential for the development of novel antibiotics against multi-drug resistant bacterial infections.
Collapse
|
63
|
Two Distinct Cardiolipin Synthases Operate in Agrobacterium tumefaciens. PLoS One 2016; 11:e0160373. [PMID: 27472399 PMCID: PMC4966929 DOI: 10.1371/journal.pone.0160373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/18/2016] [Indexed: 12/14/2022] Open
Abstract
Cardiolipin (CL) is a universal component of energy generating membranes. In most bacteria, it is synthesized via the condensation of two molecules phosphatidylglycerol (PG) by phospholipase D-type cardiolipin synthases (PLD-type Cls). In the plant pathogen and natural genetic engineer Agrobacterium tumefaciens CL comprises up to 15% of all phospholipids in late stationary growth phase. A. tumefaciens harbors two genes, atu1630 (cls1) and atu2486 (cls2), coding for PLD-type Cls. Heterologous expression of either cls1 or cls2 in Escherichia coli resulted in accumulation of CL supporting involvement of their products in CL synthesis. Expression of cls1 and cls2 in A. tumefaciens is constitutive and irrespective of the growth phase. Membrane lipid profiling of A. tumefaciens mutants suggested that Cls2 is required for CL synthesis at early exponential growth whereas both Cls equally contribute to CL production at later growth stages. Contrary to many bacteria, which suffer from CL depletion, A. tumefaciens tolerates large changes in CL content since the CL-deficient cls1/cls2 double mutant showed no apparent defects in growth, stress tolerance, motility, biofilm formation, UV-stress and tumor formation on plants.
Collapse
|
64
|
Elhenawy W, Bording-Jorgensen M, Valguarnera E, Haurat MF, Wine E, Feldman MF. LPS Remodeling Triggers Formation of Outer Membrane Vesicles in Salmonella. mBio 2016; 7:e00940-16. [PMID: 27406567 PMCID: PMC4958258 DOI: 10.1128/mbio.00940-16] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/09/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Outer membrane vesicles (OMV) are proposed to mediate multiple functions during pathogenesis and symbiosis. However, the mechanisms responsible for OMV formation remain poorly understood. It has been shown in eukaryotic membranes that lipids with an inverted-cone shape favor the formation of positive membrane curvatures. Based on these studies, we formulated the hypothesis that lipid A deacylation might impose shape modifications that result in the curvature of the outer membrane (OM) and subsequent OMV formation. We tested the effect of lipid A remodeling on OMV biogenesis employing Salmonella enterica serovar Typhimurium as a model organism. Expression of the lipid A deacylase PagL resulted in increased vesiculation, without inducing an envelope stress response. Mass spectrometry analysis revealed profound differences in the patterns of lipid A in OM and OMV, with accumulation of deacylated lipid A forms exclusively in OMV. OMV biogenesis by intracellular bacteria upon macrophage infection was drastically reduced in a pagL mutant strain. We propose a novel mechanism for OMV biogenesis requiring lipid A deacylation in the context of a multifactorial process that involves the orchestrated remodeling of the outer membrane. IMPORTANCE The role of lipid remodeling in vesiculation is well documented in eukaryotes. Similarly, bacteria produce membrane-derived vesicles; however, the molecular mechanisms underlying their production are yet to be determined. In this work, we investigated the role of outer membrane remodeling in OMV biogenesis in S Typhimurium. We showed that the expression of the lipid A deacylase PagL results in overvesiculation with deacylated lipid A accumulation exclusively in OMV. An S Typhimurium ΔpagL strain showed a significant reduction in intracellular OMV secretion relative to the wild-type strain. Our results suggest a novel mechanism for OMV biogenesis that involves outer membrane remodeling through lipid A modification. Understanding how OMV are produced by bacteria is important to advance our understanding of the host-pathogen interactions.
Collapse
Affiliation(s)
- Wael Elhenawy
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Ezequiel Valguarnera
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, St. Louis, Missouri, USA
| | - M Florencia Haurat
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Eytan Wine
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Mario F Feldman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
65
|
Henderson JC, Zimmerman SM, Crofts AA, Boll JM, Kuhns LG, Herrera CM, Trent MS. The Power of Asymmetry: Architecture and Assembly of the Gram-Negative Outer Membrane Lipid Bilayer. Annu Rev Microbiol 2016; 70:255-78. [PMID: 27359214 DOI: 10.1146/annurev-micro-102215-095308] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Determining the chemical composition of biological materials is paramount to the study of natural phenomena. Here, we describe the composition of model gram-negative outer membranes, focusing on the predominant assembly, an asymmetrical bilayer of lipid molecules. We also give an overview of lipid biosynthetic pathways and molecular mechanisms that organize this material into the outer membrane bilayer. An emphasis is placed on the potential of these pathways as targets for antibiotic development. We discuss deviations in composition, through bacterial cell surface remodeling, and alternative modalities to the asymmetric lipid bilayer. Outer membrane lipid alterations of current microbiological interest, such as lipid structures found in commensal bacteria, are emphasized. Additionally, outer membrane components could potentially be engineered to develop vaccine platforms. Observations related to composition and assembly of gram-negative outer membranes will continue to generate novel discoveries, broaden biotechnologies, and reveal profound mysteries to compel future research.
Collapse
Affiliation(s)
- Jeremy C Henderson
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Shawn M Zimmerman
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - Alexander A Crofts
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Joseph M Boll
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Lisa G Kuhns
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - Carmen M Herrera
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - M Stephen Trent
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| |
Collapse
|
66
|
Rashid R, Veleba M, Kline KA. Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides. Front Cell Dev Biol 2016; 4:55. [PMID: 27376064 PMCID: PMC4894902 DOI: 10.3389/fcell.2016.00055] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/23/2016] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial peptides (AMPs) are utilized by both eukaryotic and prokaryotic organisms. AMPs such as the human beta defensins, human neutrophil peptides, human cathelicidin, and many bacterial bacteriocins are cationic and capable of binding to anionic regions of the bacterial surface. Cationic AMPs (CAMPs) target anionic lipids [e.g., phosphatidylglycerol (PG) and cardiolipins (CL)] in the cell membrane and anionic components [e.g., lipopolysaccharide (LPS) and lipoteichoic acid (LTA)] of the cell envelope. Bacteria have evolved mechanisms to modify these same targets in order to resist CAMP killing, e.g., lysinylation of PG to yield cationic lysyl-PG and alanylation of LTA. Since CAMPs offer a promising therapeutic alternative to conventional antibiotics, which are becoming less effective due to rapidly emerging antibiotic resistance, there is a strong need to improve our understanding about the AMP mechanism of action. Recent literature suggests that AMPs often interact with the bacterial cell envelope at discrete foci. Here we review recent AMP literature, with an emphasis on focal interactions with bacteria, including (1) CAMP disruption mechanisms, (2) delocalization of membrane proteins and lipids by CAMPs, and (3) CAMP sensing systems and resistance mechanisms. We conclude with new approaches for studying the bacterial membrane, e.g., lipidomics, high resolution imaging, and non-detergent-based membrane domain extraction.
Collapse
Affiliation(s)
- Rafi Rashid
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| | - Mark Veleba
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
67
|
Gabale U, Qian G, Roach E, Ressl S. Crystallization and preliminary X-ray diffraction analysis of YejM from Salmonella typhimurium: an essential inner membrane protein involved in outer membrane directed cardiolipin transport. F1000Res 2016; 5:1086. [PMID: 29259761 PMCID: PMC5728191 DOI: 10.12688/f1000research.8647.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2017] [Indexed: 11/20/2022] Open
Abstract
Salmonella
typhimurium is responsible for over 35% of all foodborne illness related hospitalizations in the United States. This Gram-negative bacterium possesses an inner and an outer membrane (OM), the latter allowing its survival and replication within host tissues. During infection, OM is remodeled by transport of glycerophospholipids across the periplasm and into the OM. Increased levels of cardiolipin in the OM were observed upon PhoPQ activation and led to the discovery of YejM; an inner membrane protein essential for cell growth involved in cardiolipin binding and transport to the OM. Here we report how YejM was engineered to facilitate crystal growth and X-ray diffraction analysis. Successful structure determination of YejM will help us understand how they interact and how YejM facilitates cardiolipin transport to the OM. Ultimately,
yejm, being an essential gene, may lead to new drug targets inhibiting the pathogenic properties of
S. typhimurium.
Collapse
Affiliation(s)
- Uma Gabale
- Molecular and Cellular Biochemistry Department, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Gene Qian
- Molecular and Cellular Biochemistry Department, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Elaina Roach
- Molecular and Cellular Biochemistry Department, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Susanne Ressl
- Molecular and Cellular Biochemistry Department, Indiana University Bloomington, Bloomington, IN, 47405, USA
| |
Collapse
|
68
|
Stubenrauch C, Belousoff MJ, Hay ID, Shen HH, Lillington J, Tuck KL, Peters KM, Phan MD, Lo AW, Schembri MA, Strugnell RA, Waksman G, Lithgow T. Effective assembly of fimbriae in Escherichia coli depends on the translocation assembly module nanomachine. Nat Microbiol 2016; 1:16064. [DOI: 10.1038/nmicrobiol.2016.64] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 04/07/2016] [Indexed: 01/08/2023]
|
69
|
Sautrey G, El Khoury M, Dos Santos AG, Zimmermann L, Deleu M, Lins L, Décout JL, Mingeot-Leclercq MP. Negatively Charged Lipids as a Potential Target for New Amphiphilic Aminoglycoside Antibiotics: A BIOPHYSICAL STUDY. J Biol Chem 2016; 291:13864-74. [PMID: 27189936 DOI: 10.1074/jbc.m115.665364] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 11/06/2022] Open
Abstract
Bacterial membranes are highly organized, containing specific microdomains that facilitate distinct protein and lipid assemblies. Evidence suggests that cardiolipin molecules segregate into such microdomains, probably conferring a negative curvature to the inner plasma membrane during membrane fission upon cell division. 3',6-Dinonyl neamine is an amphiphilic aminoglycoside derivative active against Pseudomonas aeruginosa, including strains resistant to colistin. The mechanisms involved at the molecular level were identified using lipid models (large unilamellar vesicles, giant unilamelllar vesicles, and lipid monolayers) that mimic the inner membrane of P. aeruginosa The study demonstrated the interaction of 3',6-dinonyl neamine with cardiolipin and phosphatidylglycerol, two negatively charged lipids from inner bacterial membranes. This interaction induced membrane permeabilization and depolarization. Lateral segregation of cardiolipin and membrane hemifusion would be critical for explaining the effects induced on lipid membranes by amphiphilic aminoglycoside antibiotics. The findings contribute to an improved understanding of how amphiphilic aminoglycoside antibiotics that bind to negatively charged lipids like cardiolipin could be promising antibacterial compounds.
Collapse
Affiliation(s)
- Guillaume Sautrey
- From the Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05 Bruxelles, Belgium
| | - Micheline El Khoury
- From the Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05 Bruxelles, Belgium
| | - Andreia Giro Dos Santos
- From the Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05 Bruxelles, Belgium
| | - Louis Zimmermann
- the Département de Pharmacochimie Moléculaire, Université de Grenoble, Alpes/CNRS, UMR 5063, ICMG FR 2607, 470 Rue de la Chimie, BP 53, F-38041 Grenoble, France, and
| | - Magali Deleu
- the Laboratoire de Biophysique Moleculaire aux Interfaces, Université de Liège, Gembloux Agro-Bio Tech, Passage des Déportés, 2, B-5030 Gembloux, Belgium
| | - Laurence Lins
- the Laboratoire de Biophysique Moleculaire aux Interfaces, Université de Liège, Gembloux Agro-Bio Tech, Passage des Déportés, 2, B-5030 Gembloux, Belgium
| | - Jean-Luc Décout
- the Département de Pharmacochimie Moléculaire, Université de Grenoble, Alpes/CNRS, UMR 5063, ICMG FR 2607, 470 Rue de la Chimie, BP 53, F-38041 Grenoble, France, and
| | - Marie-Paule Mingeot-Leclercq
- From the Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05 Bruxelles, Belgium,
| |
Collapse
|
70
|
Lin TY, Weibel DB. Organization and function of anionic phospholipids in bacteria. Appl Microbiol Biotechnol 2016; 100:4255-67. [PMID: 27026177 DOI: 10.1007/s00253-016-7468-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 11/25/2022]
Abstract
In addition to playing a central role as a permeability barrier for controlling the diffusion of molecules and ions in and out of bacterial cells, phospholipid (PL) membranes regulate the spatial and temporal position and function of membrane proteins that play an essential role in a variety of cellular functions. Based on the very large number of membrane-associated proteins encoded in genomes, an understanding of the role of PLs may be central to understanding bacterial cell biology. This area of microbiology has received considerable attention over the past two decades, and the local enrichment of anionic PLs has emerged as a candidate mechanism for biomolecular organization in bacterial cells. In this review, we summarize the current understanding of anionic PLs in bacteria, including their biosynthesis, subcellular localization, and physiological relevance, discuss evidence and mechanisms for enriching anionic PLs in membranes, and conclude with an assessment of future directions for this area of bacterial biochemistry, biophysics, and cell biology.
Collapse
Affiliation(s)
- Ti-Yu Lin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Douglas B Weibel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
71
|
Effects of elevated growth temperature and heat shock on the lipid composition of the inner and outer membranes of Yersinia pseudotuberculosis. Biochimie 2016; 123:103-9. [PMID: 26853818 DOI: 10.1016/j.biochi.2016.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/02/2016] [Indexed: 11/23/2022]
Abstract
Differences in the distribution of individual phospholipids between the inner (IM) and outer membranes (OM) of gram-negative bacteria have been detected in mesophilic Escherichia, Erwinia and Salmonella species but have never been investigated in the psychrotrophic Yersinia genus. Therefore, the influence of an elevated growth temperature and heat shock on the phospholipid and fatty acid (FA) compositions of the fractionated Yersinia pseudotuberculosis envelope was investigated. The shift of the growth temperature from 8 °C to 37 °C to mimic the switch from saprophytic to parasitic growth of this bacteria and the exposure of the cells to heat shock, which was induced by a sharp increase in the temperature from 8 °C to 45 °C, increased the lysophosphatidylethanolamine content from zero and 1% to 6% and 10% in the IM and OM, respectively. These changes were accompanied by a decrease in the phosphatidylethanolamine (PE) content and a drastic increase (up to 3-fold higher) in the phosphatidylglycerol (PG) level in the OM of the bacteria, which increases the net negative charge of the cell envelope. The levels of the predominant saturated palmitic (16:0) and cyclopropane FAs were approximately 1.5- and 7.5-fold higher, respectively, but the content of the predominant unsaturated palmitoleic (16:1n-7) and cis-vaccenic (18:1n-7) FAs was approximately 10-30-fold lower in both membranes that were isolated from the cells grown at elevated temperatures. Due to these changes, reflecting the process of "homeoviscous adaptation", the ratio between the unsaturated and saturated FAs decreased but remained higher in the IM than that in the OM. Simultaneously, no significant changes were observed in the FA composition of cells subjected to heat shock, demonstrating a difference between the responses of the heat-shocked and heat-adapted Y. pseudotuberculosis. The unique ability of Y. pseudotuberculosis to reciprocally regulate the ratio of anionic PG and net neutral PE and therefore adjust the negative charge of the OM may be a common strategy used by pathogenic bacteria to promote the barrier function of the OM.
Collapse
|
72
|
Chong ZS, Woo WF, Chng SS. Osmoporin OmpC forms a complex with MlaA to maintain outer membrane lipid asymmetry in Escherichia coli. Mol Microbiol 2015; 98:1133-46. [PMID: 26314242 DOI: 10.1111/mmi.13202] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 12/21/2022]
Abstract
Gram-negative bacteria can survive in harsh environments in part because the asymmetric outer membrane (OM) hinders the entry of toxic compounds. Lipid asymmetry is established by having phospholipids (PLs) confined to the inner leaflet of the membrane and lipopolysaccharides (LPS) to the outer leaflet. Perturbation of OM lipid asymmetry, characterized by PL accumulation in the outer leaflet, disrupts proper LPS packing and increases membrane permeability. The multi-component Mla system prevents PL accumulation in the outer leaflet of the OM via an unknown mechanism. Here, we demonstrate that in Escherichia coli, the Mla system maintains OM lipid asymmetry with the help of osmoporin OmpC. We show that the OM lipoprotein MlaA interacts specifically with OmpC and OmpF. This interaction is sufficient to localize MlaA lacking its lipid anchor to the OM. Removing OmpC, but not OmpF, causes accumulation of PLs in the outer leaflet of the OM in stationary phase, as was previously observed for MlaA. We establish that OmpC is an additional component of the Mla system; the OmpC-MlaA complex may function to remove PLs directly from the outer leaflet to maintain OM lipid asymmetry. Our work reveals a novel function for the general diffusion channel OmpC in lipid transport.
Collapse
Affiliation(s)
- Zhi-Soon Chong
- Department of Chemistry, National University of Singapore, Singapore, 117543
| | - Wei-Fen Woo
- Department of Chemistry, National University of Singapore, Singapore, 117543
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore, 117543.,Singapore Center on Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore, 117456
| |
Collapse
|
73
|
Luévano-Martínez LA, Kowaltowski AJ. Phosphatidylglycerol-derived phospholipids have a universal, domain-crossing role in stress responses. Arch Biochem Biophys 2015; 585:90-97. [PMID: 26391924 DOI: 10.1016/j.abb.2015.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022]
Abstract
Phosphatidylglycerol and phospholipids derived from it are widely distributed throughout the three domains of life. Cardiolipin is the best characterized of these phospholipids, and plays a key role in the response to environmental variations. Phosphatidylglycerol-derived phospholipids confer cell membranes with a wide range of responses, including changes in surface charge, fluidity, flexibility, morphology, biosynthesis and remodeling, that adapt the cell to these situations. Furthermore, the synthesis and remodeling of these phospholipids is finely regulated, highlighting the importance of these lipids in cell homeostasis and responses during stressful situations. In this article, we review the most important roles of these anionic phospholipids across domains, focusing on the biophysical basis by which these phospholipids are used in stress responses.
Collapse
Affiliation(s)
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| |
Collapse
|